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Abstract. Tropical forests such as the Amazonian rainforests play an important role for climate, are large carbon
stores and are a treasure of biodiversity. Amazonian forests have been exposed to large-scale deforestation and
degradation for many decades. Deforestation declined between 2005 and 2012 but more recently has again
increased with similar rates as in 2007–2008. The resulting forest fragments are exposed to substantially elevated
temperatures in an already warming world. These temperature and land cover changes are expected to affect the
forests, and an important diagnostic of their health and sensitivity to climate variation is their carbon balance.
In a recent study based on CO2 atmospheric vertical profile observations between 2010 and 2018, and an air
column budgeting technique used to estimate fluxes, we reported the Amazon region as a carbon source to the
atmosphere, mainly due to fire emissions. Instead of an air column budgeting technique, we use an inverse of the
global atmospheric transport model, TOMCAT, to assimilate CO2 observations from Amazon vertical profiles
and global flask measurements. We thus estimate inter- and intra-annual variability in the carbon fluxes, trends
over time and controls for the period of 2010–2018. This is the longest period covered by a Bayesian inversion of
these atmospheric CO2 profile observations to date. Our analyses indicate that the Amazon is a small net source
of carbon to the atmosphere (mean 2010–2018= 0.13± 0.17 Pg C yr−1, where 0.17 is the 1σ uncertainty), with
the majority of the emissions coming from the eastern region (77 % of total Amazon emissions). Fire is the
primary driver of the Amazonian source (0.26± 0.13 Pg C yr−1), while forest carbon uptake removes around
half of the fire emissions to the atmosphere (−0.13± 0.20 Pg C yr−1). The largest net carbon sink was observed
in the western-central Amazon region (72 % of the fire emissions). We find larger carbon emissions during the
extreme drought years (such as 2010, 2015 and 2016), correlated with increases in temperature, cumulative water
deficit and burned area. Despite the increase in total carbon emissions during drought years, we do not observe
a significant trend over time in our carbon total, fire and net biome exchange estimates between 2010 and 2018.
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Our analysis thus cannot provide clear evidence for a weakening of the carbon uptake by Amazonian tropical
forests.

1 Introduction

The uptake of carbon dioxide (CO2) by plants helps to mit-
igate global climate change. The land carbon sink is esti-
mated to have offset approximately 25 % of all fossil fuel
emissions since 1960 (Friedlingstein et al., 2020). Tropical
forests, like those in Amazonia, are the largest in the world
and have historically been a major component of this land
carbon sink. Measurements of aboveground biomass changes
indicate an increase in Amazonian old-growth forest biomass
over time, summing to a total sink of 0.38 (0.28–0.49 95 %
C.I.) Pg C yr−1 in the 2000s (Brienen et al., 2015). However,
the Amazon carbon cycle is affected by both direct (defor-
estation and degradation) and indirect (climate change) an-
thropogenic forest disturbances, as the reduction in the forest
carbon uptake capacity during drought years (Phillips et al.,
2009; Gatti et al., 2014; van der Laan-Luijkx et al., 2015;
Alden et al., 2016). A decline in the Amazon carbon accu-
mulation was observed over 1983 to mid-2011, as a conse-
quence of an increase in tree mortality throughout this pe-
riod, possibly as a result of greater climate variability and
feedbacks of faster growth on mortality, resulting in short-
ened tree longevity (Brienen et al., 2015).

Human-induced land use and cover change, and forest
degradation (driven by fires caused by anthropogenic ac-
tivity in association with drier conditions and logging), are
the main direct disturbances in the Amazon forest (Fawcett
et al., 2023; Lapola et al., 2023). These disturbances have
been estimated to result in aboveground biomass losses of
1.3 (±0.4) Pg C (between 2012 and 2019; Fawcett et al.,
2023). Kruid et al. (2021) attributed 56 % of the carbon
loss in this region during the period from 2003 to 2019
to deforestation, with the remainder (44 %) to forest degra-
dation and disturbance (including fire, natural disturbances,
drought-induced tree mortality, edge effects, selective log-
ging and other extractive activities). Over the past 40 years,
the Amazon forest area has decreased by 17 % (MapBiomas,
2022), and degradation (between 1995 and 2017) accounts
for around 17 % of total forest area (Lapola et al., 2023). For-
est fires are associated with a combination of human activi-
ties providing the ignition source and climatic factors which
create drier and hotter conditions (Ray et al., 2005). Tropi-
cal forests like those in Amazonia are rarely susceptible to
natural fires. In general, the forest fires observed in this re-
gion result from the leakage of fires from deforested areas to
adjacent forests (Aragão et al., 2018). In addition, deforesta-
tion and selective logging promote degradation of adjacent
forests, increasing their vulnerability to fires, which could
result in further degradation (Aragão et al., 2018). Silva et

al. (2020) found that forest fires affect the Amazon forest car-
bon cycle for at least 30 years after the fires, with just 35 %
of this emission being compensated for by cumulative CO2
uptake of burned forests during this period.

As climate change continues, extreme climate events
across the Amazon region have become increasingly com-
mon (Gloor et al., 2013). Recently, a warming trend in Ama-
zonian annual mean temperature over the last 40 years was
reported, where the eastern and mainly southeastern regions
showed stronger trends than the global mean trend (Gatti
et al., 2021a). The largest increases in Amazon tempera-
ture were observed for the dry season months, in addition
to a decrease in precipitation of 17 % during these months,
strongly enhancing the contrast between the dry and wet sea-
sons (Gatti et al., 2021a; Haghtalab et al., 2020). The Ama-
zon is estimated to have suffered a substantial carbon loss
due to fires caused by the 2015–2016 El Niño drought and
heat wave in the eastern Amazon; long-term forest plot mon-
itoring reveals that carbon losses remained elevated for up
to 3 years (Berenguer et al., 2021). These impacts could
have been amplified by human disturbance, which means that
human-modified forests may be more susceptible and sensi-
tive to fires (Berenguer et al., 2021).

Recently, Gatti et al. (2021a) reported new top-down es-
timates of the Amazon carbon balance covering the period
2010–2018. The Amazonian carbon balance is of interest for
two reasons: first to understand how tropical forest produc-
tivity and losses fit in the global carbon balance, specifically
the substantial global land sink, and second as an indicator
of Amazonian forest performance changes over time. Gatti
et al. (2021a) found a net carbon release to the atmosphere
of 0.29± 0.40 Pg C yr−1, including 0.41± 0.05 Pg C yr−1 of
fire emissions. The net biome exchange (NBE, represent-
ing the balance between photosynthesis, respiration and de-
composition and excluding fire) compensated for 31 % of
fire emissions from the atmosphere, yielding a small NBE
sink for Amazonia of −0.12± 0.40 Pg C yr−1 (Gatti et al.,
2021a). In addition, Gatti et al. (2021a) reported an east–west
difference in total flux mainly related to fire emissions but
also highlighted that the southeastern Amazon region acts as
a net carbon source (total carbon flux minus fire emissions)
to the atmosphere. The authors suggest that the historical
land use change and the strong climate trends (the tempera-
ture increase and decrease in precipitation mainly during the
dry season) observed in this southeast region may explain
the positive NBE (i.e., a source of C to the atmosphere) in
the southeast, as its estimated positive trend suggests that in-
creasing temperatures and decreasing soil water availability
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have a significant impact on the vegetation carbon balance,
at least in southeast Amazonia (Gatti et al., 2021a).

These estimates were based on 9 years of lower-
troposphere vertical CO2 and CO profile observations and
an air column mass balance technique to estimate fluxes. In
essence, the fluxes are estimated as the difference between
the air column CO2 content at the site and the location where
air enters the Amazon on its path to the site divided by the
air travel time from the coast to the site (Gatti et al., 2021a;
Miller et al., 2007). Estimates based on this approach have
uncertainties. For example, we assume well-mixed condi-
tions during the sampling. As reported by the authors, the
approach does not account for convective process that may
result in losses of surface flux CO2 at the top of the profiles
(typically 4.5 km a.s.l.) (Gatti et al., 2021a). There are also
uncertainties in the estimates of background air concentra-
tions (as it is assumed that remote Atlantic marine boundary
layer concentrations represent the partial column entering the
coast; Domingues et al., 2020; Gatti et al., 2021a), and we
also do not account for diurnal cycles in NBE that may im-
pact the partial column mean CO2.

In order to extract Amazonian surface flux information
from the vertical profiles using an independent approach,
we apply a global three-dimensional (3-D) Eulerian offline
chemical transport model, TOMCAT (Chipperfield, 2006),
and its inverse model, INVICAT (Wilson et al., 2021),
to atmospheric CO2 data. We estimate Amazonian surface
fluxes between 2010 and 2018 using the CO2 observations
from global surface monitoring sites (Lan et al., 2022) and
lower-troposphere vertical profiles in Amazonia (Gatti et al.,
2021a). As this 3-D transport model is global and simu-
lates convective cloud transport processes, some of the un-
certainties are reduced compared to the air column budgeting
method. To the best of our knowledge the complete 2010–
2018 Amazonian vertical profile dataset has not yet been
used in 3-D atmospheric transport inversions. INVICAT uses
a variational scheme, based on 4D-Var methods used in nu-
merical weather prediction (NWP) (e.g., Le Dimet and Tala-
grand, 1986), to minimize the difference between predicted
and observed dry-air mole fractions. Using this methodology,
we quantify fluxes and analyze their seasonal patterns, inter-
annual variability and trends for Amazon. We also estimate
carbon emissions from fires to constrain the Amazon carbon
budget using flux estimates from an independent global in-
verse modeling based on atmospheric carbon monoxide (CO)
measured from space and relate the carbon fluxes (total, fire
and NBE) to climate controls. In Sect. 2 we describe the in-
verse modeling approach and describe the observations used;
in Sects. 3 and 4 we discuss our results, analyze the drivers
of CO2 fluxes (as in cumulative water deficit, temperature,
solar radiation and burned area), cross-validate our model
mole fractions with independent Amazon observations and
compare our estimates with other previous published Ama-
zonian estimates, mainly with estimates using an air column
mass balance technique. Finally, we summarize the extent to

which our results are in agreement with previous Amazon
carbon flux estimates.

2 Methods

2.1 Observations

We assimilate in situ surface flask observations from global
surface observation sites and Amazonian lower-troposphere
vertical profiles of CO2 into the TOMCAT inverse atmo-
spheric transport model for a 9-year period between 2010
and 2018.

2.1.1 Amazonian aircraft profiles

We assimilated CO2 observations from 590 lower-
troposphere vertical profiles over five sites in the Brazilian
Amazon (Santarem, SAN: 55.0◦W, 2.9◦ S; Tabatinga, TAB:
69.7◦W, 6.0◦ S; Alta Floresta, ALF: 56.7◦W, 8.9◦ S; Rio
Branco, RBA: 67.9◦W, 9.3◦ S; Tefe, TEF: 66.5◦W, 3.6◦ S;
Fig. 1). Air samples were collected approximately twice per
month aboard light aircraft from 4.4 to 0.3 km a.s.l. using
automatic samplers between 2010 and 2018 (see Gatti et
al., 2021a, for more details). All samples were collected
between 12:00 and 13:00 local time (LT), when the boundary
layer is fully developed and most likely to be well mixed.
Samples were measured for CO2 and CO mole fraction with
high accuracy and precision at the greenhouse gas laboratory
at the National Institute of Space Research (LaGEE/INPE),
Brazil (Gatti et al., 2021a, 2014). For the inversions we
used the mean concentration of each vertical profile in the
planetary boundary layer (PBL) level (below 1.5 km a.s.l.,
levels with higher influence of the surface flux in the
concentrations) and the vertical profile free-troposphere
mean (above 3.5 km a.s.l., levels with lower influence of
the surface flux in the concentrations, better representing
the background concentrations). The vertical profile data
used here are available at PANGAEA Data Archiving at
https://doi.org/10.1594/PANGAEA.926834 (Gatti et al.,
2021b).

Recently, the National Oceanic and Atmospheric Admin-
istration’s Global Monitoring Laboratory (NOAA GML)
have found that the CO2 concentration is artificially re-
duced when air samples with high (> 1.7 %) water vapor
are pressurized in PFP (programmable flask package) flasks
to 2.7 bar, as a result of condensation (Baier et al., 2020).
The LaGEE system has some differences from the NOAA
system, and, as reported by Gatti et al. (2022), a prelimi-
nary study using vertical profiles near Manaus (Amazonas
state, Brazil) compared PFP samples measured for CO2 at
LaGEE/INPE to onboard measurements from a trace gas
flight analyzer largely immune to water effects (Picarro
model G2401-m) and found depletions in PFP CO2 similar
to those from the Baier et al. (2020) study. They also report
that this influence is likely greatest near the surface, as hu-
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Figure 1. Locations of LaGEE/INPE Amazon vertical profile sites (blue circles) and NOAA surface sites from which flask-based measure-
ments of CO2 are assimilated (red circles). The blue contour represents the Amazon area, based on Eva and Huber (2005).

midity increases towards lower altitudes, which means that
true CO2 in the lower half of the profiles may be higher than
measured (Gatti et al., 2022), meaning that our current fluxes
to the atmosphere presented here could be underestimated.

2.1.2 Surface flask observations

To estimate carbon fluxes, we also assimilated CO2 global
long-term surface data provided by the NOAA GML
(https://doi.org/10.15138/wkgj-f215, Lan et al., 2022) into
the inverse model. Data from a total of 72 monitoring sites
were used, where air samples in flasks are collected weekly
to biweekly (Fig. 1, Table A1). These measurements have
high accuracy (∼ 0.2 ppm), and most of the sites are located
in the Northern Hemisphere. There are few monitoring sites
in tropical regions, which increases the uncertainties of re-
gional estimates in the tropics. Here, we reduce these un-
certainties for Amazonia with the inclusion of the lower-
troposphere vertical profile data.

2.2 Model setup

2.2.1 Inverse model setup

To estimate the net carbon flux between Amazon and the
atmosphere we use the inverse of the atmospheric trans-
port model TOMCAT (Chipperfield, 2006). TOMCAT is a
global 3-D Eulerian offline atmospheric chemistry and air
constituent transport model, which has previously been used
to estimate greenhouse gas emissions (e.g., Wilson et al.,
2016, 2021; Gloor et al., 2018). The INVICAT inversion
framework (Wilson et al., 2014) used is based on the TOM-
CAT model and its adjoint. A detailed description of the
TOMCAT model and the 4D-Var inverse method employed
by INVICAT is presented in Chipperfield (2006) and Wilson
et al. (2014), respectively. A previous study with simulations

of sulfur hexafluoride (SF6) and other species comparing dif-
ferent transport models investigated some of the large-scale
transport characteristics (Patra et al., 2011) and shows that
TOMCAT in general performed well, slightly overestimating
the SF6 inter-hemispheric gradient compared to observations
but within the bounds of other transport models.

The forward and adjoint model simulations were carried
out globally at 5.6◦× 5.6◦ horizontal resolution, with 60 ver-
tical levels up to 0.1 hPa. Although we did not investigate
the uncertainties of the coarse resolution in our estimates,
previous CH4 inversion estimates using the TOMCAT model
with inversions at 2.8 and 5.6◦ resolution and assimilating
GOSAT data showed that the results were robust at both reso-
lutions (Wilson et al., 2021). The inversions were carried out
for each year separately and each completed 50 minimization
iterations. In order to better constrain fluxes during the final
months of each year, the inversion for each year was actually
run for 16 months, from December of the previous year to
the end of March for the following year, with the first month
and the final 3 months being discarded from the results, and
each inversion was initialized using 3-D fields provided from
the correct date in the previous year. The model meteorology
(including winds, temperature and pressure data) was taken
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011).

The initial conditions for the inversions come from prior
CO2 simulations and inversions which began in 1995. For
those simulations the initial conditions were included within
the state vector and optimized in order to produce an initial
global 3-D field consistent with observations. For the assimi-
lated observation data from both surface monitoring sites and
the vertical profile sites, the model output was linearly inter-
polated to the correct longitude, latitude and altitude at the
nearest model time step. In addition, uncorrelated random
errors of 1 ppm were attributed to each observation. In ad-
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dition, representation uncertainty for each observation was
calculated online during the model simulation as the mean
difference across the six model grid cells adjacent (2 in z,
2 in x and 2 in y direction) to that containing the obser-
vation location. The random and representation errors were
then combined in quadrature to provide the overall observa-
tion uncertainty.

In addition to atmospheric CO2 mole fractions, a priori
monthly mean flux values for each grid cell along with a di-
agonal error covariance matrix for these values were used as
input for the inversion calculation. A priori grid cell uncer-
tainties were assumed to be uncorrelated. The result of the
inversion is an a posteriori estimate of monthly mean grid
cell fluxes and an error covariance matrix. Using TOMCAT,
we ran forward a priori and a posteriori flux estimates to
simulate atmospheric CO2 air mole fractions. Here we will
refer to the mean a priori and a posteriori fluxes as “prior
fluxes” and “posterior fluxes” and the a priori and a poste-
riori mole fractions as “prior mole fractions” and “posterior
mole fractions”. In our CO2 inversion estimate, fossil fuel
flux was fixed and land–biosphere, ocean and fire emissions
were optimized. Prior emissions are given grid cell uncer-
tainties of 308 % of the prior flux value to give a total global
uncertainty based on the Global Carbon Project (Friedling-
stein et al., 2020) of 1.7 Pg C yr−1, with a different uncer-
tainty value attributed to land and ocean grid cells. The differ-
entiation was based on assuming the Global Carbon Project
(Friedlingstein et al., 2020) total uncertainty estimates of 1.1
and 0.6 Pg C yr−1 for land and ocean global flux uncertain-
ties, respectively.

To derive the uncertainties for the posterior emissions, we
followed the approach described by Wilson et al. (2021),
where estimates for each year’s posterior emission co-
variance error matrix using cost function gradient values
were produced from the limited-memory Broyden–Fletcher–
Goldfarb–Shanno algorithm (L-BFGS). We use this to mini-
mize the cost function (Nocedal, 1980), based on the method
suggested by Bousserez et al. (2015). Considering that this
iterative method estimates the inverse of the Hessian (the sec-
ond derivative) of the cost function and the off-diagonal el-
ements of the posterior covariance matrix are not included,
the posterior errors included here are estimates, with their
own remaining uncertainties (Bousserez et al., 2015).

2.2.2 Prior flux estimates

Prior flux estimates include three components and were taken
from available bottom-up models and inventories. Fossil fuel
emissions are taken from the CDIAC inventory (Boden et
al., 1999) and vary each year up to 2016, after which they
were scaled to Global Carbon Budget values obtained from
Friedlingstein et al. (2020). For estimates of air–sea fluxes we
used a combination of Takahashi et al. (2009) and Khatiwala
et al. (2009), following the methodology described by Gloor
et al. (2018), and they were scaled to the Global Carbon Bud-

get values (Friedlingstein et al., 2020). For the monthly land–
biosphere fluxes (net land gains or losses) we used an annu-
ally repeating and balanced land vegetation–atmosphere CO2
flux from the Carnegie–Ames–Stanford Approach (CASA)
Global Fire Emissions Database (GFED4) land–biosphere
model (Potter et al., 1993; Randerson et al., 2017), an aver-
age climatology for 2003–2013. We did not change the land–
biosphere prior annually because we preferred the inter-
annual variations to be informed by the atmospheric observa-
tions. In the CASA model, primary productivity is predicted
using the relationship between greenness reflectance prop-
erties, the fraction of absorption of photosynthetically active
radiation (fPAR) and a light utilization efficiency term, where
the canopy greenness is measured using a normalized differ-
ence vegetation index (NDVI) that is computed from the ra-
tio of visible and near-infrared radiation reflected from the
canopy as detected by the AVHRR satellite sensor (Potter,
1999).

To evaluate the influence of the Amazon vertical profile
data on flux estimates, we have also performed an inversion
without the profile data, using only the NOAA surface data.
The latter approach was shown previously to induce large bi-
ases in the estimated Amazonian fluxes, resulting from a lack
of tropical constraints (van der Laan-Luijkx et al., 2015) and
an overestimated tropical-NH dipole (Stephens et al., 2007).
For simplicity, here we will call the posterior fluxes from the
inversion using the Amazon vertical profile data and the in-
versions without that data “posterior total flux (with Amazon
observations)” and “posterior total flux (without Amazon ob-
servations)”, respectively.

To evaluate the influence of the biosphere prior on flux es-
timates, we compare our inversions using the CASA model
as land–biosphere prior flux with inversions, using the carbon
data model framework (CARDAMOM) (Bloom et al., 2016)
as land–biosphere prior flux for South America with 1◦× 1◦

spatial and monthly temporal resolutions between 2001 and
2017 (inclusive). CARDAMOM is a Bayesian calibration
system that generates diagnostic estimates of the terrestrial
C cycle (pools and fluxes) and relevant process parameters.
CARDAMOM explores a parameter hyper-volume for a fast-
running intermediate-complexity model, DALEC (Data As-
similation Linked Ecosystem Carbon), and accepts parame-
ter sets that generate model outputs consistent with obser-
vations and their uncertainty. Data used as inputs include
time series information on leaf area index (LAI) magnitude
and uncertainty that is extracted from the 1 km× 1 km 8 d
product from Copernicus Service Information (2020; Baret et
al., 2016). Fire and forest biomass removal was imposed us-
ing earth observation information. The MODIS burned frac-
tion product (Giglio et al., 2018) determines the areas where
fire is imposed. Emissions are determined by assuming the
product of the MODIS burned fraction input, the simulated
biomass pools (labile, foliage, roots, wood, litter and soil)
and tissue-specific combustion completeness (CC) parame-
ters. The CC parameters are estimated on a per-pixel basis as
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part of the CARDAMOM process. As part of DALEC’s fire
model, a fraction of the burned but not combusted biomass
pools undergoes mortality (tissue resilience), resulting in the
generation of litter. For details see Exbrayat et al. (2018).
Forest biomass removal is imposed using the Global Forest
Watch (GFW) forest cover loss product (Hansen et al., 2013).
Meteorological drivers are drawn from the Climatic Research
Unit and Japanese reanalysis (CRU-JRA) v1.1 dataset, a 6-
hourly 0.5◦× 0.5◦ reanalysis (University of East Anglia Cli-
matic Research Unit and Harris, 2019). For more details see
Smallman et al. (2021).

2.2.3 Estimation of carbon emissions from fires

To estimate the contribution of biomass burning emissions
to total carbon emissions from Amazonia, we estimated fire
emissions with an independent inversion with TOMCAT/IN-
VICAT by assimilating total column carbon monoxide (CO)
values from MOPITT radiometer data (V8) on the Terra
satellite (Deeter et al., 2019) globally. Note that in this in-
version no vertical profile data for the Amazon region were
assimilated. Recent studies by Zheng et al. (2019) and Naus
et al. (2022) have shown that this approach for deriving fire
emissions is complementary to surface remote-sensing-based
methods. Due to the high density of available observational
data, we carried out this inversion at 2.8◦× 2.8◦ horizontal
resolution with 60 vertical levels up to 0.1 hPa. We used un-
correlated prior grid cell emission uncertainties of 450 % to
give a global annual uncertainty of 15 %. The model was
sampled at the longitude and latitude of each MOPITT re-
trieval, and the corresponding averaging kernels were applied
to produce a model total column comparable to that of the
satellite. For use in the inversion, we took an error-weighted
average hourly mean of all retrievals within each grid cell
and applied to these uncorrelated observation uncertainties
of 20 % of the observed total column value added in quadra-
ture to the supplied uncertainties. Averaging the observations
within each grid cell reduces the need to apply observational
error correlations. As prior fluxes we use fire emissions from
GFED V4.1s (van der Werf et al., 2017), anthropogenic and
oceanic emissions from CMIP6 (Hoesly et al., 2018), and
direct biogenic emissions from CCMI (Chemistry–Climate
Model Initiative; Morgenstern et al., 2017), as the secondary
formation from isoprene, assumed to be instantaneous, is
applied as a surface flux. For secondary formation from
methane, monthly mean methane concentrations were taken
from a previous TOMCAT-based methane inversion where
the reaction with OH led directly to CO (Wilson et al., 2021).

To estimate CO flux from fire, we remove the non-fire CO
fluxes from the total CO flux we estimated by multiplying the
CO flux by the prior fire fraction of the total flux in that grid
cell. This means that it is not possible to produce posterior
fire emissions in cells which contain no prior fire emissions.
Finally, we convert the CO fluxes to carbon fluxes by multi-
plying the CO fluxes with a biomass burning emission ratio

of 16 (ppm CO2) / (ppm CO), based on the mean CO : CO2
ratio of four Amazon sites estimated by vertical profile mea-
surements by Gatti et al. (2021a). Note that these fire CO2
emissions were not used as a fixed prior in the CO2 inver-
sion: instead, we subtracted these from the terrestrial non-
fossil CO2 flux estimated in the inversion to derive net biome
exchange (NBE) of the biosphere.

To evaluate our carbon fire emission estimate, we com-
pare our CO2 fire flux and NBE flux from our CO TOMCAT-
based inversion with CO2 fire flux estimates based on CO
inversion estimates from Naus et al. (2022). For the compar-
ison, we used their posterior Amazon biomass burning inver-
sion estimates based on the CAMS Global Fire Assimilation
System (GFAS v1.2, Kaiser et al., 2012) as a prior, with the
optimized CO emissions assimilating MOPITT data for the
South American domain (for detailed information about the
inversions see Naus et al., 2022). The TM5 model used for
these inversions used a nested grid over the Amazon region
with a horizontal resolution of 1◦× 1◦ and 25 vertical lev-
els. Fluxes were optimized on a 3 d basis, and fire emissions
were emitted using vertical distributions from a fire emis-
sion model. It should be noted that NBE fluxes calculated
based on TOMCAT total carbon fluxes and TM5 fire emis-
sions might have large errors due to the many differences
between the methodologies and transport schemes in the two
models. We estimated NBE fluxes by subtracting these CO2
from fires from the total CO2 flux estimated in our inversion.
Note that CO2 fire flux estimates based on Naus et al. (2022)
inversions were done using CO : CO2 ratios based on GFAS
emission factors for each grid cell. Considering that esti-
mates from Naus et al. (2022) were done between April and
December and for a different Amazon area, for comparison
we recalculated our CO2 and CO TOMCAT-based inversions
to the same area and time period (April–December over the
9 years).

2.2.4 Cumulative water deficit (CWD)

As an indicator of plant soil water stress we use climatic cu-
mulated water deficit (CWD). CWD is a monthly soil wa-
ter balance based on two simplifying assumptions: 0.1 m per
month evapotranspiration and that any excess water runs off.
Thus,

CWDi,j (t)={
0 if CWDi,j (t − 1)+Precip(t)− 0.1 (m per month)> 0
CWDi,j (t − 1)+Precip(t)− 0.1 (m per month) else, (1)

where t is time (month), and i and j are grid cell indices.
Furthermore, assuming that soil is fully recharged during the
wettest month, CWD is reset to zero at the month of maxi-
mum precipitation, calculated separately for each grid cell as
a climatic mean. From the monthly CWD maps, “maximum
climatic water deficit” is defined as the maximum over the
11-month period following the month with maximum precip-
itation. We use precipitation estimates provided by TRMM
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(version 7) (Tropical Rainfall Measuring Mission; Huffman
et al., 2001), which has a 0.25◦× 0.25◦ latitude by longitude
spatial resolution.

2.2.5 Temperature

For temperature analysis we used 2 m air temperatures from
ERA-5 that are the monthly means of daily means since
1959 (here used between 2010 and 2018) and with a reso-
lution of 0.25◦× 0.25◦ latitude–longitude, obtained from the
ECMWF (https://doi.org/10.24381/cds.f17050d7; Hersbach
et al., 2023, 2020).

2.2.6 Solar radiation

For solar radiation we used the global monthly mean sur-
face shortwave solar radiation downward flux under all-
sky conditions, between 2010 and 2018, obtained from the
Clouds and the Earth’s Radiant Energy System (CERES-
EBAF Ed4.1; https://ceres-tool.larc.nasa.gov/ord-tool/jsp/
EBAF42Selection.jsp, last access: 26 July 2022) at 1◦ res-
olution (Loeb et al., 2018; Kato et al., 2018).

2.2.7 Burned area

Burned area data were obtained from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) Collection 6
MCD64A1 burned area product (Giglio et al., 2018). This
collection provides monthly tiles of burned area with 500 m
spatial resolution over the globe and was resampled to
1◦× 1◦ spatial resolution. The algorithm to estimate burned
area uses several parameters from the Terra and Aqua satel-
lite products, including daily active fire (MOD14A1 and
Aqua MYD14A1), daily surface reflectance (MOD09GHK
and MYD09GHK), and annual land cover (MCD12Q1) (Ver-
mote et al., 2002; Justice et al., 2002; Friedl et al., 2010).

3 Results

3.1 Spatial distribution and seasonal pattern of Amazon
carbon fluxes

To evaluate how well the inversion fitted the assimilated
Amazon vertical profile data we compared the prior and pos-
terior mole fractions with the observations (Fig. 2) for the
mean observations from Amazon vertical profiles both below
1.5 km and above 3.5 km altitude. Estimated a posteriori CO2
mole fractions have a similar magnitude and positive trend to
the observations including the global posterior global mean
mole fraction which follows the global trend (Fig. A1). In our
Amazon mole fractions we observed a large improvement af-
ter the assimilation of observations in the model: the mean
difference between estimated mole fraction and observations
was reduced by 57 % and 49 % for the mean mole fractions
below 1.5 km and above 3.5 km altitude, respectively (Fig. 2
and Table A2). In addition to a decrease in residuals, we also

found higher correlations between the observations and the
posterior mole fraction compared to the difference between
observations and prior mole fractions (Fig. 2).

In Fig. 3 we display the 2010–2018 quarterly and annual
mean prior total, posterior total, and posterior fire carbon
flux distributions in the Amazon region to show the long-
term flux distribution over this period. The 9-year mean prior
flux distribution shows a source of carbon to the atmosphere
during the first quarter of the year (January–March) in the
western-central region, while it shows a sink of carbon be-
tween July and December, mainly occurring between July
and September, i.e., during the dry season. After assimilat-
ing the Amazon vertical profile data, the posterior fluxes had
a different seasonal pattern, with a significant sink in the cen-
tral Amazon during January and March and a source to the at-
mosphere in the western region. In addition, a carbon source
to the atmosphere was estimated in the eastern Amazon from
July to September, which is consistent with the 9-year mean
carbon emissions from fires estimated in this region over this
time based on the CO inversions using MOPITT data and
with the drought period in the Amazon region (Fig. 3c and
d).

Our data reveal distinct spatial and seasonal carbon flux
patterns in the 9-year monthly means and a significant
change in posterior fluxes when vertical profile data were
assimilated in the model (linear regression between poste-
rior flux with Amazon data and prior flux: r = 0.13 and
p= 0.16). Posterior total fluxes obtained without assimilat-
ing the Amazon vertical profile data result in a similar sea-
sonal pattern as the prior total flux (linear regression between
posterior flux without Amazon data and prior flux: r = 0.66
and p< 0.05), mainly between January and March, show-
ing the Amazon as a source of carbon to the atmosphere
(Fig. A2). This is in contrast with the posterior total flux esti-
mates when the Amazon vertical profile data are assimilated
in the inversions. The posterior total flux without the Ama-
zon vertical profile data also shows an uptake of carbon dur-
ing May and June similar to the prior total fluxes but with a
reduction in the magnitude of these fluxes, particularly in the
eastern Amazon (Figs. 3 and 4). These results indicate the
strong influence and thus importance of Amazonian regional
data in the inversions on constraining the Amazon carbon
flux estimates, as is also found by van der Laan-Luijkx et
al. (2015) and Botía Bocanegra (2022).

Large carbon emissions from fires were observed in Ama-
zonia from August to December, mainly from the south and
east regions (Figs. 3, 4 and 5). Fires also contribute emissions
to the atmosphere between January and March but mainly
from the western-central region due to fires occurring in the
Northern Hemisphere (Figs. 3, 4 and 5).

To estimate the CO2 net biome exchange (NBE) we sub-
tracted the fire emissions calculated using the estimated CO
fluxes by TOMCAT inverse modeling (Fig. A3) from our
posterior total fluxes (Figs. 4, 5, A4 and A5). Our NBE repre-
sents the balance between photosynthesis and respiration. We
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Figure 2. Detrended monthly mean CO2 mole fractions (ppm) for prior (with CASA as land–biosphere prior flux), posterior and Amazon
vertical profiles and its linear regressions, where panel (a) is the mean below 1.5 km altitude (planetary boundary layer levels and (b) the
mean above 3.5 km altitude (vertical profile free troposphere) for each of the vertical profile sites. The model results were extracted for the
grid cell where each site is located. After detrending, we subtracted the global mean mole fraction from the observation and model mole
fractions. Error bars represent the observation uncertainties.
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Figure 3. Quarterly and annual mean (a) prior total (with CASA as land–biosphere prior flux); (b) posterior total; (c) posterior fire carbon
fluxes, where a positive value indicates a net emission of C while a negative value indicates a net uptake; and (d) cumulative water deficit
(CWD) for the Amazon region between 2010 and 2018. The blue contour represents the Amazon area, based on Eva and Huber (2005).
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Figure 4. The 9-year monthly mean (2010–2018) carbon fluxes for the (a) whole Amazon, (b) western-central Amazon and (c) eastern
Amazon areas: prior total flux (grey bars), posterior total flux without the Amazon vertical profile observations in the inversion (blue bars),
posterior total flux with the Amazon vertical profile observations in the inversion (black bars), posterior fire fluxes using MOPITT carbon
monoxide observations in the inversion (orange bars) and posterior NBE fluxes, which are the result of the subtraction of the posterior fire
fluxes from the posterior total fluxes of the Amazon vertical profile observations in the inversion (green bars), representing the net biome
exchange. The error bars represent the monthly mean uncertainties. (d) The Amazon mask used in the study; the whole Amazon area is the
sum of western-central Amazon and eastern Amazon areas. The blue contour represents the Amazon area, based on Eva and Huber (2005).
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Figure 5. (a) Monthly mean carbon fluxes for the whole Amazon area: posterior total flux with the Amazon vertical profile observations
in the inversion (black bars), posterior fire fluxes using MOPITT carbon monoxide observations in the inversion (orange bars) and posterior
NBE fluxes which are the result of the subtraction of the posterior fire fluxes from the posterior total fluxes with the Amazon vertical profile
observations in the inversion (green bars), representing the net biome exchange. Monthly mean and anomalies of (b) cumulative water deficit
(CWD), (c) temperature, (d) shortwave solar radiation downward flux (all sky) and (e) burned area for the Amazon area.

use the following sign convention: positive NBE is a flux to
the atmosphere. According to our results, the forest, not con-
sidering fire emissions, is a sink during the wet season and
still acts as a sink in part of the dry season, except in July and
October (Figs. 3 and 4). This dry season sink compensates for
part of the carbon emissions from fires but with the sink lo-
cated mainly in the western-central Amazon (Fig. 3). During
the years with strong droughts such as 2010 and 2015–2016,
a reduction in this dry season uptake (near neutrality) was es-
timated (Figs. 4, A4 and A5, discussed in detail in Sect. 4). In
the western-central region we estimate a positive NBE flux
to the atmosphere between April and June, which could be

caused by emissions from decomposition processes (Figs. 4
and A4), as the carbon emissions due to dead wood decay
in the years following a burning event (Silva et al., 2020;
Anderson et al., 2015). This result resembles the seasonal
cycle of NBE found by Botía et al. (2022), who used Ama-
zon Tall Tower Observatory (ATTO) CO2 time series data
to find NBE rapidly declining at the end of the wet season,
resulting in a source of CO2 in June. In the eastern region
we also estimate positive NBE fluxes (during June and July)
that could be related to the decomposition process, but these
emissions have a lower magnitude than those observed in the
western-central region. We highlight that the southern border

https://doi.org/10.5194/acp-23-9685-2023 Atmos. Chem. Phys., 23, 9685–9723, 2023



9696 L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source

of the Amazon region is characterized by a steady transition
from the Amazon lowland rainforest to a mainly non-forested
landscape, with predominately open vegetation types, such
as savannas (campos cerrados and alluvial flooded savannas),
savanna woodlands (cerradão) and other scrubby vegetation
types (Eva and Huber, 2005). It also includes deforested ar-
eas with land use change conversion (Fig. A6).

We also investigated the possible relation of climate
conditions with the intra-annual variability in total CO2
fluxes. An increase in the net carbon loss to the atmo-
sphere was observed during warmer (r = 0.34, and Stu-
dent’s t test p< 0.05) and drier (r = 0.61, p< 0.05) peri-
ods, during which solar radiation (r = 0.20, p< 0.05) and
burned area (r = 0.22, p< 0.05) also increased. Linear re-
gressions between posterior monthly mean fire fluxes and
temperature, CWD, solar radiation and burned area all re-
veal significant correlations (r = 0.61, p< 0.05; r = 0.33,
p< 0.05; r = 0.52, p< 0.05; and r = 0.86, p< 0.05, respec-
tively) (Figs. A7 and A8). Furthermore, an increase in total
and fire emissions was estimated during the strong drought
years (2010 and 2015–2016) as expected. Note that the inter-
annual variability in posterior CO2 total fluxes is driven
by the Amazon aircraft observations alone, as the land–
biosphere prior flux is climatological (i.e., the same for every
year) over the period.

No significant relationships between monthly posterior
NBE fluxes and climate variables were observed (Fig. A9).
We also investigated the correlation between NBE fluxes and
climate variables with a time lag (1, 2 and 3 months of lag),
but no significant correlation was observed. For western-
central and eastern Amazon regions we found a similar re-
lation between posterior fire fluxes and climate conditions as
what was observed for the Amazon as a whole (Figs. A4, A5
and A8).

3.2 Amazon carbon balance and its inter-annual
variability

When the data from the aircraft vertical profiles were as-
similated in the inversions, the posterior total flux esti-
mates over the period from 2010 to 2018 (including fire
emissions) of 0.13± 0.17 Pg C yr−1 are positive, with the
majority of the emissions coming from the eastern region
(0.10± 0.08 Pg C yr−1; Table 1). A larger emission to the at-
mosphere was estimated by the inversions when only NOAA
surface site data were assimilated (without the data from the
Amazon vertical profiles), resulting in a total emission of
0.48± 0.17 Pg C yr−1 (including fire emissions). Fire emis-
sions are the main reason for the flux to the atmosphere over
the period (0.26± 0.13 Pg C yr−1), with the largest contribu-
tion also coming from the eastern region (Table 1). Part of
these fire emissions are compensated for by the forest up-
take in both the western-central and eastern Amazon regions
(72 % and 33 % of the fire emissions, respectively). We high-
light that the Amazon region is a carbon source to the atmo-

sphere when we include fire emissions over this period, with
an uptake by the forest (NBE flux) that compensates for 50 %
of the fire emissions.

Linear regressions between annual mean posterior total
flux and temperature, CWD, solar radiation and burned area
yield significant correlations: r = 0.55, p= 0.12; r = 0.62,
p= 0.07; r = 0.54, p= 0.13; and r = 0.50, p= 0.17, respec-
tively. These annual mean correlations are driven mainly
by the drought years 2010 and 2015–2016. In addition,
we found similar relationships between annual mean pos-
terior fire flux and temperature, CWD, solar radiation
and burned area (r = 0.75, p< 0.05; r = 0.68, p< 0.05;
r = 0.56, p= 0.12; and r = 0.84, p< 0.05, respectively)
(Figs. 5, A10 and A11). However, we did not find any sig-
nificant relationships between annual mean posterior NBE
flux and climate variables (temperature, CWD and solar radi-
ation; Fig. A12). Note that our total emission estimates could
be overestimated or underestimated during 2015 and 2016
because of the low number of vertical profile data available
for this period (Fig. A13).

CO2 flux estimates over our 9-year study period indicate
that Amazonian total, NBE and fire emissions do not exhibit
significant time trends for the western-central or the eastern
regions (Fig. 6).

3.3 Sensitive tests

We also estimate Amazonian CO2 fluxes using our atmo-
spheric inversion but replacing the biosphere prior flux es-
timates of CASA with the estimates of CARDAMOM for
the South American region (Fig. A14). We also observed
a large improvement after the assimilation of observations
in the model for the inversions using CASA as prior flux
estimates (Fig. A15 and Table A2). Comparing both esti-
mates (from CARDAMOM and CASA models) of land–
biosphere fluxes used as prior in the inversions, we found
that CARDAMOM shows a large carbon uptake (prior to-
tal flux of −2.50± 0.43 Pg C yr−1) for the Amazon region
in contrast to the estimates from the CASA model (prior to-
tal flux of 0.08± 0.24 Pg C yr−1). CARDAMOM prior flux
estimates show a large carbon sink in the Amazon between
January and March in contrast with a carbon source to the
atmosphere estimated by the CASA model. The large uptake
was not reproduced after the assimilation of Amazon obser-
vational data. After assimilating the Amazon vertical pro-
file data in the inversions using CARDAMOM as the land–
biosphere prior, the posterior estimate shows a strong reduc-
tion in the uptake for the Amazon region (posterior total flux
of−0.19± 0.17 Pg C yr−1) compared to the prior (Fig. A14).
This result shows that the large land–biosphere sink esti-
mated by CARDAMOM is inconsistent with the Amazon at-
mospheric vertical profile data. Although the inversion us-
ing CARDAMOM as a prior estimates the Amazon to be
a small overall carbon sink, while the inversion using the
CASA model as a prior estimates the Amazon to be a small
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Table 1. The 9-year mean prior total, posterior total without the vertical profile observations assimilated in the inversions, and posterior
total with the vertical profile observations assimilated in the inversions and fire fluxes for the whole Amazon, west-central and east Amazon
regions.

Amazon C land fluxes 2010–2018 (Pg C yr−1)

Region Amazon Western-central East Amazon
Amazon

Prior total flux 0.08± 0.24 0.03± 0.21 0.04± 0.20
Posterior total flux (without Amazon observations) 0.48± 0.17 0.26± 0.16 0.23± 0.07
Posterior total flux (with Amazon observations) 0.13± 0.17 0.03± 0.17 0.10± 0.08
Posterior fire flux 0.26± 0.13 0.11± 0.10 0.15± 0.11
Posterior NBE flux (without Amazon observations) 0.21± 0.20 0.12± 0.18 0.09± 0.13
Posterior NBE flux (with Amazon observations) −0.13± 0.20 −0.08± 0.18 −0.05± 0.13

source to the atmosphere (0.13± 0.17 Pg C yr−1), the intra-
annual seasonality from both inversions is similar (Fig. A14).
Also, both posterior estimates have a similar spatial flux dis-
tribution. Posterior flux estimates using CARDAMOM as the
land–biosphere prior flux also estimate the eastern Amazon
to be a carbon source to the atmosphere from July to Septem-
ber, and during January and March to be a significant sink in
the central Amazon, while the western region is estimated to
be a source to the atmosphere (Fig. A14).

We compared fire fluxes based on CO inversion esti-
mates of Naus et al. (2022) and estimated NBE fluxes, sub-
tracting these CO2 estimated from fires from the total CO2
flux estimated in our inversion, with our estimates based on
TOMCAT CO inversions. We found similar intra- and inter-
annual variability and flux magnitudes when compared to
our NBE and fire estimates based on TOMCAT CO inver-
sions with estimates based on their CO inversions (Fig. A16
and Table A3). Both CO inversions assimilated the same
MOPITT observations but differ in inversion methodology,
model transport and emission factor to convert CO flux from
fires to CO2 flux. Some difference in both estimates (for both
fire and NBE fluxes) could be related to these differences in
both approaches. To get a truly independent estimate of NBE
from another inversion model, it would need to estimate both
total carbon and fire carbon. Also, both CO2 fire emissions
(based on the two different CO optimized fluxes) could be
used as prior in a future CO2 inversion to investigate the de-
pendence of the fire estimates in the NBE optimization.

3.4 Comparison to independent observations

To validate our inversion results we used independent in situ
observations of CO2 mole fractions in the Amazon region
made at the ATTO site (2.14◦ S, 58.99◦W, measurements at
80 m height; Lavric and Walter, 2022a, b, c, d, e, f, g; Botía
et al., 2022) and with vertical profile data measured at Man-
aus (MAN) (2.59◦ S, 60.21◦W, with profiles extending from
approximately 0.2 to 5 km height aboveground; Miller et al.,
2021). For the comparison between modeled and observed

mole fractions, the model data were sampled at the grid cell
closest to the site locations.

The ATTO time series is based on observations made be-
tween 2012 and 2018 (Lavric and Walter, 2022a, b, c, d, e, f,
g), and the data presented here are available upon request at
https://attodata.org (last access: 11 May 2023). We calculate
the monthly mean mole fractions based on only daytime dry-
air mole fractions (13:00–17:00 LT), which were representa-
tive of well-mixed convective conditions (Botía et al., 2022).
In addition, for the year 2015 we remove from the compar-
ison the months without vertical profile data assimilated in
the inversion. Although the ATTO measurements are made
80 m aboveground, i.e., quite close to the ground, in general
we found good agreement between model and observations
(Fig. A17), with a reduction of the bias after the inversion
from 0.9 ppm (range of −3.9 to 7.7) to 0.3 ppm (range of
−5.3 to 4.7) (t test: p< 0.05).

In addition, we compare the model mole fractions to the
aircraft vertical profiles in MAN above 3.5 km and below
1.5 km (Fig. A18). The data record from MAN for the same
period of our inversions is for the years 2017 and 2018.
Flights are undertaken approximately every 2 weeks, and
in general measurements were taken between 12:00 and
13:00 LT, when the boundary layer is fully developed. We
found a reduction in the bias between model and observa-
tions after the inversions for the mean below 1.5 km from
−0.3 ppm (range of−6.5 to 6.6) to 0.2 ppm (range of−4.3 to
5.0) (t test: p= 0.17) and for the mean above 3.5 km height
from −0.1 ppm (range of −3.1 to 2.1) to −0.4 ppm (range
of −1.9 to 0.5) (t test: p= 0.13). We also found a reduc-
tion of the mean bias of the difference between the mean
below 1.5 km and the vertical profile free troposphere (above
3.5 km) from −0.2 ppm (range of −5.4 to 7.6) to 0.6 ppm
(range of −4.2 to 5.6) (t test: p= 0.08). The posterior com-
parisons also show an increase in the bias close to the surface,
which means that the local sources close to this site might be
overestimated at this model resolution, there might be errors
in the model’s representation of vertical mixing or a posi-
tive bias in the assimilated Amazon vertical profiles in this

https://doi.org/10.5194/acp-23-9685-2023 Atmos. Chem. Phys., 23, 9685–9723, 2023

https://attodata.org


9698 L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source

Figure 6. Annual mean carbon fluxes for the (a) whole Amazon, (b) western-central and (c) eastern Amazon areas: posterior total flux with
the Amazon vertical profile observations in the inversion (black bars) and posterior fire fluxes using MOPITT carbon monoxide observations
in the inversion (red bars). Annual cumulative water deficit (blue line), annual mean temperature (pink line), annual mean shortwave solar
radiation downward flux (all sky; black line) and annual total burned area (brown line).

region may remain. However, in general the cross-validation
with observations from the ATTO and MAN vertical profiles
showed an improvement in the model bias and temporal vari-
ation after the assimilation of Amazon vertical profile obser-
vations.

4 Discussion

The posterior fluxes when vertical profile data were assimi-
lated in the inversions led to a change compared to the prior
in the flux seasonal cycle and additionally showed a larger re-
duction in the Amazon total emission in comparison with the

posterior fluxes when just NOAA surface data were assimi-
lated (Figs. 3 and 4 and Table 1). This once again highlights
the importance of assimilating regional data in the inversions
to better constrain the tropical forest fluxes (van der Laan-
Luijkx et al., 2015; Alden et al., 2016; Botía et al., 2022).
This result is not dependent on the assumed prior sources and
sinks, as we also found a significant reduction of the large
land–biosphere carbon uptake suggested by CARDAMOM
for the Amazon region after assimilating the Amazon verti-
cal profile data in the inversion (Fig. A14).

Using CASA model predictions as the land–biosphere
prior flux, we estimate the Amazon region to be a to-
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tal (i.e., including emissions from fire) net source of C of
0.13± 0.17 Pg C yr−1 over our analysis period. The largest
emission comes from the eastern Amazon and from the tran-
sition region between the forest and the Cerrado area (as
shown in Fig. 3), while the largest uptake was observed in the
western-central region. Our results indicate that the Amazon
is a source of carbon to the atmosphere caused by fire emis-
sions, which were larger than the estimated Amazon land
sink, but we highlight that during this period the forest uptake
removes around half of the fire emissions to the atmosphere.

Globally, the land CO2 sink was estimated to be
3.1± 0.6 Pg C yr−1 during the decade 2011–2020 (29 % of
total global CO2 emissions; Friedlingstein et al., 2022) and
continued to increase during this period likely in response
to increased atmospheric CO2 (Friedlingstein et al., 2022).
However, the land sink varies strongly inter-annually, with
decreased land carbon uptake during El Niño events. Ac-
cording to Friedlingstein et al. (2022), in general the tropi-
cal region (30◦ S–30◦ N) has a carbon balance close to neu-
tral over the 2011–2020 period; however, the tropical region
is most strongly correlated with inter-annual variation of at-
mospheric CO2 (Friedlingstein et al., 2022). Note that this
tropical region estimate did not include the information pro-
vided by the Amazon vertical CO2 profile data we used here.
The tropics is also where the largest land use emissions oc-
cur, including the arc of deforestation in the Amazon basin
(Friedlingstein et al., 2022). We did not observe an increas-
ing trend over time in the land carbon uptake for the Amazon
region, in contrast to the continued increase in the global land
sink reported by Friedlingstein et al. (2022).

Based on a distributed network of 321 forest survey plots
from RAINFOR, Brienen et al. (2015) estimated a 30 %
decrease in the total net carbon sink into intact Amazon
live biomass from 0.54 Pg C yr−1 (95 % confidence interval
0.45–0.63) in the 1990s to 0.38 Pg C yr−1 (0.28–0.49) in the
2000s. Phillips and Brienen (2017), based also on the RAIN-
FOR network plot measurements, estimated an Amazon-
wide forest biomass carbon sink between 1980 and 2010 of
0.43 Pg C yr−1 (CI 0.21–0.67). Finally, Hubau et al. (2020)
reported a decrease in the Amazon net carbon sink in the
last few decades from 0.68 Pg C yr−1 (CI 0.54–0.83) between
1990 and 2000 to 0.45 Pg C yr−1 (CI 0.31–0.57) between
2000 and 2010, predicting a net carbon sink of 0.25 Pg C yr−1

(CI−0.05–0.54) between 2010–2020. Our posterior NBE es-
timates (a sink of 0.13± 0.20 Pg C yr−1) are fairly consistent
with the RAINFOR results with regards to magnitude but not
with the trend over time regarding observed carbon uptake,
considering that the areas used for the estimates are different
and that our NBE represents not only the uptake from forests
but also non-fire emissions (as decomposition and degrada-
tion emissions).

Our posterior fire emissions agree with fire emission
estimates for Brazilian Amazonia reported by Aragão et
al. (2018), with a total fire emission of 0.21± 0.23 Pg C yr−1

over the period 2003–2015, based on the relation between

MOPITT CO total column and burned forest and deforesta-
tion gross CO2 emissions data (Aragão et al., 2018). Re-
cently, Silva et al. (2020) reported that forest fires contribute
cumulative gross carbon emissions of ∼ 126 Mg CO2 ha−1

for 30 years after a fire event, with a mean annual efflux
of 4.2 Mg CO2 ha−1 yr−1 and emissions from the decompo-
sition of the dead organic matter accounting for ca. 58 %
(47.4 Mg CO2 ha−1) of total cumulated net emissions. Van
der Werf et al. (2010) estimated that fires were responsible
for an annual mean global carbon emission of 2.0 Pg C yr−1

(for the period 1997–2009) with significant inter-annual vari-
ability, where about 15 % (0.29 Pg C yr−1) was associated
with South American emissions mainly from the South-
ern Hemisphere of South America (14 %; 0.27 Pg C yr−1),
according to estimates from the Global Fire Emissions
Database (GFED V.3). Note that this South American emis-
sion estimate was related to a larger area than our Amazon
region estimates.

We found clear intra-annual seasonality in our posterior
total, fire and NBE fluxes. In general, we found over these
9 years that the Amazon is a carbon sink during November
to March (wet season) and also during August and Septem-
ber, removing part of the fire emissions during the dry season
(Figs. 4, 5, A4 and A5). Although we did not find a signif-
icant relation between our NBE seasonality and the climate
variables analyzed (CWD, temperature and solar radiation),
our NBE emission seasonality shows good agreement with
the Amazon mean net ecosystem exchange (NEE) season-
ality measured at five eddy covariance forest tower sites lo-
cated in the Brazilian Amazon, Manaus forest (K34; 1999–
2006), Santarém forest (K67; 2001–2005, 2008–2011 and
2015–2019), forest of Caxiuana (CAX; 1999–2003), Reserva
Jarú southern forest (RJA; 2000–2002) and the seasonal in-
undated forest of Bananal (JAV; 2003–2006) (Gatti et al.,
2021c). Our fire emission estimates showed the largest in-
crease during the dry season months of August to October,
in agreement with the increase in CWD, temperature, solar
radiation and burned area (Figs. 5, A4, A5 and A8).

We found that our total and fire emission estimates’ inter-
annual variability correlates with climatic variations, with
larger emissions occurring during hotter and drier years as
in 2010 and 2015–2016. This inter-annual variability in our
estimates is primarily driven by the atmospheric vertical pro-
file data and MOPITT CO columns and not by prior esti-
mates, as in our approach the land flux prior estimates are
the same for all years. In 2010 the increase in carbon emis-
sions was mainly caused by an increase in emissions in
the western-central region, related to a large increase in fire
emissions (2010 flux of 0.32± 0.14 Pg C yr−1 and a 9-year
mean of 0.11± 0.10 Pg C yr−1; Student’s t test: p= 0.14)
and also a reduction of the uptake in relation to the 9-
year mean (2010 flux of −0.04± 0.20 Pg C yr−1 and a 9-
year mean of−0.08± 0.18 Pg C yr−1; p= 0.43). We also ob-
served an increase in fire emissions in the eastern Amazon re-
gion during this year, but it is still lower than in the western-
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central region (2010 flux of 0.28± 0.15 Pg C yr−1 and a 9-
year mean of 0.15± 0.11 Pg C yr−1; p= 0.21). These results
are in agreement with the increase in burned areas observed
in the western-central and eastern Amazon regions for the
same period when compared with the 9-year mean (104 %
and 89 % in western-central and eastern Amazon regions, re-
spectively) and with an increase of 7 % in the CWD com-
pared with the 9-year mean in the western-central region. Al-
though some p values are larger than 0.05, these results sug-
gest changes in the carbon cycle in 2010. High correlations
between soil moisture and MOPITT-derived fire emissions
were also reported by Naus et al. (2022) for the Amazonas
province, confirming the important role of the moisture state
of the underlying forest soils.

On the other hand, during 2016 the increase in carbon
emissions was mainly related to a reduction in the forest
carbon uptake in the Amazon region. Organic land carbon
pools (forests, soils) were a net source to the atmosphere
during this year (NBE flux of +0.12± 0.20 Pg C yr−1; Stu-
dent’s t test: p= 0.14), while fire emissions increased 61 %
in the western-central Amazon in relation to the 9-year mean
(2016 flux of 0.19± 0.13 Pg C yr−1 and a 9-year mean of
0.11± 0.10 Pg C yr−1; Student’s t test: p= 0.17). These in-
dications of reductions in the carbon uptake could be related
to hotter and drier conditions in the western-central region,
with an increase of 10 % in the CWD in relation to the 9-
year mean and an increase of 0.3 and 0.4 ◦C in the annual
mean temperature in relation to the 9-year mean (the largest
positive anomalies in the 9 years for both regions) in the
western-central and eastern Amazon region. Recently, Fan-
court et al. (2022) reported that background climate and soil
conditions had a greater influence than the climatic anoma-
lies on Amazon forest photosynthesis spatio-temporal varia-
tions but with the northwestern forests being the most sensi-
tive to precipitation anomalies during the 2015–2016 El Niño
period.

Gloor et al. (2018) reported a net flux anomaly from
the Amazon of 0.5± 0.3 Pg C during the 2015–2016 El
Niño event (between September 2015 and June 2016),
based on previous inversions using TOMCAT and as-
similating the Amazon vertical profile data. Our poste-
rior total estimates showed a net flux anomaly for this
period of 0.58± 0.20 Pg C for the whole Amazon, with
0.32± 0.19 and 0.26± 0.09 Pg C for the western-central and
eastern Amazon, respectively. The majority of the anoma-
lies observed come from a reduction in the carbon sink
making NBE fluxes positive in the western-central Ama-
zon, with a total net emission of 0.09± 0.22 Pg C yr−1

(while the 9-year means for this period show an uptake
of 0.04± 0.15 Pg C yr−1; p= 0.25) acting as a net carbon
source to the atmosphere during this period, in addition to
an increase in fire emissions at both the western-central (flux
of 0.23± 0.14 Pg C yr−1 for this period with a 9-year mean
of 0.11± 0.10 Pg C yr−1; p= 0.07) and eastern regions (flux
of 0.33± 0.14 Pg C yr−1 for this period with a 9-year mean

of 0.14 ± 0.10 Pg C yr−1; p= 0.13). Koren et al. (2018)
and van Schaik et al. (2018) suggested a reduction in gross
primary production, resulting from combined heat and soil
moisture stress, to be a dominant mechanism in agreement
with the results in Gloor et al. (2018) based on solar-induced
fluorescence data measured from space.

While agricultural and deforestation fires are more closely
associated with human actions than with climate (Anderson
et al., 2018), forest fires are associated with a combination
of human activities which provide the ignition source and
climatic factors creating dry conditions (Berenguer et al.,
2021). During strong drought conditions, such as the drought
of 1997–1998, fires could escape from agricultural fields and
burn standing primary forests that were once considered im-
penetrable to fire (Brando et al., 2020). A warming trend is
being observed in Amazonia, evident since 1980, and it has
been enhanced since 2000, a period where strong droughts
occurred in 2005, 2010 and 2015–2016 (the increases in tem-
perature vary with the dataset, time period and spatial scale
of the analysis) (Marengo et al., 2021). Also, warming was
observed in the eastern Amazon, and especially southeastern
Amazon, at a rate almost twice as high as the western Ama-
zon (Marengo et al., 2021). Our CWD analysis for Amazo-
nia shows a weak drying trend for almost all regions between
1998 and 2019 (Fig. A19). The observed climate tendencies
in Amazonia can be different in the western and eastern re-
gions, and the projected changes suggest a drier and warmer
climate in the east, while in the west rainfall is expected to
increase in the form of more intense rainfall events (Marengo
et al., 2021).

The increase in climate variability impacts both the Ama-
zonian forest (Anderson et al., 2018) and savannah biomes,
increasing tree mortality (Aragão et al., 2018) and ecosys-
tem vulnerability to fire (Anderson et al., 2018; Silva Junior
et al., 2019). The increased variability, in combination with
deforestation, has changed the forest’s resilience to fires, in
particular in the southern Amazon, where remaining forests
have become drier and thus vulnerable to wildfires during
recent droughts (Brando et al., 2020). Our posterior fire es-
timates showed the largest emissions in the eastern Amazon
region, with an increase in emissions during strong drought
years, but we did not find a significant trend over the 2010
to 2018 period. The eastern Amazon is more disturbed by
human activity than the western-central region, with larger
deforested areas also converted to agriculture and grassy ar-
eas (Fig. A6).

The clear seasonality in our posterior total, fire and NBE
fluxes is generally in agreement with that reported by Gatti et
al. (2021a), based on a mass balance technique for the Ama-
zon region as a whole and also for western and eastern re-
gions (Fig. A20). It is important to highlight that we use a
larger Amazon area in comparison with Gatti et al. (2021a).
Here we included a transition region between the Amazon
forest and Cerrado biomes in the southeast of Amazonia
(Fig. A6). For the eastern Amazon, the seasonality of the
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NBE estimate of the two approaches is more similar than
the seasonality of the fire emissions. Gatti et al. (2021a) es-
timated fire emissions to occur during January to March,
mainly in the northeastern region, while we did not estimate
fire emissions during this period. Part of this difference could
be related to the different regions considered as eastern Ama-
zonia in the two studies. The region of influence of fluxes
influencing CO2 measured at the vertical profiling site (ALF
and SAN sites) reported by Gatti et al. (2021a), estimated us-
ing quarterly mean back-trajectories, has contributions from
the Northern Hemisphere Amazon during this time, an area
not considered in our eastern Amazon region definition. The
difference could also be related to the burned area fraction
from the prior flux (from GFED V4.1s), which we multiplied
with the CO total flux in each grid cell to derive the CO fire
emissions in our inversion; the absence of burned area frac-
tions will result in no fire emissions in the area, consequently
underestimating carbon emissions caused by fire in this re-
gion. On the other hand, fire emissions during this period
are observed in both approaches in the western-central re-
gion. The main difference observed in the estimates for this
region was in the NBE during the dry season months of Au-
gust and September, where our posterior estimates showed
an uptake while the mass balance technique estimates (Gatti
et al., 2021a) showed a source to the atmosphere (Fig. A20).
A substantial dry season sink in the western Amazon was in-
dependently derived from ATTO CO2 observations by Botía
et al. (2022), supporting our findings here.

No significant trend over time (between 2010 and 2018)
was observed in our posterior emissions, in contrast with
the trend in NBE fluxes for the east Amazon region, with
an increase in emissions over this time reported by Gatti et
al. (2021a). Our results indicate that Amazonia is a source of
carbon to the atmosphere because of fire emissions, corrob-
orating the findings of Gatti et al. (2021a). Our 9-year mean
total posterior emissions for the Amazon region are 33 %
smaller than their total emission estimates, with the largest
difference being observed in the eastern region (Fig. 7). The
largest differences are mainly related to the fire emission es-
timates, while our posterior NBE estimate represents 90 %
of their estimates. However, considering the range of both
Amazon flux estimates, we find similar emissions (Fig. 7).

5 Conclusions

Our global inverse model estimates of CO2 emissions us-
ing Amazon atmospheric vertical profiles and surface obser-
vations have allowed us to estimate that over the 9 years
of 2010–2018 the Amazon region acted as a small car-
bon source to the atmosphere, with a total emission of
0.13± 0.17 Pg C yr−1. The emissions were greater in east-
ern Amazonia (0.10± 0.08 Pg C yr−1) than in the western re-
gion, mostly because of larger fire emissions. The forest up-
take (NBE) compensated for approximately 50 % of the fire

Figure 7. Comparison of the 9-year mean of carbon fluxes from
the inverse modeling (prior total flux, posterior total flux, posterior
NBE flux (total minus fire emissions) and posterior fire flux) and
flux estimates (total, NBE and fire) using a mass balance technique
in Gatti et al. (2021a). All fluxes are estimated using the Amazon
areas (km2) from Gatti et al. (2021a).

emissions and was larger in the western-central region than in
the eastern Amazon region (72 % and 33 % of the fire emis-
sions, respectively). This highlights the importance of public
policies to prevent deforestation and fire occurrences to re-
duce Amazon carbon emissions to the atmosphere and help
to mitigate the effects of climate change.

Our estimated carbon fluxes were larger during the ex-
treme drought years such as 2010, 2015 and 2016, mainly
because of an increase in fire emissions and a reduction in
carbon uptake. However, we did not find any significant trend
in carbon emissions over the period of 2010–2018. Our anal-
ysis thus cannot provide clear evidence for a weakening of
the carbon uptake by Amazonian tropical forests.

The inter- and intra-annual seasonality of the results from
our inversion is in agreement with previous studies (e.g.,
Gatti et al., 2021a; Botía et al., 2022; Naus et al., 2022). Our
study shows the benefit of using regional vertical CO2 profile
data over land to better constrain carbon emissions in tropical
forests such as the Amazon, thereby improving the estimated
magnitude and intra-annual seasonality of the emissions. In
turn, this helps to improve global estimates and understand
possible climate and human disturbance feedbacks in the car-
bon cycle.
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Appendix A

Table A1. NOAA monitoring sites with CO2 observation data used in the inverse model.

Code Name Latitude Longitude Time period

ALT Alert, Nunavut, Canada 82.45◦ N 62.50◦W 2010–2018
AMY Anmyeon-do, Republic of Korea 36.53◦ N 126.32◦ E 2013–2018
ASC Ascension Island, United Kingdom 7.96◦ S 14.40◦W 2010–2018
ASK Assekrem, Algeria 23.26◦ N 5.63◦ E 2010–2018
AZR Terceira Island, Azores, Portugal 38.76◦ N 27.37◦W 2010–2018
BAL Baltic Sea, Poland 55.35◦ N 17.22◦ E 2010–2011
BHD Baring Head Station, New Zealand 41.40◦ S 174.87◦ E 2010–2018
BKT Bukit Kototabang, Indonesia 0.20◦ S 100.31◦ E 2010–2018
BMW Tudor Hill, Bermuda, United Kingdom 32.26◦ N 64.87◦W 2010–2018
BRW Barrow Atmospheric Baseline Observatory, United States 71.32◦ N 156.61◦W 2010–2018
CBA Cold Bay, Alaska, United States 55.21◦ N 162.72◦W 2010–2018
CGO Cape Grim, Tasmania, Australia 40.68◦ S 144.69◦ E 2010–2018
CHR Christmas Island, Republic of Kiribati 1.70◦ N 157.15◦W 2010–2018
CIB Centro de Investigacion de la Baja Atmosfera (CIBA), Spain 41.81◦ N 4.93◦W 2010–2018
CPT Cape Point, South Africa 34.35◦ S 18.48◦ E 2012–2018
CRZ Crozet Islands, France 46.43◦ S 51.84◦ E 2010–2018
DRP Drake Passage 59.00◦ S 64.69◦W 2010–2018
DSI Dongsha Island, Taiwan 20.69◦ N 116.72◦ E 2010–2018
EIC Easter Island, Chile 27.15◦ S 109.42◦W 2010–2018
GMI Mariana Islands, Guam 13.38◦ N 144.65◦ E 2010–2018
HBA Halley Station, Antarctica, United Kingdom 75.605◦ S 26.21◦W 2010–2018
HPB Hohenpeissenberg, Germany 47.80◦ N 11.02◦ E 2010–2018
HSU Humboldt State University, United States 41.05◦ N 124.75◦W 2010–2017
HUN Hegyhátsál, Hungary 46.95◦ N 16.65◦W 2010–2018
ICE Stórhöfði, Vestmannaeyjar, Iceland 63.39◦ N 20.28◦W 2016–2018
IZO Izana, Tenerife, Canary Islands, Spain 28.30◦ N 16.49◦W 2010–2018
KEY Key Biscayne, Florida, United States 25.66◦ N 80.15◦W 2010–2018
KUM Cape Kumukahi, Hawaii, United States 19.73◦ N 155.01◦W 2010–2018
LLB Lac La Biche, Alberta, Canada 54.95◦ N 112.46◦W 2010–2013
LLN Lulin, Taiwan 23.47◦ N 120.87◦ E 2010–2018
LMP Lampedusa, Italy 35.51◦ N 12.63◦ E 2010–2018
MEX High Altitude Global Climate Observation Center, Mexico 18.98◦ N 97.31◦W 2010–2018
MHD Mace Head, County Galway, Ireland 53.32◦ N 9.89◦W 2010–2018
MID Sand Island, Midway, United States 28.21◦ N 177.38◦W 2010–2018
MLO Mauna Loa, Hawaii, United States 19.53◦ N 155.57◦W 2010–2018
NAT Farol De Mãe Luiza Lighthouse, Brazil 5.79◦ S 35.18◦W 2010–2018
NMB Gobabeb, Namibia 23.58◦ S 15.03◦ E 2010–2018
NWR Niwot Ridge, Colorado, United States 40.05◦ N 105.58◦W 2010–2018
OXK Ochsenkopf, Germany 50.03◦ N 11.80◦ E 2010–2018
PAL Pallas-Sammaltunturi, GAW Station, Finland 67.97◦ N 24.11◦ E 2010–2018
POC000 Pacific Ocean (0◦ N) 0.00◦ – 2010–2017
POCN05 Pacific Ocean (5◦ N) 5.00◦ N – 2010–2017
POCN10 Pacific Ocean (10◦ N) 10.00◦ N – 2010–2017
POCN15 Pacific Ocean (15◦ N) 15.00◦ N – 2010–2017
POCN20 Pacific Ocean (20◦ N) 20.00◦ N – 2010–2017
POCN25 Pacific Ocean (25◦ N) 25.00◦ N – 2010–2017
POCN30 Pacific Ocean (30◦ N) 30.00◦ N – 2010–2017
POCS05 Pacific Ocean (5◦ S) 5.00◦ S – 2010–2017
POCS10 Pacific Ocean (10◦ S) 10.00◦ S – 2010–2017
POCS15 Pacific Ocean (15◦ S) 15.00◦ S – 2010–2017
POCS20 Pacific Ocean (20◦ S) 20.00◦ S – 2010–2017
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Table A1. Continued.

Code Name Latitude Longitude Time period

POCS25 Pacific Ocean (25◦ S) 25.00◦ S – 2010–2017
POCS30 Pacific Ocean (30◦ S) 30.00◦ S – 2010–2017
PSA Palmer Station, Antarctica, United States 64.77◦ S 64.05◦W 2010–2018
PTA Point Arena, California, United States 38.95◦ N 123.74◦W 2010–2011
RPB Ragged Point, Barbados 13.16◦ N 59.43◦W 2010–2018
SDZ Shangdianzi, China 40.65◦ N 117.11◦ E 2010–2015
SEY Mahé Island, Seychelles 4.68◦ S 55.53◦ E 2010–2018
SGP Southern Great Plains, Oklahoma, United States 36.60◦ N 97.48◦W 2010–2018
SHM Shemya Island, Alaska, United States 52.71◦ N 174.12◦ E 2010–2018
SMO Tutuila, American Samoa 14.24◦ S 170.56◦W 2010–2018
SUM Summit, Greenland 72.59◦ N 38.42◦W 2010–2018
SYO Syowa Station, Antarctica, Japan 69.01◦ S 39.59◦ E 2010–2018
TAP Tae-ahn Peninsula, Republic of Korea 36.73◦ N 126.13◦ E 2010–2018
THD Trinidad Head, California, United States 41.05◦ N 124.15◦W 2010–2017
TIK Hydrometeorological Observatory of Tiksi, Russia 71.59◦ N 128.88◦ E 2011–2018
USH Ushuaia, Argentina 54.84◦ S 68.31◦W 2010–2018
UTA Wendover, Utah, United States 39.90◦ N 113.71◦W 2010–2018
UUM Ulaan-Uul, Mongolia 44.45◦ N 111.09◦ E 2010–2018
WIS Weizmann Institute of Science at the Arava Institute, Ketura, Israel 29.96◦ N 35.06◦ E 2010–2018
WLG Mt. Waliguan, Peoples Republic of China 36.28◦ N 100.89◦ E 2010–2018
ZEP Ny-Ålesund, Svalbard, Norway and Sweden 78.90◦ N 11.88◦ E 2010–2018

Table A2. Mean difference between CO2 mole fraction model estimates and observations.

CO2 mole fraction mean difference (ppm)

CASA as land–biosphere prior flux

Site Mean below 1.5 km altitude Mean above 3.5 km altitude

Prior – Posterior – Prior – Posterior –
observed observed observed observed

ALF 3.0 1.3 1.2 0.7
SAN 2.3 1.3 1.3 0.6
RBA 4.1 1.3 1.5 0.7
TAB_TEF 3.5 1.4 1.4 0.7

CARDAMOM as land–biosphere prior flux

Site Mean below 1.5 km altitude Mean above 3.5 km altitude

Prior – Posterior – Prior – Posterior –
observed observed observed observed

ALF −3.3 0.1 −2.1 −0.2
SAN −2.9 0.0 −0.8 0.3
RBA −5.9 −0.3 −2.5 0.1
TAB_TEF −6.1 0.0 −1.5 0.3
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Figure A1. (a) Time series of the global monthly mean CO2 mole fraction from our posteriori fluxes and from the NOAA marine surface
sites (Lan et al., 2023). (b) Linear correlation between global monthly mean CO2 mole fraction from our posteriori fluxes and from the
NOAA marine surface sites.

Figure A2. Quarterly and annual mean posterior total carbon fluxes without assimilated Amazon vertical profile data for the Amazon region
between 2010 and 2018. The blue contour represents the Amazon area, based on Eva and Huber (2005).

Figure A3. Quarterly and annual mean prior (a) and posterior (b) fire carbon monoxide (CO) fluxes with MOPITT data assimilated for the
Amazon region between 2010 and 2018. The blue contour represents the Amazon area, based on Eva and Huber (2005).
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Table A3. Annual mean fluxes (between April and December over the 9-year period, 2010 to 2018) using different CO estimates to estimate
CO2 fire and NBE fluxes.

Carbon fluxes (Pg C yr−1)

Flux NBE Fire

CO_TOMCAT 0.02 0.24
CO_GFAS (Naus et al., 2022) 0.12 0.14
CO_opt (Naus et al., 2022) 0.04 0.22

Figure A4. (a) Monthly mean carbon fluxes for the western-central Amazon area: posterior total flux with the Amazon vertical profile ob-
servations in the inversion (black bars), posterior fire fluxes using MOPITT carbon monoxide observations in the inversion (orange bars) and
posterior NBE fluxes which are the result of the subtraction of the posterior fire fluxes from the posterior total fluxes with the Amazon vertical
profile observations in the inversion (green bars), representing the net biome exchange. Monthly mean and anomalies of (b) cumulative water
deficit (CWD), (c) temperature, (d) shortwave solar radiation downward flux (all sky) and (e) burned area for the western-central Amazon
area.
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Figure A5. (a) Monthly mean carbon fluxes for the eastern Amazon area: posterior total flux with the Amazon vertical profile observations
in the inversion (black bars), posterior fire fluxes using MOPITT carbon monoxide observations in the inversion (orange bars) and posterior
NBE fluxes which are the result of the subtraction of the posterior fire fluxes from the posterior total fluxes with the Amazon vertical profile
observations in the inversion (green bars), representing the net biome exchange. Monthly mean and anomalies of (b) cumulative water deficit
(CWD), (c) temperature, (d) shortwave solar radiation downward flux (all sky) and (e) burned area for the eastern Amazon area.
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Figure A6. Map of land use and cover data from MapBiomas (2022) for Pan-Amazonia up to 2018. The purple line represents the Amazon
region boundaries (based on Eva and Huber, 2005) and the grey line the South American boundaries.

Figure A7. (a) Linear regressions between monthly mean carbon posterior total flux and temperature, cumulative water deficit (CWD), solar
radiation and burned area for the (a) whole, (b) western-central and (c) eastern Amazon regions.
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Figure A8. (a) Linear regressions between monthly mean carbon posterior fire flux and temperature, cumulative water deficit (CWD), solar
radiation and burned area for the (a) whole, (b) western-central and (c) eastern Amazon regions.

Figure A9. (a) Linear regressions between monthly mean carbon posterior NBE flux (posterior total flux less posterior fire flux) and tem-
perature, cumulative water deficit (CWD) and solar radiation for the (a) whole, (b) western-central and (c) eastern Amazon regions.
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Figure A10. (a) Linear regressions between annual mean carbon posterior total flux (posterior total flux less posterior fire flux) and tem-
perature, cumulative water deficit (CWD), solar radiation and burned area for the (a) whole, (b) western-central and (c) eastern Amazon
regions.

Figure A11. (a) Linear regressions between annual mean carbon posterior fire flux (posterior total flux less posterior fire flux) and tem-
perature, cumulative water deficit (CWD), solar radiation and burned area for the (a) whole, (b) western-central and (c) eastern Amazon
regions.
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Figure A12. (a) Linear regressions between annual mean carbon posterior NBE flux (posterior total flux less posterior fire flux) and temper-
ature, cumulative water deficit (CWD) and solar radiation for the (a) whole, (b) western-central and (c) eastern Amazon regions.

Figure A13. Total number of vertical profiles by month used in the inversions for the (a) whole Amazon area, (b) divided into the western-
central (dark grey bars) and eastern Amazon regions (red bars). (c) Total number of vertical profiles for the whole (black bars), western-central
(dark grey bars) and eastern Amazon regions (light grey bars). All the vertical profile data used were from Gatti et al. (2021a).
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Figure A14. Quarterly and annual mean (a) prior total (with CARDAMOM as land–biosphere prior flux) and (b) posterior total (with
CARDAMOM as land–biosphere prior flux) carbon fluxes, where a positive value indicates a net emission of C, while a negative value
indicates a net uptake; (c) 9-year monthly mean and (d) annual mean carbon fluxes for the Amazon using CARDAMOM estimated as
land–biosphere prior fluxes between 2010 and 2018. The blue contour represents the Amazon area, based on Eva and Huber (2005).
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Figure A15. Detrended monthly mean CO2 mole fractions (ppm) for prior (with CARDAMOM as land–biosphere prior flux), posterior and
Amazon vertical profiles and its linear regressions, where panel (a) is the mean below 1.5 km altitude (planetary boundary layer levels) and
(b) the mean above 3.5 km altitude (vertical profile free troposphere) for each of the vertical profile sites. The model results were extracted
for the grid cell where each site is located. After detrending, we subtracted the global mean mole fraction from the observation and model
mole fractions. Error bars represent the observation uncertainties.
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Figure A16. (a) Annual mean fluxes for the Amazon region total, fire and NBE estimates. Fire and NBE emissions based on TOMCAT
CO inversions (CO_TOMCAT), Naus et al. (2022) emissions using GFAS as a prior (CO_GFAS) and emissions with their CO optimized
inversions (CO_opt). The 9-year monthly mean NBE (b) and fire (c) carbon fluxes for the Amazon, fire and NBE based on TOMCAT
CO inversions (CO_TOMCAT), Naus et al. (2022) emissions using GFAS as prior (CO_GFAS), and emissions with their CO optimized
inversions (CO_opt). Linear regressions between annual mean carbon fire flux (d) and posterior NBE (e) based on TOMCAT CO inversions
(CO_TOMCAT) and Naus et al. (2022) CO optimized inversions (CO_opt).
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Figure A17. (a) Locations of LaGEE/INPE Amazon vertical profile sites assimilated in the inversions (blue circles) and the two sites (MAN
and ATTO) with data used for cross-validation. The blue contour represents the Amazon area, based on Eva and Huber (2005). (b) Time
series and box plot of the model bias (model – observations) of monthly mean CO2 mole fractions (ppm) for the ATTO.
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Figure A18. Time series and box plot of model bias (model – observations) of monthly mean CO2 mole fractions (ppm) for the MAN
vertical profiles (a) mean below 1.5 km, (b) mean above 3.5 km, and (c) difference between mean below 1.5 km and mean above 3.5 km.

Figure A19. Time trend of maximum cumulative water deficit (CWD) between 1998 and 2019 based on TRMM v 7 precipitation estimates
(Huffman et al., 2001).
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Figure A20. Comparison of monthly mean C fluxes from inverse modeling using Amazon vertical profile observations and C fluxes based
the vertical profile observations calculated by mass balance technique from Gatti et al. (2021a), for the period between 2010 and 2018.
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Code and data availability. The posterior CO fluxes from
the atmospheric inversion can be made available upon re-
quest to Chris Wilson (c.wilson@leeds.ac.uk). Access to
the CARDAMOM dataset can be granted upon request to
T. Luke Smallman (t.l.smallman@ed.ac.uk). The prior and
posterior mean South American CO2 fluxes on the TOMCAT
model grid are available from PANGAEA Data Archiving;
the data DOI is https://doi.org/10.1594/PANGAEA.960593
(Basso et al., 2023). The vertical profile data used in
this study are available at PANGAEA Data Archiving at
https://doi.org/10.1594/PANGAEA.926834 (Gatti et al.,
2021b). CO2 global long-term surface data provided by the
NOAA GML are available at https://doi.org/10.15138/wkgj-
f215 (Lan et al., 2022). Fossil fuel emissions are from
the Carbon Dioxide Information Analysis Center (CDIAC)
(https://doi.org/10.3334/CDIAC/00001_V2017, Boden et al.,
1999). CO2 mole fractions from MAN aircraft vertical profiles
are available at https://doi.org/10.25925/20210519 (Miller et al.,
2021). Global Fire Emissions Database, Version 4 (GFEDv4),
is available at https://doi.org/10.3334/ORNLDAAC/1293 (Ran-
derson et al., 2017). Temperature data are from ERA-5 from
the ECMWF (https://doi.org/10.24381/cds.f17050d7; Hersbach
et al., 2023). Solar radiation data are from the Clouds and
the Earth’s Radiant Energy System (CERES-EBAF Ed4.1;
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAF42Selection.jsp,
CERES, 2022; Loeb et al., 2018; Kato et al., 2018). CO2 mole
fractions in the Amazon region made at the ATTO site are available
upon request at https://www.attodata.org/ddm/data/Showdata/39
(Lavric and Walter, 2022a), https://www.attodata.org/
ddm/data/Showdata/64 (Lavric and Walter, 2022b),
https://www.attodata.org/ddm/data/Showdata/65 (Lavric and
Walter, 2022c), https://www.attodata.org/ddm/data/Showdata/66
(Lavric and Walter, 2022d), https://www.attodata.org/
ddm/data/Showdata/67 (Lavric and Walter, 2022e),
https://www.attodata.org/ddm/data/Showdata/68 (Lavric and Wal-
ter, 2022f) and https://www.attodata.org/ddm/data/Showdata/69
(Lavric and Walter, 2022g).

Author contributions. LSB, CW, MG and MPC designed the
methodology. LSB wrote the first version of the paper and per-
formed the analysis and CO2 inversions. CW performed the TOM-
CAT CO inversions using MOPITT data. GT provided the land use
change data. HLGC and EA provided the burned area data. MW
and TLS provided the CARDAMOM flux estimates. WP and SN
provided the CO estimates for the sensitivity test. All authors con-
tributed to the analysis and text.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Luana S. Basso, Henrique L. G. Cassol and
Graciela Tejada acknowledge the financial support from São Paulo
Research Foundation – FAPESP (2011/17914-0, 2018/14006-4,
2019/23654-2, 2018/14423-4, 2020/02656-4, 2018/18493-7). We
acknowledge the support for this work from NERC grants AMA-
ZONICA NE/F005806/1, BIO-RED NE/N012542/1 and ECO-
FOR NE/K01644X/1. Chris Wilson and Martyn P. Chipperfield
acknowledge the contributions from the NERC National Centre
for Earth Observation (NCEO). T. Luke Smallman and Mathew
Williams were funded by the UK’s National Centre for Earth
Observation. The CARDAMOM analyses made use of the re-
sources provided by the Edinburgh Compute and Data Facility
(EDCF, http://www.ecdf.ed.ac.uk/, last access: 22 August 2023).
The Amazon vertical profile database was funded by the São Paulo
Research Foundation – FAPESP (2016/02018-2, 2011/51841-0,
2008/58120-3); the UK Natural Environmental Research Coun-
cil (NERC) AMAZONICA project (NE/F005806/1); NASA grants
(11-CMS11-0025, NRMJ1000-17-00431, NNX17AK49G); and the
European Research Council (ERC) under Horizon 2020 (649087),
7FP EU (283080), MCTI/CNPq (2013) and CNPq (134878/2009-
4). We thank the LaGEE/INPE team (the PI Luciana Gatti and
the colleagues Luciano Marani, Caio C. S. C. Correia, Lucas G.
Domingues, Raiane Neves and Stéphane Crispim) who provided
the CO2 data from the vertical profiles. In addition, we thank the
pilots and technical team at the aircraft sites who collected the air
samples. We thank numerous people at NOAA GML who provided
the global station network CO2 data, the ATTO research team who
provided the CO2 mole fraction data, and the MOPITT team who
provided the CO total column data.

Financial support. This research has been supported by the
State of Sao Paulo Science Foundation (grant nos. 2016/02018-
2, 2018/14006-4, 2018/14423-4, 2018/18493-7, 2019/23654-2 and
2020/02656-4), the Natural Environment Research Council (grant
nos. AMAZONICA NE/F005806/1, BIO-RED NE/N012542/1,
and ECOFOR NE/K01644X/1), the NERC National Centre
for Earth Observation (NCEO), the UK’s National Centre for
Earth Observation, the State of Sao Paulo Science Founda-
tion – FAPESP (2016/02018-2, 2011/51841-0, 2008/58120-3,
2018/14423-4, 2018/18493-7, 2019/21789-8, 2019/23654-2), the
UK Natural Environmental Research Council (NERC) AMA-
ZONICA project (grant no. NE/F005806/1), NASA grants (grant
nos. 11-CMS11-0025, NRMJ1000-17-00431, NNX17AK49G), and
the European Research Council (ERC) under Horizon 2020 (grant
no. 649087), 7FP EU(grant no. 283080), MCTI/CNPq (grant
no. 2013) and CNPq (grant no. 134878/2009-4).

Review statement. This paper was edited by Abhishek Chatter-
jee and reviewed by two anonymous referees.

https://doi.org/10.5194/acp-23-9685-2023 Atmos. Chem. Phys., 23, 9685–9723, 2023

https://doi.org/10.1594/PANGAEA.960593
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.15138/wkgj-f215
https://doi.org/10.15138/wkgj-f215
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.25925/20210519
https://doi.org/10.3334/ORNLDAAC/1293
https://doi.org/10.24381/cds.f17050d7
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAF42Selection.jsp
https://www.attodata.org/ddm/data/Showdata/39
https://www.attodata.org/ddm/data/Showdata/64
https://www.attodata.org/ddm/data/Showdata/64
https://www.attodata.org/ddm/data/Showdata/65
https://www.attodata.org/ddm/data/Showdata/66
https://www.attodata.org/ddm/data/Showdata/67
https://www.attodata.org/ddm/data/Showdata/67
https://www.attodata.org/ddm/data/Showdata/68
https://www.attodata.org/ddm/data/Showdata/69
http://www.ecdf.ed.ac.uk/


9718 L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source

References

Alden, C. B., Miller, J. B., Gatti, L. V., Gloor, M. M., Guan, K.,
Michalak, A. M., van der Laan-Luijkx, I. T., Touma, D., An-
drews, A., Basso, L. S., Correia, C. S. C., Domingues, L. G.,
Joiner, J., Krol, M. C., Lyapustin, A. I., Peters, W., Shiga, Y.
P., Thoning, K., van der Velde, I. R., van Leeuwen, T. T., Ya-
dav, V., and Diffenbaugh, N. S.: Regional atmospheric CO2 in-
version reveals seasonal and geographic differences in Ama-
zon net biome exchange, Glob. Chang. Biol., 22, 3427–3443,
https://doi.org/10.1111/gcb.13305, 2016.

Anderson, L. O., Aragão, L. E. O. C., Gloor, M., Arai, E., Adami,
M., Saatchi, S. S., Malhi, Y., Shimabukuro, Y. E., Barlow, J.,
Berenguer, E., and Duarte, V.: Disentangling the contribution of
multiple land covers to fire-mediated carbon emissions in Ama-
zonia during the 2010 drought, Global Biogeochem. Cy., 29,
1739–1753, https://doi.org/10.1002/2014GB005008, 2015.

Anderson, L. O., Neto, G. R., Cunha, A. P., Fonseca, M. G.,
De Moura, Y. M., Dalagnol, R., Wagner, F. H., and De
Aragão, L. E. O. E. C.: Vulnerability of Amazonian forests
to repeated droughts, Philos. T. Roy. Soc. B, 373, 20170411,
https://doi.org/10.1098/rstb.2017.0411, 2018.

Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T.
M., Vedovato, L. B., Wagner, F. H., Silva, C. V. J., Silva Ju-
nior, C. H. L., Arai, E., Aguiar, A. P., Barlow, J., Berenguer, E.,
Deeter, M. N., Domingues, L. G., Gatti, L., Gloor, M., Malhi,
Y., Marengo, J. A., Miller, J. B., Phillips, O. L., and Saatchi,
S.: 21st Century drought-related fires counteract the decline of
Amazon deforestation carbon emissions, Nat. Commun., 9, 536,
https://doi.org/10.1038/s41467-017-02771-y, 2018.

Baier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J.
P., Feng, S., Fried, A., Halliday, H., Higgs, J., Lauvaux, T.,
Miller, B. R., Montzka, S. A., Newberger, T., Nowak, J. B.,
Patra, P., Richter, D., Walega, J., and Weibring, P.: Multi-
species Assessment of Factors Influencing Regional CO2 and
CH4 Enhancements During the Winter 2017 ACT-America
Campaign, J. Geophys. Res.-Atmos., 125, e2019JD031339,
https://doi.org/10.1029/2019JD031339, 2020.

Baret, F., Weiss, M., Verger, A., and Smets, B.: Atbd
for Lai, Fapar and Fcover From Proba-V Products
at 300 m Resolution (Geov3), INRA, Paris, France,
https://land.copernicus.eu/global/sites/cgls.vito.be/files/
products/ImagineS_RP2.1_ATBD-FAPAR300m_I1.73.pdf
(last access: 22 August 2023), 2016.

Basso, L. S., Wilson, C., Chipperfield, M. P., and Gloor,
M.: Posterior Amazon monthly mean surface carbon
flux between 2010 and 2018 estimated using the IN-
VICAT 4D-Var inverse model, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.960593, 2023.

Berenguer, E., Carvalho, N., Anderson, L. O., Aragão, L. E. O.
C., França, F., and Barlow, J.: Improving the spatial-temporal
analysis of Amazonian fires, Glob. Chang. Biol., 27, 469–471,
https://doi.org/10.1111/gcb.15425, 2021.

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L.,
and Williams, M.: The decadal state of the terrestrial carbon
cycle: Global retrievals of terrestrial carbon allocation, pools,
and residence times, P. Natl. Acad. Sci. USA, 113, 1285–1290,
https://doi.org/10.1073/pnas.1515160113, 2016.

Boden, T., Marland, G., and Andres, R. J.: Global, Re-
gional, and National Fossil-Fuel CO2 Emissions (1751–
2014) (V. 2017), Carbon Dioxide Information Analysis Cen-
ter (CDIAC), Oak Ridge National Laboratory (ORNL), Oak
Ridge, TN (United States), ESS-DIVE repository [data set],
https://doi.org/10.3334/CDIAC/00001_V2017, 1999.

Botía, S., Komiya, S., Marshall, J., Koch, T., Gałkowski, M., Lavric,
J., Gomes-Alves, E., Walter, D., Fisch, G., Pinho, D. M., Nelson,
B. W., Martins, G., Luijkx, I. T., Koren, G., Florentie, L., Car-
ioca de Araújo, A., Sá, M., Andreae, M. O., Heimann, M., Pe-
ters, W., and Gerbig, C.: The CO2 record at the Amazon Tall
Tower Observatory: A new opportunity to study processes on
seasonal and inter-annual scales, Glob. Chang. Biol., 28, 588–
611, https://doi.org/10.1111/gcb.15905, 2022.

Botía Bocanegra, S.: Greenhouse gas exchange in the Amazon re-
gion: carbon dioxide and methane insights from the Amazon Tall
Tower Observatory (ATTO), PhD thesis, Wageningen University,
https://doi.org/10.18174/573967, 2022.

Bousserez, N., Henze, D. K., Perkins, A., Bowman, K. W., Lee,
M., Liu, J., Deng, F., and Jones, D. B. A.: Improved analysis-
error covariance matrix for high-dimensional variational inver-
sions: application to source estimation using a 3D atmospheric
transport model, Q. J. Roy. Meteor. Soc., 141, 1906–1921,
https://doi.org/10.1002/qj.2495, 2015.

Brando, P., Macedo, M., Silvério, D., Rattis, L., Paolucci,
L., Alencar, A., Coe, M., and Amorim, C.: Amazon wild-
fires: Scenes from a foreseeable disaster, Flora, 268, 151609,
https://doi.org/10.1016/j.flora.2020.151609, 2020.

Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor,
E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-
Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez Martinez, R.,
Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade,
A., Aragaõ, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M.
M., Arroyo, L., Aymard C., G. A., Bánki, O. S., Baraloto, C., Bar-
roso, J., Bonal, D., Boot, R. G. A., Camargo, J. L. C., Castilho, C.
V., Chama, V., Chao, K. J., Chave, J., Comiskey, J. A., Cornejo
Valverde, F., Da Costa, L., De Oliveira, E. A., Di Fiore, A., Er-
win, T. L., Fauset, S., Forsthofer, M., Galbraith, D. R., Grahame,
E. S., Groot, N., Hérault, B., Higuchi, N., Honorio Coronado, E.
N., Keeling, H., Killeen, T. J., Laurance, W. F., Laurance, S., Li-
cona, J., Magnussen, W. E., Marimon, B. S., Marimon-Junior, B.
H., Mendoza, C., Neill, D. A., Nogueira, E. M., Núñez, P., Pal-
lqui Camacho, N. C., Parada, A., Pardo-Molina, G., Peacock, J.,
Penã-Claros, M., Pickavance, G. C., Pitman, N. C. A., Poorter,
L., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez-Angulo, H.,
Restrepo, Z., Roopsind, A., Rudas, A., Salomaõ, R. P., Schwarz,
M., Silva, N., Silva-Espejo, J. E., Silveira, M., Stropp, J., Tal-
bot, J., Ter Steege, H., Teran-Aguilar, J., Terborgh, J., Thomas-
Caesar, R., Toledo, M., Torello-Raventos, M., Umetsu, R. K.,
Van Der Heijden, G. M. F., Van Der Hout, P., Guimarães Vieira,
I. C., Vieira, S. A., Vilanova, E., Vos, V. A., and Zagt, R. J.: Long-
term decline of the Amazon carbon sink, Nature, 519, 344–348,
https://doi.org/10.1038/nature14283, 2015.

Chipperfield, M. P.: New version of the TOMCAT/SLIMCAT off-
line chemical transport model: Intercomparison of stratospheric
tracer experiments, Q. J. Roy. Meteor. Soc., 132, 1179–1203,
https://doi.org/10.1256/QJ.05.51, 2006.

Clouds and the Earth’s Radiant Energy System (CERES): En-
ergy Balanced and Filled (EBAF) data product, Edition 4.2,

Atmos. Chem. Phys., 23, 9685–9723, 2023 https://doi.org/10.5194/acp-23-9685-2023

https://doi.org/10.1111/gcb.13305
https://doi.org/10.1002/2014GB005008
https://doi.org/10.1098/rstb.2017.0411
https://doi.org/10.1038/s41467-017-02771-y
https://doi.org/10.1029/2019JD031339
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/ImagineS_RP2.1_ATBD-FAPAR300m_I1.73.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/ImagineS_RP2.1_ATBD-FAPAR300m_I1.73.pdf
https://doi.org/10.1594/PANGAEA.960593
https://doi.org/10.1111/gcb.15425
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.1111/gcb.15905
https://doi.org/10.18174/573967
https://doi.org/10.1002/qj.2495
https://doi.org/10.1016/j.flora.2020.151609
https://doi.org/10.1038/nature14283
https://doi.org/10.1256/QJ.05.51


L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source 9719

CERES [data set], https://ceres-tool.larc.nasa.gov/ord-tool/jsp/
EBAF42Selection.jsp, last access: 30 July 2022.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A.
P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C.,
de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/QJ.828, 2011.

Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D.,
Martínez-Alonso, S., Worden, H. M., Ziskin, D., and Andreae,
M. O.: Radiance-based retrieval bias mitigation for the MOPITT
instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561–
4580, https://doi.org/10.5194/amt-12-4561-2019, 2019.

Domingues, L. G., Gatti, L. V., Aquino, A., Sánchez, A., Cor-
reia, C., Gloor, M., Peters, W., Miller, J., Turnbull, J., San-
tana, R., Marani, L., Câmara, G., Neves, R., and Crispim, S.:
A new background method for greenhouse gases flux calcula-
tion based in back-trajectories over the Amazon, Atmosphere,
11, 734, https://doi.org/10.3390/atmos11070734, 2020.

Eva, H. D. and Huber, O.: A Proposal for Defining the Geographical
Boundaries of Amazonia: Synthesis of the results from an Expert
Consultation Workshop organized by the European Commission
in collaboration with the Amazon Cooperation Treaty Organiza-
tion – JRC, 7–8 June 2005, Ispra, Italy, European Comission –
Joint Research Centre (JRC), ISBN 92-79-00012-8, 2005.

Exbrayat, J., Smallman, T. L., Bloom, A. A., Hutley, L.
B., and Williams, M.: Inverse Determination of the In-
fluence of Fire on Vegetation Carbon Turnover in the
Pantropics, Global Biogeochem. Cy., 32, 1776–1789,
https://doi.org/10.1029/2018GB005925, 2018.

Fancourt, M., Ziv, G., Boersma, K. F., Tavares, J., Wang, Y., and
Galbraith, D.: Background climate conditions regulated the pho-
tosynthetic response of Amazon forests to the 2015/2016 El
Nino-Southern Oscillation event, Commun. Earth Environ., 3, 1–
9, https://doi.org/10.1038/s43247-022-00533-3, 2022.

Fawcett, D., Sitch, S., Ciais, P., Wigneron, J. P., Silva-Junior, C. H.
L., Heinrich, V., Vancutsem, C., Achard, F., Bastos, A., Yang,
H., Li, X., Albergel, C., Friedlingstein, P., and Aragão, L. E. O.
C.: Declining Amazon biomass due to deforestation and subse-
quent degradation losses exceeding gains, Glob. Chang. Biol.,
29, 1106–1118, https://doi.org/10.1111/gcb.16513, 2023.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ra-
mankutty, N., Sibley, A., and Huang, X.: MODIS Collec-
tion 5 global land cover: Algorithm refinements and character-
ization of new datasets, Remote Sens. Environ., 114, 168–182,
https://doi.org/10.1016/j.rse.2009.08.016, 2010.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch,
S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin,
S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R.,
Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan,
S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie,
L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritza-
lis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V.,

Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K.,
Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre,
N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland,
G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I.,
Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poul-
ter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger,
J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tan-
hua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G.,
Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J.,
Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.:
Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–
3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M.,
Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters,
W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson,
R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bel-
louin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P.,
Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M.,
Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfil-
lan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses,
Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina,
T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D.,
Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger,
A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S.,
Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D.
R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pier-
rot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E.,
Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl,
C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans,
P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R.,
Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis,
D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and
Zeng, J.: Global Carbon Budget 2021, Earth Syst. Sci. Data, 14,
1917–2005, https://doi.org/10.5194/essd-14-1917-2022, 2022.

Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y.,
Domingues, L. G., Basso, L. S., Martinewski, A., Correia, C. S.
C., Borges, V. F., Freitas, S., Braz, R., Anderson, L. O., Rocha,
H., Grace, J., Phillips, O. L., and Lloyd, J.: Drought sensitivity
of Amazonian carbon balance revealed by atmospheric measure-
ments, Nature, 506, 76–80, https://doi.org/10.1038/nature12957,
2014.

Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Domingues,
L. G., Cassol, H. L. G., Tejada, G., Aragão, L. E. O. C., No-
bre, C., Peters, W., Marani, L., Arai, E., Sanches, A. H., Cor-
rea, S. M., Anderson, L., Von Randon, C., Correia, C. S. C.,
Crispim, S. P., and Neves, R. A. L.: Amazonia as a carbon source
linked to deforestation and climate change, Nature, 595, 388–
393, https://doi.org/10.1038/s41586-021-03629-6, 2021a.

Gatti, L. V., Correa, C. C. S., Domingues, L. G., Miller, J. B., Gloor,
M., Martinewski, A., Basso, L. S., Santana, R., Crispim, S. P.,
Marani, L., and Neves, R. L.: CO2 Vertical Profiles on Four
Sites over Amazon from 2010 to 2018, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.926834, 2021b.

Gatti, L. V., Melack, J., Basso, L. S., Restrepo-Coupe, N., Aguiar,
A. P., Pangala, S., Saleska, S. R., Aragão, L., Phillips, O. L., and
Armenteras, D: Cross-Chapter 1: The Amazon Carbon Budget,
in: Amazon Assessment Report 2021, edited by: Nobre, C., En-
calada, A., Anderson, E., Roca Alcazar, F. H., Bustamante, M.,
Mena, C., Peña-Claros, M., Poveda, G., Rodriguez, J. P., Saleska,

https://doi.org/10.5194/acp-23-9685-2023 Atmos. Chem. Phys., 23, 9685–9723, 2023

https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAF42Selection.jsp
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAF42Selection.jsp
https://doi.org/10.1002/QJ.828
https://doi.org/10.5194/amt-12-4561-2019
https://doi.org/10.3390/atmos11070734
https://doi.org/10.1029/2018GB005925
https://doi.org/10.1038/s43247-022-00533-3
https://doi.org/10.1111/gcb.16513
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/10.1038/nature12957
https://doi.org/10.1038/s41586-021-03629-6
https://doi.org/10.1594/PANGAEA.926834


9720 L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source

S., Trumbore, S., Val, A. L., Villa Nova, L., Abramovay, R.,
Alencar, A., Rodríguez Alzza, C., Armenteras, D., Artaxo, P.,
Athayde, S., Barretto Filho, H. T., Barlow, J., Berenguer, E., Bor-
tolotto, F., Costa, F. A., Costa, M. H., Cuvi, N., Fearnside, P. M.,
Ferreira, J., Flores, B. M., Frieri, S., Gatti, L. V., Guayasamin,
J. M., Hecht, S., Hirota, M., Hoorn, C., Josse, C., Lapola, D.
M., Larrea, C., Larrea-Alcazar, D. M., Lehm Ardaya, Z., Malhi,
Y., Marengo, J. A., Melack, J., Moraes, R. M., Moutinho, P.,
Murmis, M. R., Neves, E. G., Paez, B., Painter, L., Ramos, A.,
Rosero-Peña, M. C., Schmink, M., Sist, P., ter Steege, H., Val, P.,
van der Voort, H., Varese, M., and Zapata-Ríos, G., United Na-
tions Sustainable Development Solutions Network, New York,
USA, https://doi.org/10.55161/VNBV7494, 2021c.

Gatti, L., Cunha, C., Cassol, H., Messias, C., Basso, L., Soler,
L., Almeida, C., Domingues, L., Denning, S., Miller, J., Gloor,
M., Correia, C., and Tejada, G.: Amazon carbon emissions dou-
ble mainly by dismantled in law enforcement, Research Square
[preprint], https://doi.org/10.21203/RS.3.RS-2023624/V1, 2022.

Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Jus-
tice, C. O.: The Collection 6 MODIS burned area mapping
algorithm and product, Remote Sens. Environ., 217, 72–85,
https://doi.org/10.1016/j.rse.2018.08.005, 2018.

Gloor, E., Wilson, C., Chipperfield, M. P., Chevallier, F., Buer-
mann, W., Boesch, H., Parker, R., Somkuti, P., Gatti, L. V., Cor-
reia, C., Domingues, L. G., Peters, W., Miller, J., Deeter, M.
N., and Sullivan, M. J. P.: Tropical land carbon cycle responses
to 2015/16 El Niño as recorded by atmospheric greenhouse gas
and remote sensing data, Philos. T. Roy. Soc. B, 373, 20170302,
https://doi.org/10.1098/RSTB.2017.0302, 2018.

Gloor, M., Brienen, R. J. W., Galbraith, D., Feldpausch, T. R.,
Schöngart, J., Guyot, J. L., Espinoza, J. C., Lloyd, J., and
Phillips, O. L.: Intensification of the Amazon hydrological cycle
over the last two decades, Geophys. Res. Lett., 40, 1729–1733,
https://doi.org/10.1002/GRL.50377, 2013.

Haghtalab, N., Moore, N., Heerspink, B. P., and Hynd-
man, D. W.: Evaluating spatial patterns in precipitation
trends across the Amazon basin driven by land cover and
global scale forcings, Theor. Appl. Climatol., 140, 411–427,
https://doi.org/10.1007/s00704-019-03085-3, 2020.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova,
S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J.,
Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice,
C. O., and Townshend, J. R. G.: High-Resolution Global Maps
of 21st-Century Forest Cover Change, Science, 342, 850–853,
https://doi.org/10.1126/science.1244693, 2013.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-

N.: ERA5 monthly averaged data on single levels from 1940 to
present, Copernicus Climate Change Service (C3S) Climate Data
Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7,
2023.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-
Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R.
J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N.,
Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P.,
O’Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthro-
pogenic emissions of reactive gases and aerosols from the Com-
munity Emissions Data System (CEDS), Geosci. Model Dev., 11,
369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeck-
man, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E. N.,
Fauset, S., Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J.
P., Sunderland, T. C. H., Taedoumg, H., Thomas, S. C., White, L.
J. T., Abernethy, K. A., Adu-Bredu, S., Amani, C. A., Baker, T.
R., Banin, L. F., Baya, F., Begne, S. K., Bennett, A. C., Benedet,
F., Bitariho, R., Bocko, Y. E., Boeckx, P., Boundja, P., Brienen,
R. J. W., Brncic, T., Chezeaux, E., Chuyong, G. B., Clark, C.
J., Collins, M., Comiskey, J. A., Coomes, D. A., Dargie, G. C.,
de Haulleville, T., Kamdem, M. N. D., Doucet, J.-L., Esquivel-
Muelbert, A., Feldpausch, T. R., Fofanah, A., Foli, E. G., Gilpin,
M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., Hall, J. S.,
Hamilton, A. C., Harris, D. J., Hart, T. B., Hockemba, M. B.
N., Hladik, A., Ifo, S. A., Jeffery, K. J., Jucker, T., Yakusu, E.
K., Kearsley, E., Kenfack, D., Koch, A., Leal, M. E., Levesley,
A., Lindsell, J. A., Lisingo, J., Lopez-Gonzalez, G., Lovett, J.
C., Makana, J.-R., Malhi, Y., Marshall, A. R., Martin, J., Mar-
tin, E. H., Mbayu, F. M., Medjibe, V. P., Mihindou, V., Mitchard,
E. T. A., Moore, S., Munishi, P. K. T., Bengone, N. N., Ojo, L.,
Ondo, F. E., Peh, K. S.-H., Pickavance, G. C., Poulsen, A. D.,
Poulsen, J. R., Qie, L., Reitsma, J., Rovero, F., Swaine, M. D.,
Talbot, J., Taplin, J., Taylor, D. M., Thomas, D. W., Toirambe,
B., Mukendi, J. T., Tuagben, D., Umunay, P. M., van der Heijden,
G. M. F., Verbeeck, H., Vleminckx, J., Willcock, S., Wöll, H.,
Woods, J. T., and Zemagho, L.: Asynchronous carbon sink sat-
uration in African and Amazonian tropical forests, Nature, 579,
80–87, https://doi.org/10.1038/s41586-020-2035-0, 2020.

Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin,
D. T., Curtis, S., Joyce, R., McGavock, B., and
Susskind, J.: Global Precipitation at One-Degree Daily
Resolution from Multisatellite Observations, J. Hy-
drometeorol., 2, 36–50, https://doi.org/10.1175/1525-
7541(2001)002<0036:GPAODD>2.0.CO;2, 2001.

Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E.,
Wolfe, R. E., Saleous, N., Roy, D. P., and Morisette, J. T.: An
overview of MODIS Land data processing and product status,
Remote Sens. Environ., 83, 3–15, https://doi.org/10.1016/S0034-
4257(02)00084-6, 2002.

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova,
N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G.,
Suttie, M., and van der Werf, G. R.: Biomass burning emis-
sions estimated with a global fire assimilation system based
on observed fire radiative power, Biogeosciences, 9, 527–554,
https://doi.org/10.5194/bg-9-527-2012, 2012.

Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N.
G., Doelling, D. R., Huang, X., Smith, W. L., Su, W., and
Ham, S.-H.: Surface Irradiances of Edition 4.0 Clouds and

Atmos. Chem. Phys., 23, 9685–9723, 2023 https://doi.org/10.5194/acp-23-9685-2023

https://doi.org/10.55161/VNBV7494
https://doi.org/10.21203/RS.3.RS-2023624/V1
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.1098/RSTB.2017.0302
https://doi.org/10.1002/GRL.50377
https://doi.org/10.1007/s00704-019-03085-3
https://doi.org/10.1126/science.1244693
https://doi.org/10.1002/qj.3803
https://doi.org/10.24381/cds.f17050d7
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.1038/s41586-020-2035-0
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1016/S0034-4257(02)00084-6
https://doi.org/10.1016/S0034-4257(02)00084-6
https://doi.org/10.5194/bg-9-527-2012


L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source 9721

the Earth’s Radiant Energy System (CERES) Energy Balanced
and Filled (EBAF) Data Product, J. Climate, 31, 4501–4527,
https://doi.org/10.1175/JCLI-D-17-0523.1, 2018.

Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the his-
tory of anthropogenic CO2 concentrations in the ocean, Nature,
462, 346–349, https://doi.org/10.1038/nature08526, 2009.

Koren, G., van Schaik, E., Araújo, A. C., Boersma, K. F., Gärt-
ner, A., Killaars, L., Kooreman, M. L., Kruijt, B., van der
Laan-Luijkx, I. T., von Randow, C., Smith, N. E., and Peters,
W.: Widespread reduction in sun-induced fluorescence from the
Amazon during the 2015/2016 El Niño, Philos. T. Roy. Soc. B,
373, 20170408, https://doi.org/10.1098/rstb.2017.0408, 2018.

Kruid, S., Macedo, M. N., Gorelik, S. R., Walker, W., Moutinho,
P., Brando, P. M., Castanho, A., Alencar, A., Baccini,
A., and Coe, M. T.: Beyond Deforestation: Carbon Emis-
sions From Land Grabbing and Forest Degradation in the
Brazilian Amazon, Front. For. Glob. Change, 4, 645282,
https://doi.org/10.3389/ffgc.2021.645282, 2021.

Lan, X., Dlugokencky, E. J., Mund, J. W., Crotwell, A. M.,
Crotwell, M. J., Moglia, E., Madronich, M., Neff, D., and Thon-
ing, K. W.: Atmospheric Carbon Dioxide Dry Air Mole Fractions
from the NOAA GML Carbon Cycle Cooperative Global Air
Sampling Network, 1968–2021, Version: 2022-11-21, Global
Monitoring Laboratory [data set], https://doi.org/10.15138/wkgj-
f215, 2022.

Lan, X., Tans, P., and Thoning, K. W.: Trends in globally-averaged
CO2 determined from NOAA Global Monitoring Laboratory
measurements, Version 2023-04, Global Monitoring Laboratory
[data set], https://doi.org/10.15138/9N0H-ZH07, 2023.

Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E. O. C., Berenguer,
E., Carmenta, R., Liddy, H. M., Seixas, H., Silva, C. V. J., Silva-
Junior, C. H. L., Alencar, A. A. C., Anderson, L. O., Armenteras,
D., Brovkin, V., Calders, K., Chambers, J., Chini, L., Costa, M.
H., Faria, B. L., Fearnside, P. M., Ferreira, J., Gatti, L., Gutierrez-
Velez, V. H., Han, Z., Hibbard, K., Koven, C., Lawrence, P., Pon-
gratz, J., Portela, B. T. T., Rounsevell, M., Ruane, A. C., Schal-
dach, R., da Silva, S. S., von Randow, C., and Walker, W. S.: The
drivers and impacts of Amazon forest degradation, Science, 379,
eabp8622, https://doi.org/10.1126/science.abp8622, 2023.

Lavric, J. and Walter, D.: Mole fractions of CO, CO2, CH4 (ver-
sion 39.21.1178), Max Planck Institute for Biogeochemistry
[data set], https://www.attodata.org/ddm/data/Showdata/39 (last
access: 20 April 2023), 2022a.

Lavric, J. and Walter, D.: Mole fractions of CO, CO2, CH4
(version 64.9.1179), Max Planck Institute for Biogeochemistry
[data set], https://www.attodata.org/ddm/data/Showdata/64 (last
access: 20 April 2023), 2022b.

Lavric, J. and Walter, D.: Mole fractions of CO, CO2, CH4
(version 65.7.1180), Max Planck Institute for Biogeochemistry
[data set], https://www.attodata.org/ddm/data/Showdata/65 (last
access: 20 April 2023), 2022c.

Lavric, J. and Walter, D.: Mole fractions of CO, CO2, CH4
(version 66.7.1181), Max Planck Institute for Biogeochemistry
[data set], https://www.attodata.org/ddm/data/Showdata/66 (last
access: 20 April 2023), 2022d.

Lavric, J. and Walter, D.: Mole fractions of CO, CO2, CH4 (ver-
sion 67.15.1182), Max Planck Institute for Biogeochemistry
[data set], https://www.attodata.org/ddm/data/Showdata/67 (last
access: 20 April 2023), 2022e.

Lavric, J. and Walter, D.: Mole fractions of CO, CO2, CH4
(version 68.7.1183), Max Planck Institute for Biogeochemistry
[data set], https://www.attodata.org/ddm/data/Showdata/68 (last
access: 20 April 2023), 2022f.

Lavric, J. and Walter, D.: Mole fractions of CO, CO2, CH4
(version 69.8.1184), Max Planck Institute for Biogeochemistry
[data set], https://www.attodata.org/ddm/data/Showdata/69 (last
access: 20 April 2023), 2022g.

Le Dimet, F.-X. and Talagrand, O.: Variational algorithms for anal-
ysis and assimilation of meteorological observations: theoretical
aspects, Tellus A, 38A, 97–110, https://doi.org/10.1111/j.1600-
0870.1986.tb00459.x, 1986.

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen,
C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F. G.,
and Kato, S.: Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) Energy Balanced and Filled (EBAF) Top-of-
Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31,
895–918, https://doi.org/10.1175/JCLI-D-17-0208.1, 2018.

MapBiomas: Proyecto MapBiomas Amazonía – Colección [2.0] de
los mapas anuales de cobertura y uso del suelo, MapBiomas,
http://amazonia.mapbiomas.org/mapas-de-la-coleccion, last ac-
cess: 8 July 2022.

Marengo, J. A., Espinoza, J.-C., Fu, R., Jimenez Muñoz, J. C., Mu-
niz Alves, L., Ribeiro da Rocha, H., and Schongart, J.: Chapter
22: Long-term variability, extremes, and changes in temperature
and hydro meteorology, in: Amazon Assessment Report 2021,
edited by: Nobre, C., Encalada, A., Anderson, E., Roca Alcazar,
F. H., Bustamante, M., Mena, C., Peña-Claros, M., Poveda, G.,
Rodriguez, J. P., Saleska, S., Trumbore, S., Val, A. L., Villa
Nova, L., Abramovay, R., Alencar, A., Rodríguez Alzza, C.,
Armenteras, D., Artaxo, P., Athayde, S., Barretto Filho, H. T.,
Barlow, J., Berenguer, E., Bortolotto, F., Costa, F. A., Costa,
M. H., Cuvi, N., Fearnside, P. M., Ferreira, J., Flores, B. M.,
Frieri, S., Gatti, L. V., Guayasamin, J. M., Hecht, S., Hirota, M.,
Hoorn, C., Josse, C., Lapola, D. M., Larrea, C., Larrea-Alcazar,
D. M., Lehm Ardaya, Z., Malhi, Y., Marengo, J. A., Melack,
J., Moraes, R. M., Moutinho, P., Murmis, M. R., Neves, E. G.,
Paez, B., Painter, L., Ramos, A., Rosero-Peña, M. C., Schmink,
M., Sist, P., ter Steege, H., Val, P., van der Voort, H., Varese,
M., and Zapata-Ríos, G., UN Sustainable Development Solutions
Network, New York, USA, https://doi.org/10.55161/ZGJG8060,
2021.

Miller, J. B., Gatti, L. V., D’Amelio, M. T. S. S., Crotwell, A. M.,
Dlugokencky, E. J., Bakwin, P., Artaxo, P., and Tans, P. P. P.:
Airborne measurements indicate large methane emissions from
the eastern Amazon basin, Geophys. Res. Lett., 34, L10809,
https://doi.org/10.1029/2006GL029213, 2007.

Miller, J. B., Martins, G. A., de Souza, R. A. F., and
Schuldt, K. N.: Manaus aircraft profile data for the pe-
riod 2017–2020; obspack_multi-species_1_manaus_profiles_v1.
0_2021-05-20, NOAA Global Monitoring Laboratory [data set],
https://doi.org/10.25925/20210519, 2021.

Morgenstern, O., Hegglin, M. I., Rozanov, E., O’Connor, F. M.,
Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S.,
Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S.,
Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P.,
Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E.,
Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari,
G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield,

https://doi.org/10.5194/acp-23-9685-2023 Atmos. Chem. Phys., 23, 9685–9723, 2023

https://doi.org/10.1175/JCLI-D-17-0523.1
https://doi.org/10.1038/nature08526
https://doi.org/10.1098/rstb.2017.0408
https://doi.org/10.3389/ffgc.2021.645282
https://doi.org/10.15138/wkgj-f215
https://doi.org/10.15138/wkgj-f215
https://doi.org/10.15138/9N0H-ZH07
https://doi.org/10.1126/science.abp8622
https://www.attodata.org/ddm/data/Showdata/39
https://www.attodata.org/ddm/data/Showdata/64
https://www.attodata.org/ddm/data/Showdata/65
https://www.attodata.org/ddm/data/Showdata/66
https://www.attodata.org/ddm/data/Showdata/67
https://www.attodata.org/ddm/data/Showdata/68
https://www.attodata.org/ddm/data/Showdata/69
https://doi.org/10.1111/j.1600-0870.1986.tb00459.x
https://doi.org/10.1111/j.1600-0870.1986.tb00459.x
https://doi.org/10.1175/JCLI-D-17-0208.1
http://amazonia.mapbiomas.org/mapas-de-la-coleccion
https://doi.org/10.55161/ZGJG8060
https://doi.org/10.1029/2006GL029213
https://doi.org/10.25925/20210519


9722 L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source

R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes,
S., Yamashita, Y., Yoshida, K., and Zeng, G.: Review of the
global models used within phase 1 of the Chemistry–Climate
Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671,
https://doi.org/10.5194/gmd-10-639-2017, 2017.

Naus, S., Domingues, L. G., Krol, M., Luijkx, I. T., Gatti, L.
V., Miller, J. B., Gloor, E., Basu, S., Correia, C., Koren, G.,
Worden, H. M., Flemming, J., Pétron, G., and Peters, W.: Six-
teen years of MOPITT satellite data strongly constrain Ama-
zon CO fire emissions, Atmos. Chem. Phys., 22, 14735–14750,
https://doi.org/10.5194/acp-22-14735-2022, 2022.

Nocedal, J.: Updating quasi-Newton matrices with limited storage,
Math. Comput., 35, 773–782, https://doi.org/10.1090/S0025-
5718-1980-0572855-7, 1980.

Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D.,
Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P.,
Corbin, K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P.,
Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S., Meng,
L., Palmer, P. I., Prinn, R. G., Rigby, M., Saito, R., and Wilson,
C.: TransCom model simulations of CH4 and related species:
linking transport, surface flux and chemical loss with CH4 vari-
ability in the troposphere and lower stratosphere, Atmos. Chem.
Phys., 11, 12813–12837, https://doi.org/10.5194/acp-11-12813-
2011, 2011.

Phillips, O. L. and Brienen, R. J. W.: Carbon uptake by mature Ama-
zon forests has mitigated Amazon nations’ carbon emissions,
Carbon Balance Manag., 12, 1, https://doi.org/10.1186/s13021-
016-0069-2, 2017.

Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B.,
Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Pea-
cock, J., Quesada, C. A., Van Der Heijden, G., Almeida, S.,
Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O.,
Blanc, L., Bonal, D., Brando, P., Chave, J., De Oliveira, Á. C.
A., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas,
M. A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P.,
Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S.,
Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz, M., Silva, J.,
Silveira, M., Thomas, A. S., Steege, H. Ter, Stropp, J., Vásquez,
R., Zelazowski, P., Dávila, E. A., Andelman, S., Andrade, A.,
Chao, K. J., Erwin, T., Di Fiore, A., Honorio, E. C., Keeling,
H., Killeen, T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C.
A., Vargas, P. N., Ramírez-Angulo, H., Rudas, A., Salamão,
R., Silva, N., Terborgh, J., and Torres-Lezama, A.: Drought
sensitivity of the Amazon rainforest, Science, 323, 1344–1347,
https://doi.org/10.1126/SCIENCE.1164033, 2009.

Potter, C. S.: Terrestrial Biomass and the Effects of Deforestation
on the Global Carbon Cycle Results from a model of primary
production using satellite observations, Bioscience, 49, 769–778,
https://doi.org/10.2307/1313568, 1999.

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vi-
tousek, P. M., Mooney, H. A., and Klooster, S. A.: Terrestrial
ecosystem production: A process model based on global satel-
lite and surface data, Global Biogeochem. Cy., 7, 811–841,
https://doi.org/10.1029/93GB02725, 1993.

Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J.,
and Kasibhatla, P. S.: Global Fire Emissions Database, Version
4.1 (GFEDv4), ORNL DAAC, Oak Ridge, Tennessee, USA [data
set], https://doi.org/10.3334/ORNLDAAC/1293, 2017.

Ray, D., Nepstad, D., and Moutinho, P.: Micrometeorological and
canopy controls of fire susceptibility in a forested Amazon land-
scape, Ecol. Appl., 15, 1664–1678, https://doi.org/10.1890/05-
0404, 2005.

Silva, C. V., Aragao, L. E., Young, P. J., Espirito-Santo, F.,
Berenguer, E., Anderson, L. O., Brasil, I., Pontes-Lopes, A., Jer-
reira, J., Withey, K., França F., Graça, P. M. L. A, Kirsten, L.,
Xaud, H., Salimon, C., Scaranello, M. A., Castro, B., Seixas,
M., Farias, R., and Barlow, J.: Estimating the multi-decadal car-
bon deficit of burned Amazonian forests, Environ. Res. Lett., 15,
114023, https://doi.org/10.1088/1748-9326/abb62c, 2020.

Silva Junior, C. H. L., Anderson, L. O., Silva, A. L., Almeida, C.
T., Dalagnol, R., Pletsch, M. A. J. S., Penha, T. V., Paloschi,
R. A., and Aragão, L. E. O. C.: Fire responses to the 2010
and 2015/2016 Amazonian droughts, Front. Earth Sci., 7, 97,
https://doi.org/10.3389/feart.2019.00097, 2019.

Smallman, T. L., Milodowski, D. T., Neto, E. S., Koren, G., Ometto,
J., and Williams, M.: Parameter uncertainty dominates C-cycle
forecast errors over most of Brazil for the 21st century, Earth
Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-
1191-2021, 2021.

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Pe-
ters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P.,
Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko,
N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Lan-
genfelds, R. L., Steele, L. P., Francey, R. J., and Denning, A.
S.: Weak northern and strong tropical land carbon uptake from
vertical profiles of atmospheric CO2, Science, 316, 1732–1735,
https://doi.org/10.1126/science.1137004, 2007.

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C.,
Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez,
F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl,
N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnar-
son, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R.,
Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Cli-
matological mean and decadal change in surface ocean pCO2,
and net sea–air CO2 flux over the global oceans, Deep-Sea Res.
Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009,
2009.

University of East Anglia Climatic Research Unit and Harris, I.
C.: CRU JRA v1.1: A forcings dataset of gridded land surface
blend of Climatic Research Unit (CRU) and Japanese reanal-
ysis (JRA) data, January 1901–December 2017, 25 February
2019, Centre for Environmental Data Analysis [data set],
https://doi.org/10.5285/13f3635174794bb98cf8ac4b0ee8f4ed,
2019.

van der Laan-Luijkx, I. T., van der Velde, I. R., Krol, M. C.,
Gatti, L. V., Domingues, L. G., Correia, C. S. C., Miller, J. B.,
Gloor, M., van Leeuwen, T. T., Kaiser, J. W., Wiedinmyer, C.,
Basu, S., Clerbaux, C., and Peters, W.: Response of the Ama-
zon carbon balance to the 2010 drought derived with Carbon
Tracker South America, Global Biogeochem. Cy., 29, 1092–
1108, https://doi.org/10.1002/2014GB005082, 2015.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G.
J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S.,
Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the
contribution of deforestation, savanna, forest, agricultural, and

Atmos. Chem. Phys., 23, 9685–9723, 2023 https://doi.org/10.5194/acp-23-9685-2023

https://doi.org/10.5194/gmd-10-639-2017
https://doi.org/10.5194/acp-22-14735-2022
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.5194/acp-11-12813-2011
https://doi.org/10.5194/acp-11-12813-2011
https://doi.org/10.1186/s13021-016-0069-2
https://doi.org/10.1186/s13021-016-0069-2
https://doi.org/10.1126/SCIENCE.1164033
https://doi.org/10.2307/1313568
https://doi.org/10.1029/93GB02725
https://doi.org/10.3334/ORNLDAAC/1293
https://doi.org/10.1890/05-0404
https://doi.org/10.1890/05-0404
https://doi.org/10.1088/1748-9326/abb62c
https://doi.org/10.3389/feart.2019.00097
https://doi.org/10.5194/esd-12-1191-2021
https://doi.org/10.5194/esd-12-1191-2021
https://doi.org/10.1126/science.1137004
https://doi.org/10.1016/j.dsr2.2008.12.009
https://doi.org/10.5285/13f3635174794bb98cf8ac4b0ee8f4ed
https://doi.org/10.1002/2014GB005082


L. S. Basso et al.: Atmospheric CO2 inversion reveals that Amazonia is now a minor carbon source 9723

peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735,
https://doi.org/10.5194/acp-10-11707-2010, 2010.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.
T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,
D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global
fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,
9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

van Schaik, E., Killaars, L., Smith, N. E., Koren, G., van Beek, L.
P. H., Peters, W., and van der Laan-Luijkx, I. T.: Changes in sur-
face hydrology, soil moisture and gross primary production in the
Amazon during the 2015/2016 El Niño, Philos. T. Roy. Soc. B,
373, 20180084, https://doi.org/10.1098/rstb.2018.0084, 2018.

Vermote, E. F., El Saleous, N. Z., and Justice, C. O.: Atmo-
spheric correction of MODIS data in the visible to mid-
dle infrared: first results, Remote Sens. Environ., 83, 97–111,
https://doi.org/10.1016/S0034-4257(02)00089-5, 2002.

Wilson, C., Chipperfield, M. P., Gloor, M., and Chevallier, F.: De-
velopment of a variational flux inversion system (INVICAT v1.0)
using the TOMCAT chemical transport model, Geosci. Model
Dev., 7, 2485–2500, https://doi.org/10.5194/gmd-7-2485-2014,
2014.

Wilson, C., Gloor, M., Gatti, L. V., Miller, J. B., Monks, S. A., Mc-
Norton, J., Bloom, A. A., Basso, L. S., and Chipperfield, M. P.:
Contribution of regional sources to atmospheric methane over the
Amazon Basin in 2010 and 2011, Global Biogeochem. Cy., 30,
400–420, https://doi.org/10.1002/2015GB005300, 2016.

Wilson, C., Chipperfield, M. P., Gloor, M., Parker, R. J., Boesch, H.,
McNorton, J., Gatti, L. V., Miller, J. B., Basso, L. S., and Monks,
S. A.: Large and increasing methane emissions from eastern
Amazonia derived from satellite data, 2010–2018, Atmos. Chem.
Phys., 21, 10643–10669, https://doi.org/10.5194/acp-21-10643-
2021, 2021.

Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems-Cheiney, A.,
Deeter, M. N., Parker, R. J., Wang, Y., Worden, H. M., and
Zhao, Y.: Global atmospheric carbon monoxide budget 2000–
2017 inferred from multi-species atmospheric inversions, Earth
Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-
1411-2019, 2019.

https://doi.org/10.5194/acp-23-9685-2023 Atmos. Chem. Phys., 23, 9685–9723, 2023

https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.1098/rstb.2018.0084
https://doi.org/10.1016/S0034-4257(02)00089-5
https://doi.org/10.5194/gmd-7-2485-2014
https://doi.org/10.1002/2015GB005300
https://doi.org/10.5194/acp-21-10643-2021
https://doi.org/10.5194/acp-21-10643-2021
https://doi.org/10.5194/essd-11-1411-2019
https://doi.org/10.5194/essd-11-1411-2019

	Abstract
	Introduction
	Methods
	Observations
	Amazonian aircraft profiles
	Surface flask observations

	Model setup
	Inverse model setup
	Prior flux estimates
	Estimation of carbon emissions from fires
	Cumulative water deficit (CWD)
	Temperature
	Solar radiation
	Burned area


	Results
	Spatial distribution and seasonal pattern of Amazon carbon fluxes
	Amazon carbon balance and its inter-annual variability
	Sensitive tests
	Comparison to independent observations

	Discussion
	Conclusions
	Appendix A
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

