Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9685-2023
https://doi.org/10.5194/acp-23-9685-2023
Research article
 | Highlight paper
 | 
01 Sep 2023
Research article | Highlight paper |  | 01 Sep 2023

Atmospheric CO2 inversion reveals the Amazon as a minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions

Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor

Related authors

ARGO: ARctic greenhouse Gas Observation metadata version 1
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-456,https://doi.org/10.5194/essd-2024-456, 2024
Revised manuscript accepted for ESSD
Short summary
Combined CO2 measurement record indicates decreased Amazon forest carbon uptake, offset by Savannah carbon release
Santiago Botía, Saqr Munassar, Thomas Koch, Danilo Custodio, Luana S. Basso, Shujiro Komiya, Jost V. Lavric, David Walter, Manuel Gloor, Giordane Martins, Stijn Naus, Gerbrand Koren, Ingrid Luijkx, Stijn Hantson, John B. Miller, Wouter Peters, Christian Rödenbeck, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1735,https://doi.org/10.5194/egusphere-2024-1735, 2024
Short summary
Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018
Chris Wilson, Martyn P. Chipperfield, Manuel Gloor, Robert J. Parker, Hartmut Boesch, Joey McNorton, Luciana V. Gatti, John B. Miller, Luana S. Basso, and Sarah A. Monks
Atmos. Chem. Phys., 21, 10643–10669, https://doi.org/10.5194/acp-21-10643-2021,https://doi.org/10.5194/acp-21-10643-2021, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Chemistry–climate feedback of atmospheric methane in a methane-emission-flux-driven chemistry–climate model
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
Atmos. Chem. Phys., 25, 5133–5158, https://doi.org/10.5194/acp-25-5133-2025,https://doi.org/10.5194/acp-25-5133-2025, 2025
Short summary
Surface ozone trend variability across the United States and the impact of heat waves (1990–2023)
Kai-Lan Chang, Brian C. McDonald, Colin Harkins, and Owen R. Cooper
Atmos. Chem. Phys., 25, 5101–5132, https://doi.org/10.5194/acp-25-5101-2025,https://doi.org/10.5194/acp-25-5101-2025, 2025
Short summary
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
Atmos. Chem. Phys., 25, 4929–4942, https://doi.org/10.5194/acp-25-4929-2025,https://doi.org/10.5194/acp-25-4929-2025, 2025
Short summary
Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over south and east Asia
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4785–4802, https://doi.org/10.5194/acp-25-4785-2025,https://doi.org/10.5194/acp-25-4785-2025, 2025
Short summary
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations – a case study of the 2019 Raikoke eruption
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
Atmos. Chem. Phys., 25, 4403–4418, https://doi.org/10.5194/acp-25-4403-2025,https://doi.org/10.5194/acp-25-4403-2025, 2025
Short summary

Cited articles

Anderson, L. O., Aragão, L. E. O. C., Gloor, M., Arai, E., Adami, M., Saatchi, S. S., Malhi, Y., Shimabukuro, Y. E., Barlow, J., Berenguer, E., and Duarte, V.: Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought, Global Biogeochem. Cy., 29, 1739–1753, https://doi.org/10.1002/2014GB005008, 2015. 
Anderson, L. O., Neto, G. R., Cunha, A. P., Fonseca, M. G., De Moura, Y. M., Dalagnol, R., Wagner, F. H., and De Aragão, L. E. O. E. C.: Vulnerability of Amazonian forests to repeated droughts, Philos. T. Roy. Soc. B, 373, 20170411, https://doi.org/10.1098/rstb.2017.0411, 2018.​​​​​​​ 
Baier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J. P., Feng, S., Fried, A., Halliday, H., Higgs, J., Lauvaux, T., Miller, B. R., Montzka, S. A., Newberger, T., Nowak, J. B., Patra, P., Richter, D., Walega, J., and Weibring, P.: Multispecies Assessment of Factors Influencing Regional CO2 and CH4 Enhancements During the Winter 2017 ACT-America Campaign, J. Geophys. Res.-Atmos., 125, e2019JD031339, https://doi.org/10.1029/2019JD031339, 2020. 
Download
Executive editor
The Amazon's role in the tropical and global carbon cycle is highly significant. Usually considered as the "lung of the planet", it is mandatory to monitor if this role is kept, or if the large rainforest even turns into a source of carbon dioxide. The study by Basso et al. finds that during the analysed years, from 2010 to 2018, the Amazon is a small net source of carbon to the atmosphere. They find that fire is the primary driver of the Amazonian source, while drought years intensify the carbon emissions. The study also examined the contributions of different regions to the Amazonian carbon budget and found that emissions in the eastern Amazon were greater than those in the western region, primarily due to fires. These findings are of high relevance - and concern - to the larger geosciences community and indicate how important it is to stop slash-and-burn in the large rainforests.
Short summary
The Amazon’s carbon balance may have changed due to forest degradation, deforestation and warmer climate. We used an atmospheric model and atmospheric CO2 observations to quantify Amazonian carbon emissions (2010–2018). The region was a small carbon source to the atmosphere, mostly due to fire emissions. Forest uptake compensated for ~ 50 % of the fire emissions, meaning that the remaining forest is still a small carbon sink. We found no clear evidence of weakening carbon uptake over the period.
Share
Altmetrics
Final-revised paper
Preprint