Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9071-2023
https://doi.org/10.5194/acp-23-9071-2023
Research article
 | 
19 Sep 2023
Research article |  | 19 Sep 2023

Automated detection and monitoring of methane super-emitters using satellite data

Berend J. Schuit, Joannes D. Maasakkers, Pieter Bijl, Gourav Mahapatra, Anne-Wil van den Berg, Sudhanshu Pandey, Alba Lorente, Tobias Borsdorff, Sander Houweling, Daniel J. Varon, Jason McKeever, Dylan Jervis, Marianne Girard, Itziar Irakulis-Loitxate, Javier Gorroño, Luis Guanter, Daniel H. Cusworth, and Ilse Aben

Related authors

Automatic Methane Plume Masking Based on Wavelet Transform Image Processing: Application to MethaneAIR and MethaneSAT data
Zhan Zhang, Maryann Sargent, Jack D. Warren, Apisada Chulakadabba, Marcus Russi, Sasha Ayvazov, Joshua Benmergui, Marvin Knapp, Ethan Kyzivat, Christopher C. Miller, Sébastien Roche, Bingkun Luo, David J. Miller, Maya Nasr, Kang Sun, James P. Williams, Katlyn MacKay, Mark Omara, Luis Guanter, Ritesh Gautam, Jonathan Franklin, Xiong Liu, and Steven C. Wofsy
EGUsphere, https://doi.org/10.5194/egusphere-2026-141,https://doi.org/10.5194/egusphere-2026-141, 2026
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Assessment of methane emissions from US onshore oil and gas production using MethaneAIR measurements
Katlyn MacKay, Joshua Benmergui, James P. Williams, Mark Omara, Anthony Himmelberger, Maryann Sargent, Jack D. Warren, Christopher C. Miller, Sébastien Roche, Zhan Zhang, Jonathan Franklin, Luis Guanter, Steven Wofsy, and Ritesh Gautam
Atmos. Chem. Phys., 26, 1179–1192, https://doi.org/10.5194/acp-26-1179-2026,https://doi.org/10.5194/acp-26-1179-2026, 2026
Short summary
HyperGas 1.0: A Python package for analyzing hyperspectral data for greenhouse gases from retrieval to emission rate quantification
Xin Zhang, Joannes D. Maasakkers, Tobias A. de Jong, Paul Tol, Frances Reuland, Adam R. Brandt, Eric A. Kort, Taylor J. Adams, and Ilse Aben
EGUsphere, https://doi.org/10.5194/egusphere-2025-6127,https://doi.org/10.5194/egusphere-2025-6127, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
An inter-comparison of inverse models for estimating European CH4 emissions
Eleftherios Ioannidis, Antoon Meesters, Michael Steiner, Dominik Brunner, Friedemann Reum, Isabelle Pison, Antoine Berchet, Rona Thompson, Espen Sollum, Frank-Thomas Koch, Christoph Gerbig, Fenjuan Wang, Shamil Maksyutov, Aki Tsuruta, Maria Tenkanen, Tuula Aalto, Guillaume Monteil, Hong Lin, Ge Ren, Marko Scholze, and Sander Houweling
Earth Syst. Sci. Data, 18, 167–198, https://doi.org/10.5194/essd-18-167-2026,https://doi.org/10.5194/essd-18-167-2026, 2026
Short summary
Impact of Sentinel-5 SWIR Detector Persistence on Trace Gas Retrievals
Mari C. Martinez-Velarte, Jochen Landgraf, Ben Veihelmann, Bernd Sierk, and Tobias Borsdorff
EGUsphere, https://doi.org/10.5194/egusphere-2025-6328,https://doi.org/10.5194/egusphere-2025-6328, 2026
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary

Cited articles

ASI – Agenzia Spaziale Italiana (Italian Space Agency): The PRISMA data portal, https://prismauserregistration.asi.it (last access: 20 April, 2023), 2023. a
Bloom, A., Bowman, K., Lee, M., Turner, A., Schroeder, R., Worden, J., Weidner, R., McDonald, K., and Jacob, D.: CMS: Global 0.5-deg Wetland Methane Emissions and Uncertainty (WetCHARTs v1.3.1), ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/1915, 2021. a, b
Borsdorff, T., Aan De Brugh, J., Hu, H., Hasekamp, O., Sussmann, R., Rettinger, M., Hase, F., Gross, J., Schneider, M., Garcia, O., Stremme, W., Grutter, M., Feist, D. G., Arnold, S. G., De Mazière, M., Kumar Sha, M., Pollard, D. F., Kiel, M., Roehl, C., Wennberg, P. O., Toon, G. C., and Landgraf, J.: Mapping carbon monoxide pollution from space down to city scales with daily global coverage, Atmos. Meas. Tech., 11, 5507–5518, https://doi.org/10.5194/amt-11-5507-2018, 2018. a
Breiman, L.: Random Forests, Mach. Learn. 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
CCAC: The Global Methane Pledge: Fast action on methane to keep a 1.5 C future within reach, https://www.globalmethanepledge.org/#about (last access: 20 April 2023), 2022. a, b
Download
Short summary
Using two machine learning models, which were trained on TROPOMI methane satellite data, we detect 2974 methane plumes, so-called super-emitters, in 2021. We detect methane emissions globally related to urban areas or landfills, coal mining, and oil and gas production. Using our monitoring system, we identify 94 regions with frequent emissions. For 12 locations, we target high-resolution satellite instruments to enlarge and identify the exact infrastructure responsible for the emissions.
Share
Altmetrics
Final-revised paper
Preprint