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Abstract. A reduction in anthropogenic methane emissions is vital to limit near-term global warming. A small
number of so-called super-emitters is responsible for a disproportionally large fraction of total methane emis-
sions. Since late 2017, the TROPOspheric Monitoring Instrument (TROPOMI) has been in orbit, providing
daily global coverage of methane mixing ratios at a resolution of up to 7× 5.5 km2, enabling the detection of
these super-emitters. However, TROPOMI produces millions of observations each day, which together with the
complexity of the methane data, makes manual inspection infeasible. We have therefore designed a two-step
machine learning approach using a convolutional neural network to detect plume-like structures in the methane
data and subsequently apply a support vector classifier to distinguish the emission plumes from retrieval arti-
facts. The models are trained on pre-2021 data and subsequently applied to all 2021 observations. We detect
2974 plumes in 2021, with a mean estimated source rate of 44 t h−1 and 5–95th percentile range of 8–122 t h−1.
These emissions originate from 94 persistent emission clusters and hundreds of transient sources. Based on
bottom-up emission inventories, we find that most detected plumes are related to urban areas and/or landfills
(35 %), followed by plumes from gas infrastructure (24 %), oil infrastructure (21 %), and coal mines (20 %). For
12 (clusters of) TROPOMI detections, we tip and cue the targeted observations and analysis of high-resolution
satellite instruments to identify the exact sources responsible for these plumes. Using high-resolution observa-
tions from GHGSat, PRISMA, and Sentinel-2, we detect and analyze both persistent and transient facility-level
emissions underlying the TROPOMI detections. We find emissions from landfills and fossil fuel exploitation
facilities, and for the latter, we find up to 10 facilities contributing to one TROPOMI detection. Our automated
TROPOMI-based monitoring system in combination with high-resolution satellite data allows for the detection,
precise identification, and monitoring of these methane super-emitters, which is essential for mitigating their
emissions.
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1 Introduction

Anthropogenic methane emissions have caused at least 25 %
of human-induced global warming (Ocko et al., 2018; IPCC,
2021). Methane’s atmospheric concentration has increased
by a factor of 2.5 since the pre-industrialized era (Szopa
et al., 2021), and the rate of increase has accelerated in recent
years (NOAA, 2022). Due to its relatively short atmospheric
lifetime and large global warming potential (81 times that of
CO2 over a time span of 20 years (IPCC, 2021)), methane
has an important role in the rate of climate warming (Nisbet
et al., 2020; Ocko et al., 2021; Szopa et al., 2021). Reduc-
ing global methane emissions is therefore vital to achieve
the goals set out in the 2015 Paris Climate Accords (Nis-
bet et al., 2020). Since November 2021, over 125 countries
have signed the Global Methane Pledge (European Commis-
sion, 2021; CCAC, 2022) and committed to reducing their
methane emissions by 30 % in 2030 compared to 2020 lev-
els. This could help avoid 0.2 ◦C of global mean warming by
2050 (CCAC, 2022; UNEP and CCAC, 2021). In order to
reduce global methane emissions fast and effectively during
this decade, it is paramount to identify the largest anthro-
pogenic sources of methane and mitigate those. We therefore
propose an automated detection and monitoring system using
satellite data with machine learning models to detect methane
super-emitters.

The dominant anthropogenic methane emission sources
are agriculture (livestock and rice cultivation), oil and gas
exploitation, waste management, and coal mining; the ex-
act locations and magnitudes of emissions are still uncertain
(Saunois et al., 2020). Large fractions of methane emissions
in various sectors could be mitigated using existing tech-
nology, with about a quarter of those at no net cost (Nis-
bet et al., 2020; Ocko et al., 2021; Lauvaux et al., 2022).
Moreover, a small number of emitters is responsible for a
disproportionally large fraction of total anthropogenic emis-
sions (Zavala-Araiza et al., 2015; Jacob et al., 2016). These
concentrated point sources are often referred to as “super-
emitters” and are difficult to account for in global bottom-
up inventories (Zavala-Araiza et al., 2015), as they are of-
ten caused by severe malfunctioning or abnormal operat-
ing conditions, e.g., dysfunctional natural gas flaring systems
(Irakulis-Loitxate et al., 2022a, b; Plant et al., 2022). Super-
emitters are not limited to oil and gas production and also
occur in the coal mining and waste sectors (Cusworth et al.,
2020; Sadavarte et al., 2021; Maasakkers et al., 2022b). De-
tection, localization, and global monitoring of these methane
super-emitters provides a large opportunity to reduce emis-
sions (UNEP and CCAC, 2021; Parry et al., 2022).

One way to obtain more insight with respect to where
super-emitters occur is to perform measurements on the
ground, with drones, or with aircraft campaigns. Several re-
gions with known frequent and large methane emissions have

been mapped in detail with aircraft campaigns (e.g., Franken-
berg et al., 2016; Duren et al., 2019; Yu et al., 2022; Plant
et al., 2022). While ground-based or airborne measurements
are limited in spatial and temporal coverage, satellite obser-
vations have the potential for global monitoring of methane
point sources with frequent revisits (Jacob et al., 2016; Cus-
worth et al., 2019; Jacob et al., 2022). The TROPOspheric
Monitoring Instrument (TROPOMI) (Veefkind et al., 2012)
was launched in 2017 and observes atmospheric dry-air
methane column mixing ratios XCH4 with a pixel size down
to 7 km× 5.5 km and daily global coverage (Hu et al., 2018;
Lorente et al., 2021), resulting in a point source detection
limit down to ∼ 5 t h−1 under favorable conditions (Jacob
et al., 2016). TROPOMI data have been used to quantify
global- (Qu et al., 2021) and country-level (Chen et al.,
2022) distributions of methane emissions and large area
sources, such as oil and gas basins like the Permian Basin
(Zhang et al., 2020; de Gouw et al., 2020; Schneising et al.,
2020; Shen et al., 2022). Lauvaux et al. (2022) performed
a study into oil- and gas-related methane super-emitters us-
ing TROPOMI data. Several individual super-emitters have
been studied in detail using TROPOMI XCH4 data, includ-
ing natural gas well blowouts (Pandey et al., 2019; Cusworth
et al., 2021; Maasakkers et al., 2022a) and various persistent
sources (Varon et al., 2019; Sadavarte et al., 2021; Tu et al.,
2022a, b).

Given the intermediate spatial resolution of TROPOMI,
it can only be used to pinpoint the sources of emissions
from the largest and most isolated point sources. For more
challenging sources, high-resolution instruments are more
suitable to detect and identify the exact location of super-
emitters. So far, the only in-orbit satellite instruments specif-
ically designed to do so are the GHGSat instruments that
have a spatial resolution of ∼ 25 m×∼ 25 m over targeted
∼ 15 km×∼ 10 km scenes (Varon et al., 2019; Jervis et al.,
2021; Ramier et al., 2020; MacLean et al., 2021). More
recently, it was shown that several Earth surface imagers
with spectral sensitivity in the short-wave infrared (SWIR),
although not designed for this purpose, can detect signals
from methane super-emitters under favorable conditions. As
such, the hyperspectral PRISMA instrument (Cogliati et al.,
2021) was used to retrieve atmospheric methane plumes re-
lated to fossil fuel exploitation, using targeted scenes of
30 km× 30 km at a spatial resolution of 30 m× 30 m (Guan-
ter et al., 2021; Cusworth et al., 2021). Varon et al. (2021)
demonstrated that the MultiSpectral Instrument (MSI), a
band-imaging instrument on board the Sentinel-2 satellite
(Drusch et al., 2012), is capable of retrieving large methane
plumes with a pixel resolution of 20 m× 20 m for continu-
ous, 290 km wide swaths over favorable terrain. TROPOMI’s
daily global coverage is particularly well suited to guide
observations of these high-resolution instruments that often
have limited viewing domains and to identify large sources of
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Figure 1. Flowchart showing the employed methodological framework. It consists of three phases, where each next phase uses the output (the
trained model) of the previous phase, as indicated with matching colors (orange and green). We use the TROPOMI XCH4 Level 2 scientific
data product version 18_17. Pre-processing is equivalent for each of the three phases and consists of filtering, destriping the XCH4 channel,
and splitting up the data into 32×32 scenes. The output of the pre-processing is a dataset of [N ,M , 32, 32], whereN is the number of scenes,
M is the number of channels (fields of data used later on; for example, the methane concentrations) and 32×32 gives the (pixel) dimensions
of the scene. The CNN exclusively uses the XCH4 channel, both during training and when the trained CNN is used for classification. In the
feature engineering step of the second and third phase, a feature vector of shape [1, 41] is computed, which corresponds to a single scene [1,
M , 32, 32]. The SVC exclusively uses the feature vectors, both during training and when the trained SVC is used for classification. Manual
verification steps are shown in purple. In the application phase, there is one manual step, which is the verification of the detected plumes to
make sure the output of the pipeline is correct.

methane at the facility level (Irakulis-Loitxate et al., 2022b;
Maasakkers et al., 2022b).

TROPOMI has collected over 5 years of methane data,
which include numerous methane emission plume signals
that cannot feasibly be identified manually. To monitor the
growing volume of data for super-emitters, an automated
approach is needed. The vast amount of data provides an
opportunity for machine learning techniques that require a
substantial amount of representative training data. Applica-
tions of machine learning in satellite remote sensing have
mostly focused on studying the Earth’s surface and also in-
clude monitoring anomalous atmospheric conditions to iden-
tify plume signatures in large datasets (Valade et al., 2019;
Finch et al., 2022). Detecting methane plumes in TROPOMI
data is particularly challenging because not every retrieved
methane enhancement is a genuine methane emission plume,
as retrieval artifacts and natural variability can seem like
methane plumes. We therefore use a two-step machine learn-
ing method to identify methane emission plumes. We first use
a convolutional neural network (CNN) to detect plume-like
structures in TROPOMI XCH4 data and then use a support
vector classifier (SVC) to evaluate these potential plumes us-
ing additional information to distinguish real plumes from
artifacts. We train the machine learning models on verified
TROPOMI methane plumes from 2018–2020 and then apply
the trained models to 2021 data. Based on the 2021 detec-

tions, we use observations of three high-resolution satellite
instruments (GHGSat-Cx, PRISMA, and Sentinel-2) to de-
termine the origin of the emissions down to the facility level.
The combination of the automated global monitoring based
on TROPOMI with the high resolution of the targeted in-
struments allows the detection and characterization of super-
emitters around the world.

2 Data and methods

We use two machine learning models in sequence to de-
tect plumes in the TROPOMI methane data. First, we ap-
ply a convolutional neural network (CNN) to detect plume-
like structures in the TROPOMI atmospheric dry-air methane
column mixing ratios XCH4 , and then we use additional at-
mospheric parameters and supporting data to further distin-
guish between genuine methane plumes and retrieval arti-
facts using a second machine learning model.

Figure 1 illustrates the full machine learning pipeline and
training process. Section 2.1 describes the pre-processing
step to generate scenes used by the CNN and the feature en-
gineering algorithms. Section 2.2 describes the training pro-
cess of the CNN (Fig. 1, CNN training). Section 2.3 describes
the feature engineering algorithms, which are used to gen-
erate feature vectors for each TROPOMI scene. The SVC
uses those feature vectors during its training process (Fig. 1,
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Figure 2. Atmospheric methane mixing ratios of a 32× 32 pixel scene containing a methane plume originating from a known persistent
source (indicated by the plus sign, +) as observed by TROPOMI on 5 December 2021 at 08:47 UTC (not included in the training data).
(a) Mercator projection of the scene over Esri World Imagery (Esri, Maxar, Earthstar Geographics, and the GIS User Community, 2022),
and arrows show the local GEOS FP 10 m wind field (Molod et al., 2012). (b) A 32× 32 pixel scene in the along-orbit versus across-orbit
direction indicating filtered pixels. (c) The same scene after pre-processing, as used by the CNN.

SVC training), covered in Sect. 2.4. Then, we apply the full,
trained, machine learning pipeline to 2021 TROPOMI ob-
servations that the models have not been trained on (Fig. 1,
CNN+SVC application). Based on the resulting TROPOMI
detections, we perform further analysis (Sect. 2.5) and use
(targeted) high-resolution methane observations (Sect. 2.6)
to pinpoint the responsible sources for 12 of those detections.

2.1 TROPOMI

We use data over land from the TROPOMI XCH4 Level 2
scientific data product version 18_17. This product ver-
sion is consistent with operational version 02.03.01 (Lorente
et al., 2021; Hasekamp et al., 2022) but re-processed
for the full time span of the mission resulting in a ho-
mogeneous data product (SRON CH4 L2 team, 2022).
We use albedo–bias-corrected data with a quality assur-
ance value (QA)≥0.4, methane precision< 10 ppb, SWIR
aerosol optical depth< 0.13, near-infrared (NIR) aerosol
optical depth< 0.30, SWIR surface albedo> 0.02, mixed
albedo (2.4 ·NIR surface albedo− 1.13 ·SWIR surface
albedo)< 0.95, and SWIR cloud fraction< 0.02. The loos-
ened filtering compared to the recommended QA= 1 filter
provides more coverage but also retains more biased re-
trievals, especially at the borders of clouds or along coasts.
The methane data are destriped, following the approach in-
troduced by Borsdorff et al. (2018).

To train a machine learning model to recognize methane
plumes in TROPOMI data, we created a dataset of scenes
consisting of 32× 32 pixels, both with and without methane
plumes. The 32× 32 pixels correspond roughly to an area
of ∼ 176× 232 km2 at nadir and up to ∼ 176× 448 km2 for
larger viewing angles. For scenes with plumes, we use data
over 60 persistently emitting locations identified using long-
term wind-rotated averages (Maasakkers et al., 2022b). By
manual inspection, we compile a dataset of 828 positive

scenes from 2018–2020 with plumes, of which 195 origi-
nate from coal mines, 203 from landfills/urban areas, and
430 from oil and gas infrastructure (Fig. 1, CNN training).
An example scene is shown in Fig. 2a, including the local
wind field at the time of observation.

A set of (negative) scenes without an emission signal was
obtained through a manual inspection of six full orbits in
different sections of the orbital repeat cycle, covering a di-
verse set of surfaces and (meteorological) conditions. We
obtain 32× 32 pixel scenes using a moving window algo-
rithm with 50 % overlap, resulting in a dataset of 2242 scenes
without a plume signal. The moving window algorithm later
ensures that if a plume is cut in half in a particular scene,
then it will be at the center of the adjacent – and partially
overlapping – scene. Scenes with < 20 % valid XCH4 pixels
are discarded. This processing is applied to full orbits; the
scenes with plumes originating from known locations were
processed to match the same format. When combined, the
dataset contains 3070 scenes used for training. The difference
in the number of positive (828) and negative (2242) scenes is
corrected for later on, using class weights. For each scene,
we store 46 other channels of supporting information from
the same TROPOMI Level 2 methane data product, includ-
ing co-retrieved atmospheric properties, meteorological pa-
rameters, and geometric properties. These channels are used
in later steps of the machine learning pipeline.

In order to correct for differences in local background con-
centrations (e.g., due to difference in latitude or surface alti-
tude), each scene is normalized from 0 to 1. Values below the
mean methane concentration of the scene minus 1 standard
deviation are set to 0. Values above the mean plus 100 ppb
minus 1 standard deviation are set to 1, and values in between
are linearly distributed. Filtered pixels are set to 0. This pre-
processing preserves the information of plume-like enhance-
ments above the local background. Examples of the normal-
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ization input and output are shown, respectively, in Fig. 2b
and c.

2.2 Convolutional neural network (CNN)

We use a convolutional neural network (LeCun et al., 2010)
to detect methane plumes in the TROPOMI methane data that
have been split into 32×32 pixel scenes. Convolutional neu-
ral networks (CNNs) are a type of machine learning model
commonly applied in image recognition and object detection
problems (Cheng et al., 2020). A CNN consists of multi-
ple layers, where information moves from an input image,
through the layers of the CNN at an increasingly abstract
coarse resolution to the output, which is the classification
of the image. To condense the information of the image to
coarser resolution, the CNN uses “convolutional blocks” that
consist of two or more convolutional layers, followed by a
(max-) pooling layer. A convolutional layer produces “fea-
ture maps” that indicate where certain features (e.g., curves,
edges, or more abstract features) are detected within the im-
age. These feature maps are obtained by convoluting the in-
put image with a convolutional kernel, which is a small ma-
trix with weights that are optimized during training to best
detect the features relevant to the particular classification
problem. The resulting feature maps (one for each kernel
applied) are then the input for the next layer (LeCun et al.,
2010; Cheng et al., 2020). A max-pooling layer scans the
previous layer with a 2× 2 kernel and returns the maximum
value, thereby creating a feature map at half the resolution
that is focused on dominant features (LeCun et al., 2010).
After the last convolutional block, the resulting feature maps
are flattened and interpreted by one or more fully connected
(dense) layers, consisting of neurons, between which the con-
nections have trainable weights. This part of the network ag-
gregates the information into a single output value. During
training, the trainable weights, in the convolutional kernels
and dense layers, are optimized to best perform the clas-
sification task, based on the training dataset (LeCun et al.,
2010; Cheng et al., 2020). The trained CNN can then be
used to classify new images, which are in this case labeled
as “plume” versus “no-plume” images.

The main advantages of the CNN compared to regular neu-
ral networks or other machine learning models are that (1) the
CNN is capable of better retaining spatial information which
is lost in fully connected networks or machine learning mod-
els like decision trees or support vector machines (Selvaraju
et al., 2020); (2) the training of a CNN can be done with
image-level labels (plume or no plume), and there is no need
to indicate where the feature of interest is located within the
image, as the CNN learns to localize these features during
training; (3) the same convolutional kernels are convoluted
with the entire image, which is more computationally effi-
cient compared to fully connected networks (LeCun et al.,
2010; Cheng et al., 2020); and (4) the model is rotationally

and translationally invariant when properly trained (LeCun
et al., 2010).

This last model property is essential for the automated
detection of plumes, as a plume can be located anywhere
within a scene, and the wind can be in any direction. The
CNN’s output is a prediction between 0 and 1, indicating the
confidence of the model about the presence of a plume-like
structure. Scenes with prediction scores> 0.5 are classified
as plumes. Although we use this output for binary classifi-
cation, the value holds additional information regarding the
confidence of the CNN (i.e., 0.6 versus 0.98), which we use
for the second model.

We first select a high-level architecture for the CNN with
standard hyperparameters, which we later optimize. Hyper-
parameters are model settings, separate from the trainable
weights, such as the number of convolutional layers and ker-
nel sizes and also parameters that influence the training pro-
cess, such as the learning rate. As high-level architecture we
selected two convolutional blocks followed by two fully con-
nected layers and an output neuron (Fig. 3). We found that
deeper networks (e.g., ResNet, He et al., 2016, or VGG-16,
Simonyan and Zisserman, 2014) did not yield an improve-
ment in performance for this problem with relatively low-
resolution, small-sized (32× 32 pixel) scenes.

Our training dataset mostly contains clear positives (828)
and clear negatives (2242) to effectively learn the distin-
guishing features. Our dataset has many more negative than
positive scenes. When training our CNN, however, we want
both categories of training samples (classes) to have equal
impact in order to obtain optimal performance (Johnson and
Khoshgoftaar, 2019). This balancing can be achieved by ap-
plying class weights during training (Johnson and Khoshgof-
taar, 2019), giving positive scenes more weight. We set the
class weight parameter to the inverse of the ratio between
the number of positives and negatives. We randomly split the
data into a training (80 %) and test (20 %) set. Then, 20 % of
the training scenes are used as validation subset (Table A1).
The validation dataset is used to infer whether there is a gen-
eralized performance increase during the training of the CNN
to prevent overfitting. We then augment the data in order to
obtain larger training and test sets; all scenes are rotated 90◦

thrice and flipped, thus enlarging the datasets by a factor 8.
We use the training dataset of 19 648 (augmented) scenes

(Table A1) to train the CNN (Fig. 1, CNN training). The
CNN was designed and trained using the machine learning
framework Keras (Chollet et al., 2015; Chollet, 2021) by first
using the default values for the hyperparameters. The model
is trained for a maximum of 100 epochs (iterations of the
training process). During training, we optimize the valida-
tion loss, which measures the error made on the subset of the
training data not used in that epoch. We use binary cross-
entropy as the loss function and Adam (an improved ver-
sion of stochastic gradient descend algorithm; Kingma and
Ba, 2014) as the optimizer. We use a 0.4 dropout layer (ran-
domly disabling 40 % of the neurons) in the first fully con-
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Figure 3. A schematic overview of the convolutional neural network with a pre-processed 32×32 pixel TROPOMI methane scene (Fig. 2c)
as input (left). The CNN consists of two convolutional blocks (each with two convolutional layers followed by a max-pooling layer), followed
by two dense (or fully connected) layers and an output neuron with sigmoid activation. Numerical values show the input dimensions, layer
dimensions, and the number of feature maps in the convolutional and max-pooling layers. Visualization generated using PlotNeuralNet
(Iqbal, 2018).

nected layer during training to prevent overfitting and make
the model more robust (Srivastava et al., 2014). The activa-
tion function modifies the output before it is passed to the
next layer; we apply the ReLU (rectified linear unit, which
outputs zero when the input is negative and otherwise out-
puts the input value) activation function in all layers, except
for the final layer where we apply sigmoid ( 1

1+e−x ), which
normalizes the output. To force the model to focus more
on plume-like signatures during training, the loss weight of
plume scenes is set to double that of the negatives scenes.
Training is halted after the validation loss does not improve
for several epochs, and the best model weights found up to
that point are used. After training, the model performance is
inferred by classifying the labeled test dataset.

After training this initial “default” model version, the hy-
perparameters were further optimized using the KerasTuner
optimization framework (O’Malley et al., 2019) and Hyper-
band (Li et al., 2018). With these methods, we perform a
grid search to find the best hyperparameters for our partic-
ular problem. The optimal hyperparameters depend on the
size of the training dataset, architecture of the CNN, number
of classes, and problem type. The search space for the opti-
mization was defined using insights from the initial training,
theoretical foundation, and design constraints. We inspected
the hyperparameters of the top 10 performing setups and se-
lected the optimal hyperparameters by combining the results
of this optimization with expert judgment on this particular
problem. Figure 3 shows a schematic overview of the CNN
with optimized hyperparameters.

We evaluate the performance of the CNN using perfor-
mance evaluation metrics (Eq. 1) calculated from the number

of true positives and negatives (TPs and TNs), and false posi-
tives and negatives (FPs and FNs; Johnson and Khoshgoftaar,
2019). Cohen’s κ score (Cohen, 1960) is a weighted accuracy
which takes into account the class imbalances and chance
agreement. The recall indicates which fraction of plumes
present in the test set is correctly identified, and the preci-
sion indicates which fraction of scenes identified as plumes
is actually a plume; the F1 score incorporates both into a sin-
gle metric.

Accuracy=
TP+TN

TP+TN+FP+FN

Precision=
TP

TP+FP

Recall=
TP

TP+FN

F1= 2 ·
precision× recall
precision+ recall

(1)

To test the influence of the split of the training and test
datasets (which can be an issue for datasets of a limited size),
the training of the model with optimized hyperparameters
was repeated 50 times with different splits. We found that
model performance is relatively insensitive to different train-
ing splits, with κ = 0.943±0.012, recall= 0.956±0.014, and
F1= 0.958± 0.009 (standard deviations). We further found
that small changes in the hyperparameters have an even lower
effect when compared to different training splits. The consis-
tent performance on the corresponding test datasets shows
that the model is robust and well generalized. We focus
on recall over precision because the key focus is to have
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Figure 4. Confusion matrices showing the performance of the CNN (a) and the SVC (b) on their corresponding test datasets. The perfor-
mance metrics are defined in Eq. (1), and the values in parentheses for the SVC show the performance when the problem is considered to be
a binary problem; i.e., when “Artifact” and “Empty” are combined as “No Plume”.

as few potential plumes as possible go undetected. We se-
lected the model which scored best on κ , second best on
F1 score, and third best on recall. The performance metrics
of the selected CNN are shown in Fig. 4a. Manual inspec-
tion of the misclassified scenes (30 FNs and 37 FPs out of
4912 augmented test scenes) indicates that these are border-
line cases with difficult-to-discern morphological structures
that are even challenging to a human expert.

The trained CNN is applied to all 2020 data. Processing of
the 5193 orbits of 2020 resulted in 752 890 scenes (only tak-
ing into account scenes with > 20 % valid pixels), of which
25 626 scenes (3.4 %) are identified as containing plume-like
morphological structures by the CNN. This number does in-
clude artifacts and duplicates, due to the moving window al-
gorithm, as these are filtered later on. We use a subset of
these scenes to train the second step of the machine learning
pipeline (Sect. 2.4).

2.3 Feature engineering

Due to the difficult nature of methane retrievals, not every
plume-like morphological structure in the XCH4 field is an
actual methane plume. Different types of surface variability
and atmospheric or meteorological conditions are known to
affect the retrieval (Lorente et al., 2021); if there is a strong
correlation between the methane enhancement and retrieval
parameters, e.g., the surface albedo or the aerosol scattering
coefficient, then the retrieved methane enhancement might be
caused by the albedo or aerosol variation and could therefore
be a retrieval artifact. Other common examples of artifacts
are those on the borders of clouds and coastlines or when the
direction of the enhanced structure is not in agreement with
the wind field but with surface structures instead.

In order to automate the necessary further inspection, we
compute numerical values for several features of potential
plumes through feature engineering. Feature engineering is

a commonly applied approach in machine learning problems
and is especially helpful when limited amounts of labeled
training data are available. These features are a representa-
tion of the information that a human expert would use to
inspect the potential plumes in order to determine whether
a scene contains a genuine plume or an artifact. We con-
struct feature vectors consisting of features based on the cor-
responding scene. These vectors are then used to train the
second model of the machine learning pipeline, which is the
SVC (Fig. 1, SVC training). An overview of all the devel-
oped features is presented in Table C1.

Fundamental to many of those features is masking the
plume in order to isolate the plume pixels from the back-
ground. For this purpose, we use information about which
part of the scene has triggered the CNN detection. For this,
we use the class activation map (CAM) to visualize the lo-
calized activations of a CNN corresponding to a certain class
on which it was trained (Zhou et al., 2015). We apply Grad-
CAM (Selvaraju et al., 2020), which allows the computation
of the CAM for our CNN that includes fully connected lay-
ers. In our binary classification problem, the CAM visualizes
which regions of the deepest (coarsest) feature maps (max
pooling 2 (8× 8) in Fig. 3) contribute strongest to an activa-
tion of the plume class (output> 0.5) for a given input im-
age. This spatial activation is calculated using the gradients
(Selvaraju et al., 2020) between the 64 feature maps (each
of 8× 8 resolution, resulting in a 64× 8× 8 array; Fig. 3) of
the deepest max-pooling layer (max pooling 2) and the first
fully connected or dense layer (dense 1 in Fig. 3). In order
to obtain a CAM with a sufficient resolution, we limit the
depth of the CNN to two convolutional blocks. The CAM
is upsampled to match the input resolution (Selvaraju et al.,
2020). Figure 5b shows that the CAM correctly identified the
plume-like structure in the XCH4 scene in Fig. 5a, thus disre-
garding the noisy high-enhancement pixels elsewhere in the
scene.
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Figure 5. Several feature engineering results computed for the 32× 32 scene from Fig. 2. (a) The atmospheric dry-air methane column
mixing ratios XCH4 . (b) The class activation map, which highlights the areas identified by the CNN as being plume-like structures, based
on Fig. 2c, the pre-processed scene, and (c) the methane enhancements relative to the local background, with the black line indicating the
high-confidence plume mask. The pixel with the cross (×) is identified as being the pixel most likely to contain the source location, based on
the plume mask and local wind field (shown in Fig. 2a).

In addition to using the CAM to analyze CNN perfor-
mance, we also use it to generate a binary plume mask. We
multiply the CAM with the enhancement above the mean
XCH4 value minus the scene’s standard deviation. The out-
put is a map highlighting pixels with high methane enhance-
ments that are identified as part of the plume by the CNN;
we identify the pixel with the maximum value as the starting
point for the plume mask. To compute a “high-confidence”
plume mask, we start from the corresponding pixel in the
XCH4 image and dilate outwards (including diagonally). We
only add adjacent pixels with enhancements of 1.8 standard
deviations above the mean (Fig. 5c). We repeat this process
with a lower threshold of 0.8 standard deviations to also ob-
tain a “low-confidence” mask; both thresholds were estab-
lished empirically. This approach ensures that noise in other
parts of the image is excluded from the plume mask. A plume
mask can consist of any number of pixels, depending on the
scene. The minimum is 1 pixel, but this is rare, as the average
is around 20 pixels. Several statistics of the (potential) plume
can be computed using these masks with supporting data.

One of the major indicators of an artifact is a strong corre-
lation with one or more retrieval parameters. If an enhance-
ment in the XCH4 field is caused by a surface (albedo) fea-
ture or by (enhanced) scattering in the atmosphere which is
represented by the aerosol optical thickness, then we expect
their spatial patterns to be similar. Therefore, we calculate the
correlation between XCH4 and the surface albedo (SWIR),
aerosol optical thickness, χ2 (an indicator for retrieval fit
quality), and surface pressure across the plume mask. We
calculate these correlations for the high- and low-confidence
plume masks, 1- and 2-times dilated versions of the low-
confidence mask, and the entire scene. We account for pix-
els outside of the plume mask, as we would expect a strong
correlation around the enhancement if it is an artifact. The
correlations over the entire scene reflect large-scale patterns
that do not necessarily imply artifacts.

Another major indicator for artifacts is a mismatch be-
tween the direction of the plume and the direction of the
local 10 m wind field from the ERA5 reanalysis (Hersbach
et al., 2020) included in the TROPOMI Level 2 data product
(Hasekamp et al., 2022). By applying a principle component
analysis (PCA), we compute the two main axes of the pixels
in the high-confidence plume mask, after re-projecting the
pixel centers to meter space and weighting them by their en-
hancement relative to the background. We use the ratio of the
variances described by the axes as a measure of the plume’s
elongation. For elongated plumes (e.g., Fig. 5), the variance
of the primary axis is much larger than the variance pro-
jected to the secondary axis, while for less elongated, blob-
like plumes, this ratio is small. Furthermore, we compare the
angle of the primary axis of the potential plume to the an-
gle of the wind direction (averaged across the plume mask);
the smaller the difference, the more confidence we have in
the plume following the wind. We also use the wind field to
identify the pixel that most likely contains the plume’s source
by taking the most upwind pixel within the high-confidence
plume mask (Fig. 5c).

2.4 Support vector classifier (SVC)

A support vector classifier (SVC) constructs hyperplanes as
the optimal decision boundary to separate multiple classes in
a high-dimensional feature space. SVCs in general perform
better with datasets of limited size compared to deep learn-
ing algorithms and are in general less prone to erroneous in-
fluence from outliers. We use 843 labeled scenes from 2020
classified by the CNN to contain plume-like structures as a
training dataset for the SVC (Fig. 1, SVC training). About
half of the scenes are randomly selected from within seven
geographical zones with specific types of predominant ar-
tifacts, and the other half is selected randomly. Scenes are
labeled as “plume” (444 scenes), “artifact” (341 scenes), or
“empty” (58 scenes, indicating there is not a clear plume or
artifact). We have only included scenes with unambiguous
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labels. The fact that there are relatively few empty scenes in
this subset indicates that the CNN performs well. We use bal-
anced class weights to correct the imbalance in the number
of training samples per class, and the weights are inversely
proportional to the number of scenes in each class.

The data format we use for the SVC is a vector of 41 fea-
tures, and each feature vector corresponds to a 32× 32 pixel
scene. This feature vector includes correlations with retrieval
parameters for different plume masks, the angle between the
wind and elongated direction of the plume, the elongation ra-
tio of the plume, several intermediate outputs of the source
rate estimate (Sect. 2.5.1), and several statistical properties
(all engineered features are listed in Table C1). We do not
include features such as latitude and longitude or distance to
a known source or known infrastructure in order to be unbi-
ased with respect to where a scene is located. We train the
SVC to find the optimal classification boundary within this
41 dimensional space, based on the 843 labeled feature vec-
tors. Each feature is standardized by subtracting the mean
and scaling the value to the unit variance of that feature in
the entire training set. We use a radial basis function (RBF)
kernel and set the regularization parameter to 1.2; this hy-
perparameter was optimized using a simple grid search opti-
mization. The gamma value is scaled inversely to the number
of features (41 in this case) multiplied with the variance of
the training dataset, as is common practice, and helps to ho-
mogenize the features which have different units and ranges
of values (Table C1).

We randomly split the labeled dataset into a training set
(80 %) and a test set (20 %). Contrary to the CNN, when
training an SVC, no validation set is used. Correctly detect-
ing plumes is of predominant interest; therefore, we combine
non-plume scenes (artifact and empty classes) when evaluat-
ing the performance. We train the model 2000 times for dif-
ferent splits of the dataset. The distribution of these different
realizations shows convergence with binary κ = 0.78± 0.04
and recall= 0.88±0.03 (standard deviations), indicating that
the model setup is not too dependent on the data split. We
select a model with relatively high κ and recall, where per-
formance is similar between the training and test sets. Fig-
ure 4b shows the three class performances on the test set,
indicating that distinguishing between plumes and artifacts
is the most challenging distinction for the SVC. The binary
Cohen’s κ score of the selected model is 0.83. A κ score of
above 0.8 is generally seen as being a good classification per-
formance. The recall is 0.93, meaning that 93 % of the scenes
with plumes which were present in the test set are success-
fully identified, and only 7 % of the plumes are missed.

To evaluate which features are important for the SVC to
classify a scene, we performed a permutation importance
analysis perturbing each feature 40 times (Breiman, 2001).
Based on the resulting mean feature importance, the most
important features are the correlation of XCH4 with χ2, the
CNN score, the albedo correlation, the enhancement of the
plume, the fraction of valid pixels, the angle with the lo-

cal wind, and the average quality flag of plume pixels (the
top 10 ranking of feature importance metrics is presented in
Table C1). These correspond to what is important to a human
expert labeler.

2.5 Plume characterization

2.5.1 Source rate quantification

To estimate the source rates of the plumes observed by
TROPOMI, we apply the integrated mass enhancement
(IME) method (Frankenberg et al., 2016; Varon et al., 2018).
Some intermediate outputs of the IME method (such as the
plume length) are used as features in the feature vector for
the SVC (Sect. 2.4). We perform a full source rate quantifi-
cation, including uncertainty estimates, for the plumes that
pass the machine learning pipeline and are manually veri-
fied. The IME method relates the emission rate (Q) to the
observed methane enhancement in the plume (IME) and the
local wind field as follows (Varon et al., 2018):

Q=
1
τ

IME=
Ueff

L
IME

IME=
N∑
j=1

1�jAj , (2)

where 1�j denotes the methane column mass enhancement
above the local background of pixel j , with the footprint Aj .
The local background is calculated as the median value of
the scene’s pixels outside the high-confidence plume mask.
The IME of all N pixels in the plume is related to the source
rate, using the average residence time τ of methane parti-
cles in the plume, with τ being given by the ratio between
the plume length L and the effective wind speed Ueff. The
plume length L is approximated as L=

√
AM, where AM is

the area of the plume mask (Varon et al., 2018). Ueff can be
expressed as a function of the local (reanalysis) wind speed.
Frankenberg et al. (2016) and Varon et al. (2018) developed
the IME method for high-resolution instruments, for which
the 10 m winds are most representative of Ueff values. For
the larger scale of TROPOMI plumes, both 10 m (U10) and
boundary layer average (UPBL) winds have been used (Varon
et al., 2019; Schneising et al., 2020; Cusworth et al., 2021; Tu
et al., 2022a). As the most representative wind can vary from
case to case, we use the mean of the quantifications using
ERA5 10 m winds (Hersbach et al., 2020), GEOS FP 10 m
winds, and GEOS FP planetary boundary layer (PBL) winds
(Molod et al., 2012).

We calibrate the relation between Ueff and these local
wind speeds by quantifying 15 336 plumes simulated with
the Weather Research and Forecasting model coupled with a
Chemistry module (WRF-Chem), version 4.1.5 (Skamarock
et al., 2019; Grell et al., 2005). The model uses 38 ver-
tical levels and three nested domains at a horizontal reso-
lution of up to 4× 4 km2. Physical parameterizations and
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meteorological initial and boundary conditions are as de-
scribed in Dekker et al. (2017). We release passive tracers
with emission rates mostly between 10–100 t h−1 at vari-
ous locations in western Asia, Mexico, and Argentina for
June–September 2019 and 2020. We sample the plume at
the TROPOMI overpass time and quantify them as described
above.

Using the model wind speeds and known emission rates,
we find that Ueff’s dependence on the PBL wind is best de-
scribed by a linear relationship, where Ueff = α1 ·UPBL+α2,
with α1 = 0.47 and α2 = 0.31 (r2

= 0.78). For the depen-
dence on U10, we also find a linear relation to be optimal and
constrain α2 to be non-negative, where Ueff = α1 ·U10+α2,
with α1 = 0.59 and α2 = 0.00 (r2

= 0.77). We use the mean
of the three resulting Ueff values to quantify emissions.

To estimate the uncertainty, we create an ensemble of es-
timates by varying the parameters influencing the quantifi-
cation. For each of the different input wind speeds, we vary
the threshold for masking the plume from 1.3 to 2.3 standard
deviations (step 0.1), adjust the background concentration by
±2 times the mean XCH4 uncertainty in the scene (step 0.4),
vary the wind values from −50 % to +50 % (step 10 %), and
vary α1 and α2 for −5 % to 5 % (step 1 %). We report the
standard deviation of the resulting 43 923 member ensembles
as being the uncertainty for each plume.

2.5.2 Removal of duplicate scenes

Due to the moving window algorithm, each group of 16×16
pixels is seen by the machine learning pipeline up to four
times as a different corner of a 50 % overlapping 32× 32
pixel scene. This ensures that the plumes do not go unde-
tected because they are cut in half and allows multiple nearby
plumes to be detected in adjacent scenes but also leads to du-
plicate detections. Therefore, plumes for which the generated
plume mask overlaps with a plume mask from another scene
are grouped into a group. For each group, the scene with the
highest IME value is selected.

2.5.3 Anthropogenic source sector estimation

To assess which anthropogenic activity might underlie a de-
tected plume, we use the estimated source location to find the
local dominant source type in gridded bottom-up inventories.
We exclude sectors that are unlikely to produce point source
emission signals in single overpass TROPOMI data, such as
rice cultivation and livestock. We include 2019 oil, gas, and
coal emissions from the updated Global Fuel Exploitation
Inventory (GFEI v2; Scarpelli et al., 2022a) and 2018 land-
fill emissions from EDGAR V6.0 (Crippa et al., 2021). We
identify the dominant source type as being the source type
with the largest annual flux in a 0.7◦× 0.7◦ square centered
around the estimated source location. Based on known emit-
ters, we found that using a window of this size mitigates er-
rors in the estimated source location and spatial errors in the

emission inventories. We do not use this approach to attribute
detections to wetlands. However, we do inspect 2019 fluxes
from the WetCHARTs v1.3.1 ensemble (Bloom et al., 2021)
to identify regions where detections might be influenced by
strong wetland fluxes, such as in central Africa (Pandey et al.,
2021).

2.5.4 Comparison with a previously studied
super-emitter event

In order to test the automated pipeline and feature engineer-
ing algorithms, we apply it to data over a September 2019
super-emitter event in Louisiana, USA (Maasakkers et al.,
2022a). The model detects the emission event on multi-
ple days, including on the first day with large emissions
and significant TROPOMI coverage (25 September). The
CNN score is > 0.999, and the SVC classified the scene
as a plume. The estimated source location of the plume is
2.2 km away from the source, and our automated quantifica-
tion estimate is 121±46 t h−1. Our estimate is in good agree-
ment with the quantification by Maasakkers et al. (2022a)
of 101 (49–127) t h−1, which scales a plume simulated with
the WRF atmospheric transport model to match the enhance-
ments seen in TROPOMI using a Bayesian inversion.

2.6 High-spatial-resolution methane satellite
instruments, retrievals, and source rate
quantification

We use observations from three high-spatial-resolution in-
struments, GHGSat, PRISMA, and Sentinel-2, to inspect the
sources of the detected methane plumes. This section de-
scribes the main characteristics of these instruments.

2.6.1 GHGSat

GHGSat-Cx instruments are Fabry–Pérot imaging spectrom-
eters that were launched in 2020–2022 (C1–C5), building
on the GHGSat-D instrument (Jervis et al., 2021). The in-
struments have a spatial resolution of 25 m× 25 m over tar-
geted scenes of ∼ 10 km×∼ 15 km (Ramier et al., 2020;
MacLean et al., 2021). They sample the SWIR part of the
spectrum between 1630 and 1675 nm at ∼ 0.3 nm spectral
resolution, retrieving the methane column density with a pre-
cision of 1 % of the background concentration and a the-
oretical detection threshold of down to ∼ 100 kg h−1 at a
wind speed of 3 m s−1 (ESA, 2022). During a controlled re-
lease experiment comparing the methane observing capabili-
ties of different high-resolution instruments by Sherwin et al.
(2023), a plume of ∼ 200 kg h−1 was successfully detected.
We use data from GHGSat-C1 and GHGSat-C2 and esti-
mate the source rates using the IME method, as described in
Maasakkers et al. (2022b), for point sources with 10 m wind
data from GEOS FP (Molod et al., 2012). The uncertainty in
the quantification is estimated, as described by Varon et al.
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(2019), taking into account the error contributions from mea-
surement noise, the wind speed, and the IME method, similar
to Maasakkers et al. (2022b).

2.6.2 PRISMA

The Italian Space Agency’s hyperspectral instrument
PRISMA was launched in March 2019 and generates pub-
licly available targeted hyperspectral 30 km× 30 km images
at a spatial resolution of 30 m× 30 m and ∼ 10 nm spec-
tral resolution (Cogliati et al., 2021; Guanter et al., 2021;
Cusworth et al., 2021). The revisit time can be as short
as 7 d, using the instrument’s ±20 % across-track pointing
(Cogliati et al., 2021). The smallest source rate tested dur-
ing a controlled release experiment (Sherwin et al., 2023) is
∼ 2500 kg h−1. The theoretical detection threshold is lower
(∼ 300–900 kg h−1 for homogeneous scenes) and strongly
depends on the surface type/homogeneity (Guanter et al.,
2021). The PRISMA instrument is not a continuous mapper,
but a data archive of past (targeted) observations is publicly
available. PRISMA can also be used to target a location of in-
terest in the future. We perform methane retrievals and IME
quantifications, as described in Guanter et al. (2021), using
plume masking, following Varon et al. (2018), and GEOS FP
10 m wind data (Molod et al., 2012).

2.6.3 Sentinel-2

The Sentinel-2 surface-imaging mission (consisting of
Sentinel-2A launched in 2015 and Sentinel-2B launched in
2017) was demonstrated by Varon et al. (2021) to be ca-
pable of detecting methane super-emitter plumes under fa-
vorable conditions. Both satellites carry a MSI, with a pixel
resolution of 20 m× 20 m for the B11 (∼ 100 nm) and B12
(∼ 200 nm) SWIR bands, with a sensitivity to methane. The
instruments have a 290 km wide swath, resulting in a global
2–5 d revisit time (Drusch et al., 2012). Sentinel-2 observes
continuously (as opposed to GHGSat and PRISMA) and pro-
vides an extensive, publicly available archive going back
years. A methane absorption signal has to be strong in order
to stand out within the aggregated signal of the entire band;
therefore, only relatively large quantities of methane can be
retrieved, and the detection limit worsens considerably over
non-homogeneous terrain. The detection limit is estimated at
∼ 1–2 t h−1 for homogeneous scenes (Gorroño et al., 2023),
which is in agreement with Sherwin et al. (2023), where a
∼ 1800 kg h−1 emission was detected and quantified. We ap-
ply the methane retrieval and IME quantification approach
from Gorroño et al. (2023), who, like Varon et al. (2021),
use a reference day without a plume to isolate the difference
caused by methane concentration enhancement. We again
use GEOS FP 10 m wind data (Molod et al., 2012).

3 Results

We apply the trained and optimized CNN and SVC mod-
els (Fig. 1, CNN training and SVC training) in sequence
on all 2021 TROPOMI XCH4 data (Fig. 1, CNN+SVC ap-
plication). Analyzing the full year with the machine learn-
ing pipeline takes approximately 3 h on a single core. From
the 794 395 (32× 32 pixel) scenes, the CNN identifies
26 444 scenes (3.3 %) that contain plume-like XCH4 mor-
phological structures. The SVC classifies 10 430 of these
scenes as plumes. After duplicate removal, 4869 scenes are
identified as unique. These 4869 scenes are manually in-
spected to assess the performance of the pipeline. We confirm
2974 scenes as being confident plumes. Another 745 scenes
are labeled as potential plumes; accepting these scenes as
plumes results in a precision of 76 % for the full pipeline.
These potential plumes could not readily be verified as be-
ing real methane plumes but are valuable for further inspec-
tion. The remaining scenes are either labeled as artifacts or
not containing a (concentrated) plume. These misclassifica-
tions can be used to further optimize the machine learning
pipeline. Here, we will focus on the 2974 confident plumes
and present the result of our high-resolution satellite instru-
ment analysis to pinpoint the exact sources of 12 (clusters of)
detections.

3.1 Overview of the confirmed detections in 2021

Figure 6 shows the spatial distribution of all 2974 detected
and confirmed 2021 plumes, which are attributed by source
sector, based on the three bottom-up inventories (Sect. 2.5.3).
We find that 1031 plumes predominantly relate to urban areas
and/or landfills, 720 to gas infrastructure, 612 to oil infras-
tructure, and 581 to coal mines. As super-emitters are usu-
ally not the result of regular operations and are therefore not
well represented in bottom-up inventories, especially large
transient emissions may be misattributed by this approach.
Wetlands are not expected to result in point source emis-
sions, but strongly emitting wetlands in central Africa, such
as South Sudan and in the Niger delta, can produce large
enhancements in the TROPOMI data (Pandey et al., 2021;
Shaw et al., 2022). In the absence of large anthropogenic
emissions, we label the plumes from these two regions as
“unclassified”. Wetlands might also contribute to detected
signals in areas with large anthropogenic emissions, for ex-
ample, around the city of Dhaka, located in the Ganges–
Brahmaputra Delta (Bangladesh), or in the Mississippi Delta
(USA).

There are many clear hotspot locations with frequent de-
tections. To group the detections into clusters with a common
source, we apply the DBSCAN clustering algorithm (Ester
et al., 1996; Schubert et al., 2017). We cluster based on the
distance between detections in meters and set a threshold of
five detections within 30 km as the minimum to identify a
cluster. We identify 94 clusters; this is a conservative esti-
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Figure 6. All 2974 confident plume detections for 2021, grouped into one of four dominant anthropogenic source types and sized by source
rate, capped at 200 t h−1. There are 30 detections in central Africa that are labeled as “unclassified”.

mate for the number of persistent locations, as some known
persistent emitters have fewer than five detections in 2021.
We also observe several areas with extensive plumes from
multiple emitters, such as the west coast of Turkmenistan,
which are grouped into one big cluster. We find the majority
of detected plumes (74.8 %) to be clustered at a persistent ur-
ban or fossil fuel exploitation source and classify the remain-
ing plumes as transients. Zoom-ins of the clusters in several
distinct regions and source rates for all detections are shown
in Fig. 7.

Several of the identified clusters are located over well-
known oil and gas production regions, such as the west coast
of Turkmenistan (Fig. 7a), previously studied by Varon et al.
(2019) and Irakulis-Loitxate et al. (2022b), Algeria (Varon
et al., 2021), Libya, and multiple basins in the USA (Shen
et al., 2022), including the Eagle Ford Basin, Haynesville
Basin, and most prominently the Permian Basin (Fig. 7b),
where Zhang et al. (2020) quantified emissions based on
TROPOMI, and we find individual clusters of detections over
the Midland and Delaware sub-basins. The fact that many of
the detections are clustered around known large sources gives
confidence in the performance of the models that did not use
prior location information. We also identify oil and gas pro-
duction clusters which have not been studied in detail, such
as in northern Libya, Yemen, and northeastern India.

We also find large transient plumes along the major gas
transmission pipelines in western Russia (Fig. 7c), similar
to what Lauvaux et al. (2022) found for 2019–2020. Clus-
ters of detections are seen over coal mining areas in China
(Chen et al., 2022), southern Poland (Tu et al., 2022b), South
Africa, Russia, and northeastern Australia (Fig. 7e), where

Sadavarte et al. (2021) quantified large emissions from these
clusters of coal mines. Our approach allows us to detect
which specific locations within a larger area of fossil fuel
exploitation cause large methane plumes; examples are the
super-emitter clusters within the large, spread-out Shanxi
coal mining region in China (Fig. 7d).

The majority of our detections are related to urban ar-
eas around the world, including four cities with large
fluxes (Buenos Aires, Mumbai, Delhi, and Lahore), which
were also identified by Maasakkers et al. (2022b) based
on long-term wind-rotated TROPOMI averages. Urban ar-
eas comprise a range of source types, but individual land-
fills can make up a large fraction of total urban emissions
(Maasakkers et al., 2022b). When we zoom into the area
around Casablanca, Morocco (Fig. 7f), we see strong conver-
gence into a cluster. Most plumes within the cluster (19 out
of 23) are quantified below 25 t h−1, of which eight are quan-
tified below 15 t h−1. The estimated source locations of the
plumes are on average 12 km away from a landfill later
detected and quantified using GHGSat (Fig. 8; Sect. 3.2).
Other urban clusters include Madrid in Spain, seven cities
in Pakistan, Riyadh in Saudi Arabia, Bucharest in Romania,
and Mexico City and Guadalajara in Mexico. The most fre-
quently detected (104 detections) urban cluster is centered
around Dhaka, Bangladesh. In India, we see eight urban clus-
ters and several cities with at least two detections. Detections
over India are seasonally limited by meteorology, as there
are hardly any TROPOMI data during the May–September
monsoon season because of the persistent cloud cover.

The distribution of the estimated source rates of all 2974
verified plumes is shown in Fig. 7g. Our IME-based quan-
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Figure 7. Regional plume detections showing color-coded persistent emission clusters, with transient emissions shown in black. (a) Large
clusters of detections related to oil and gas exploitation in Turkmenistan. (b) The clearly distinguishable outlines of the Delaware and
Midland sub-basins within the Permian Basin, USA. (c) Detections show the same spatial structure along compressor stations and pipelines
in western Russia. (d) Clusters of hotspots in eastern China with the extensive Shanxi coal mining region in the center. (e) Clusters of coal
mining detections in northeastern Australia. (f) A clear cluster of detections around the persistent source in Casablanca, Morocco. (g) The
distribution of estimated source rates for all 2974 detected plumes in the year 2021, capped at 200 t h−1. The 5th and 95th percentile and the
mean values of the distribution are shown as vertical lines.

tifications show mean emissions of 44 t h−1, with a large
5–95th percentile range of 8–122 t h−1. Many detections
are quantified below the detection threshold of previous
TROPOMI plume identification and quantification methods
of 25 t h−1 (Lauvaux et al., 2022; Jacob et al., 2022). We find
1143 plumes quantified under 25 t h−1, including 241 plumes
under 10 t h−1. Many of these originate from persistent emis-
sion clusters, where emissions have been confirmed using
high-resolution instruments. Although the applied mass bal-
ance quantification method has significant uncertainty, this
shows that the plume detection limit of TROPOMI is better
than previously reported in the literature.

In order to present a rough estimate for total emissions
represented by the detected plumes, we assume that each
emission event is active for 24 h (the minimum sampling fre-
quency of TROPOMI). For some transient plumes, such as
pulse emissions at compressor stations, the 24 h estimate can
be an overestimate, but we take these to be representative of
similar transient events occurring outside of the TROPOMI
observation window. Using these assumptions, we find de-
tected emissions of 3.1± 1.3 Tg for 2021. As a conservative
uncertainty estimate, we use the sum of the standard devi-
ations of the individual ensembles. The number of detected
plumes is an underestimate of the true number of plumes, as
observations are limited by clouds and illumination.
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Figure 8. Methane plumes detected from Casablanca, Morocco, on 2 different days, with TROPOMI and GHGSat data overlaid over visual
Esri World Imagery (Esri, Maxar, Earthstar Geographics, and the GIS User Community, 2022). Time stamps are in UTC. The plume observed
by TROPOMI on 12 June 2021 is quantified at 14.6± 8.8 t h−1. The plume observed by GHGSat-C2 on 19 August 2021 originates from
the landfill between Casablanca and Mediouna (33.483◦ N, 7.538◦W) and is quantified at 7.4±3.3 t h−1. The winds are the GEOS FP 10 m
wind field (Molod et al., 2012).

To account for the limited TROPOMI coverage and ob-
tain an indication of the annual emissions that our detec-
tions are representative of, we scale our detected emissions
by the fraction of days with coverage. We estimate the lo-
cal number of days with coverage from our 794 395 valid
scenes by first mapping their spatial footprints to a 0.1×0.1◦

grid and removing the duplicate coverage from overlapping
scenes in the same orbit. We then correct for local variations
in coverage (such as persistent areas without data) by con-
voluting this field with the summed footprints of all 2021
TROPOMI data at 0.1× 0.1◦. We finally aggregate our de-
tected emissions to a 1×1◦ grid and divide those by the frac-
tion of days in 2021 with coverage resulting from the cov-
erage map averaged to 1× 1◦. We find a scaled-up annual
emission flux of 10.3 Tg, which is approximately 2.7 % of the
total bottom-up 2017 anthropogenic emissions (380 Tg yr−1;
Saunois et al., 2020). Super-emitter plumes from landfills ac-
count for 4.1 Tg yr−1 (6 % of global emissions), those from
coal 2.1 Tg yr−1 (4.7 %), those from oil 2.2 Tg yr−1, and
those of gas 1.9 Tg yr−1 (4.9 % of global oil and gas; Saunois
et al., 2020). These estimates are only small fractions of the
total anthropogenic emissions, as our conservative upscaling
approach only takes large TROPOMI-detected super-emitter
plumes into account. Emissions from smaller point sources
and area sources make a large contribution to the total but

are not part of our upscaling. Such emissions are better cap-
tured by an atmospheric inversion.

3.2 Synergy of automated TROPOMI detections with
high-resolution instruments

We use the detection of persistent methane plumes in
TROPOMI data to target high-resolution observations
(GHGSat-C1 and GHGSat-C2) and data analysis (PRISMA
archive and Sentinel-2), following Maasakkers et al. (2022b).
Furthermore, we investigate large transient emissions with
data from non-targeted instruments, such as Sentinel-2.

Figure 8 shows a TROPOMI plume (14.6± 8.8 t h−1) de-
tected near Casablanca in Morocco on 12 June 2021. We
detected 23 plumes in the area in 2021, with source rates
ranging from 8.9± 5.1 to 40.5± 18.0 t h−1, with a mean of
18.8 t h−1, indicating a persistent source (Fig. 7f). Based on a
wind rotation analysis (Maasakkers et al., 2022b), we find the
landfill located in between Casablanca and Mediouna to be
the optimal target for high-resolution observations. Based on
this TROPOMI analysis, we observe this location. The inset
image shows a targeted GHGSat-C2 observation on 19 Au-
gust 2021, which indeed shows a methane plume (quantified
at 7.4±3.3 t h−1) originating from the landfill and extending
downwind.
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Figure 9. Transient methane plumes detected at two different locations in northern Kazakhstan, with TROPOMI (quantified at 35.2±
13.2 t h−1 for the northern and 28.1± 11.2 t h−1 for the southern plume) and Sentinel-2 overlaid over visual Esri World Imagery (Esri,
Maxar, Earthstar Geographics, and the GIS User Community, 2022). Time stamps are in UTC. The plumes originate from natural gas
pipeline infrastructure. The winds are the GEOS FP 10 m wind field.

Figure 9 shows two methane plumes detected with
TROPOMI in northern Kazakhstan on 14 May 2021 at
07:53 UTC, quantified at 35.2± 13.2 t h−1 for the northern
plume and 28.1± 11.2 t h−1 for the southern plume. The
same locations were also detected in an adjacent orbit at
09:33 UTC, but the closest days with coverage before and
after 14 May 2021 do not show emissions, which indi-
cates that the plumes are transient. The bottom-up inven-
tories show natural gas systems as being the locally dom-
inant anthropogenic source sector because of the presence
of a gas transmission pipeline. In Sentinel-2 observations
taken 38 min before the first detection, we find two emit-
ting locations close to the pipeline in the upwind part of the
TROPOMI plume masks. The source rates of the Sentinel-2
plumes are 180± 59 and 75± 23 t h−1 for the northern and
southern plume, respectively. The rather large discrepancy
between the TROPOMI and Sentinel-2 quantifications can
be explained by the uncertain low wind speeds, the not well-
developed plume in TROPOMI increasing the uncertainty in
the IME, and possibly the partial pixel enhancement effect
described by Pandey et al. (2019).

Figures 8 and 9 show how TROPOMI detections can
be combined with high-resolution observations for both
persistent and transient emitters. Figure 10 shows 10 ad-
ditional locations analyzed with GHGSat (seven scenes),
PRISMA (two), and Sentinel-2 (one), based on TROPOMI

detections. These 12 selected locations show the range of
typical anthropogenic source types and intermittencies we
have observed with both TROPOMI and high-resolution in-
struments. Tables B1–B3 in the Supplement provide details
on these high-resolution observations and associated (not
necessarily on the same day) TROPOMI scenes (Table B4).
We find facility-level source rates from 0.3± 0.1 t h−1 up to
16± 5 t h−1. Because of the different spatial footprints, sen-
sitivities, and detection dates, these emission rates cannot
be directly compared to the TROPOMI emission estimates
(Maasakkers et al., 2022b).

The different specifications of the high-resolution in-
struments make them suitable for different purposes. The
methane-designated GHGSat-Cx instruments have the low-
est detection limit and are capable of retrieving methane over
areas with challenging surface structures, such as urban ar-
eas. Southeast of Madrid, we observe plumes from two sepa-
rate landfills located 7 km apart. The methane plumes orig-
inate from the active areas of the landfills where waste is
added. In TROPOMI, the signals from these two landfills ap-
pear as a single point source. In the gas production region
around Shreveport, Louisiana, USA, we observe three emis-
sion plumes originating from distinct infrastructure, includ-
ing from two facilities that are only ∼ 500 m apart. Over a
coal mining area in Russia, we see in a GHGSat observation
that a single TROPOMI-based target has contributions from
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Figure 10. Plumes detected over 10 locations which were inspected with high-resolution instruments. Observations at the same location with
different instruments are most often not on the same day. Details are provided in Tables B1–B3 for the high-resolution instruments and in
Table B4 for TROPOMI. TROPOMI data are shown in a Mercator projection (EPSG:4326), and high-resolution data are shown in the local
Universal Transverse Mercator (UTM) projection. The data are overlain over visual Esri World Imagery (Esri, Maxar, Earthstar Geographics,
and the GIS User Community, 2022). The world map at the center of the image corresponds to Fig. 6, showing all 2974 detected plumes in
2021. TROPOMI data are here displayed as enhancements relative to the median XCH4 of the 32× 32 pixel scene. Several of the zoomed-in
views with high-resolution data were set to an opacity of 0.5 in order to reveal the infrastructure at the source of the plume.
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10 different point sources, with source rates from 0.2± 0.1
to 2.4± 1.1 t h−1. The emissions originate from coal min-
ing facilities, such as underground mine vents, adding up
to 8.8 t h−1. In the Assam oil and gas fields, we find five
plumes adding up to 12.9 t h−1, showing that the GHGSat-Cx
instruments are also capable of retrieving methane plumes
over non-homogeneous areas including forest and agricul-
tural lands. We also use GHGSat to target two less challeng-
ing desert scenes with oil and gas production. A GHGSat ob-
servation over Libya shows two sources downwind of each
other, and the most upwind source is an unlit flare stack. At
the border of Uzbekistan and Turkmenistan (listed as Uzbek-
istan in Fig. 10), we find emissions at three distinct locations
within a single natural gas facility, with source rates rang-
ing from 3.6±1.0 to 6.4±1.8 t h−1. These emissions appear
to originate from unlit flaring stacks, similar to what Irakulis-
Loitxate et al. (2022b) and Varon et al. (2019) found for other
natural gas facilities in the region.

For scenes with more homogeneous surfaces or extremely
large emissions, PRISMA and Sentinel-2 can also be used.
The PRISMA observation in Turkmenistan shows three
plumes with an aggregated emission rate of 9.0± 2.9 t h−1.
The emissions originate from distinct pieces of gas infras-
tructure (quantified at 3.5±1.1, 3.0±1.0, and 2.5±0.8 t h−1),
and the sources are located within the footprint of a single
TROPOMI pixel (the same source is shown in Figs. 2 and 5).
We also use the PRISMA archive to detect a plume originat-
ing from a coal mine ventilation shaft in Liuzhuang village
in Shanxi, China. Finally, we use Sentinel-2 to investigate a
single location in Iran with complex observation conditions
(elevation), where we only had a single TROPOMI detection
in 2021. The emissions therefore appeared to be transient
at first, but with Sentinel-2, we find three emission plumes
ranging from 1.3±0.4 to 10.0±3.0 t h−1 that originate from
the same oil facility in a time span of 2 months. Extensive
monitoring of a location of interest over a longer time span
is feasible when using Sentinel-2 (Varon et al., 2021).

4 Conclusions

We detected methane emission plumes in 2021 TROPOMI
data using an automated, machine-learning-based pipeline.
We have trained a convolutional neural network with a rel-
atively small set of manually identified plumes in pre-2021
TROPOMI methane data to detect plume-like morphologi-
cal structures (κ score of 0.97 and recall of 0.98 on the test
set). We then used a support vector classifier to distinguish
real plumes from retrieval artifacts using additional informa-
tion from the scene and supporting data (κ score of 0.81 and
recall of 0.93 on the test set). This two-step approach can
also be applied to other instruments in the future. We tested
our detection, source localization, and emission quantifica-
tion estimate for a specific, well-characterized natural gas
well blowout and found that it was accurately captured by

our monitoring system. After the application of our pipeline
to the 2021 data, we targeted high-resolution observations
and analyses to find the facilities responsible for 12 (clusters
of) plumes seen in TROPOMI.

Using our automated machine learning pipeline, we scan
all 794 395 scenes of 2021 in 3 h on a single core. Of these
scenes, 4869 are automatically classified as plumes, of which
2974 are manually verified as being confident plumes and
745 as being potential plumes, thus giving the automated
pipeline a precision of 61 %–76 %. The most challenging dis-
tinction for the SVC is between plumes and artifacts, which
is a distinction that can be inconclusive even for a human
expert in difficult cases. We focus on the manually verified
plumes; the remaining 39 % of the scenes are mostly difficult
to classify and can still be followed up with manual inspec-
tion or be used to further train the models. We find that most
plumes (74.8 %) originate from 94 clusters of detections
around both known and new, persistent source locations. The
other plumes are mainly caused by transient emission events,
such as along natural gas transmission pipelines in Russia.
We most often detect plumes (based on bottom-up emission
inventories) from urban areas and/or landfills (1031 plumes),
followed by 720 plumes from gas infrastructure, 612 from
oil infrastructure, and 581 from coal mining. Many of the
identified clusters are located at well-known fossil fuel ex-
ploitation regions or urban areas known to emit methane.
We also identify several previously unstudied sources such
as in Libya and Assam (India) and identify specific super-
emitting locations within spread-out fossil fuel production
regions like the Shanxi coal mining area in China. Based on
IME quantifications of all plumes, we found mean emissions
of 44 t h−1 with a 5–95th percentile range of 8–122 t h−1,
which is an indication of the TROPOMI detection limit. With
1143 detections under 25 t h−1, including 241 plumes un-
der 10 t h−1, our automated approach has a better detection
limit than previously published methods based on TROPOMI
data. When we assume that all 2944 detected anthropogenic
emissions are active for 24 h, we find detected 2021 emis-
sions of 3.1± 1.3 Tg. Accounting for the limited coverage
of TROPOMI, these detected emissions are representative of
10.3 Tg yr−1, which is approximately 2.7 % of global annual
anthropogenic methane emissions.

For 12 locations, we used high-resolution satellite ob-
servations (GHGSat-C1 and GHGSat-C2, PRISMA, and
Sentinel-2) to identify the exact sources responsible for the
detected plumes in TROPOMI. We utilized the different
strengths of the high-resolution instruments; we made tar-
geted observations with GHGSat over scenes with complex
surface reflectance, whereas the archive of Sentinel-2 is used
to analyze large transient emission events and track intermit-
tent emissions. We found point sources from landfills and
fossil fuel exploitation with emission rates from 0.3± 0.1 to
180± 59 t h−1. Most fossil-fuel-related TROPOMI plumes
had contributions from multiple point sources, with one
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GHGSat observation over Russia revealing emissions from
10 different sources.

Over the next few years, the number of global, regional,
and point source mapping instruments capable of retriev-
ing methane plumes will vastly increase, including Sentinel-
5, CO2M, MethaneSAT, and Carbon Mapper (Jacob et al.,
2022). Our monitoring system can incorporate these fast-
growing data volumes and can already be used to automat-
ically detect plumes in the operational TROPOMI data, track
temporal variability in super-emitter plumes, and tip and cue
high-resolution satellite instruments to find the associated
super-emitting facilities. This identification and monitoring
of super-emitters with large mitigation potential is paramount
to reach the goals of the Global Methane Pledge.

Atmos. Chem. Phys., 23, 9071–9098, 2023 https://doi.org/10.5194/acp-23-9071-2023



B. J. Schuit et al.: Automated detection and monitoring of methane super-emitters using satellite data 9089

Appendix A: CNN training data table

Table A1. An overview of the split in training and test data for the CNN (Fig. 1, CNN training).

Split Sub-split No. of No. of
scenes scenes

augmented

All labeled scenes 1.0 3070

Training set 0.8 2456 19 648
– Training subset 0.8 1965 15 718
– Validation subset 0.2 491 3930

Test set 0.2 614 4912

Appendix B: Details on the plumes observed with
high-resolution instruments

Table B1. Observation, location, and quantification details corresponding to the GHGSat scenes, one of which is in Morocco, Casablanca
(landfill in Fig. 8). Wind speeds are 10 m wind speeds obtained from GEOS FP (Molod et al., 2012). Locations Uzbekistan-b and Uzbekistan-
c are located just over the border in Turkmenistan; however, the main building of the facility (near Uzbekistan-a) is located in Uzbekistan.
Because there is another location in Turkmenistan, we have chosen this nomenclature. Note that “O&G facility” is for oil and gas facilities.

GHGSat Observation time Latitude Longitude Source rate Wind speed Sector
(UTC) (◦) (◦) (t h−1) U10 (m s−1)

Casablanca, Morocco 19 Aug 2021, 10:21:43 33.4837 −7.5378 7.4± 3.3 2.6 Landfill

Madrid, Spain a 13 Dec 2021, 10:04:26 40.3222 −3.5913 4.3± 2.0 2.7 Landfill
b 13 Dec 2021, 10:04:26 40.2611 −3.6364 5.6± 2.5 2.7 Landfill

Libya a 17 Apr 2021, 08:30:12 28.9089 20.9807 8.8± 2.0 8.6 Oil exploitation
b 17 Apr 2021, 08:30:12 28.9400 20.9856 2.7± 0.6 8.6 Oil exploitation

Australia a 8 Jun 2021, 23:23:08 −21.8321 148.0099 0.7± 0.2 6.4 Coal mine
b 8 Jun 2021, 23:23:08 −21.8847 147.9737 1.1± 0.3 6.4 Coal mine
c 8 Jun 2021, 23:23:08 −21.8883 147.9949 2.9± 0.8 6.4 Coal mine

Uzbekistan a 20 Dec 2021, 06:22:11 38.7989 64.6410 6.4± 1.8 6.5 Flaring stack
b 20 Dec 2021, 06:22:11 38.7839 64.6289 4.0± 1.1 6.5 O&G facility
c 20 Dec 2021, 06:22:11 38.7347 64.6169 3.6± 1.0 6.5 O&G facility

Louisiana, USA a 19 Apr 2021, 16:04:48 32.1979 −93.4882 0.5± 0.4 0.1 O&G facility
b 19 Apr 2021, 16:04:48 32.1960 −93.4996 2.3± 2.0 0.1 O&G facility
c 19 Apr 2021, 16:04:48 32.1900 −93.4856 0.4± 0.3 0.1 O&G facility

Russia a 25 Aug 2021, 04:26:02 54.6520 86.1506 1.3± 0.6 2.8 Coal facility
b 25 Aug 2021, 04:26:02 54.6313 86.1736 0.3± 0.1 2.8 Coal
c 25 Aug 2021, 04:26:02 54.6190 86.1747 2.4± 1.1 2.8 Coal
d 25 Aug 2021, 04:26:02 54.6120 86.1498 1.6± 0.7 2.8 Coal
e 25 Aug 2021, 04:26:02 54.6122 86.1315 0.9± 0.4 2.8 Coal
f 25 Aug 2021, 04:26:02 54.6080 86.1496 0.5± 0.2 2.8 Coal
g 25 Aug 2021, 04:26:02 54.5964 86.1828 0.4± 0.2 2.8 Coal
h 25 Aug 2021, 04:26:02 54.6168 86.1465 1.0± 0.4 2.8 Coal
i 25 Aug 2021, 04:26:02 54.5904 86.1812 0.2± 0.1 2.8 Coal
j 25 Aug 2021, 04:26:02 54.5621 86.2065 0.4± 0.2 2.8 Coal

India a 24 Dec 2021, 03:21:48 27.4626 95.4788 1.2± 0.8 0.6 Oil exploitation
b 24 Dec 2021, 03:21:48 27.3902 95.4695 2.3± 1.6 0.6 Oil exploitation
c 24 Dec 2021, 03:21:48 27.3545 95.4733 2.8± 2.0 0.6 Oil exploitation
d 24 Dec 2021, 03:21:48 27.3402 95.4830 3.1± 2.2 0.6 Oil exploitation
e 24 Dec 2021, 03:21:48 27.3771 95.4472 3.5± 2.5 0.6 Oil exploitation
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Table B2. Observation, location, and quantification details corresponding to the PRISMA scenes. Wind speeds are 10 m wind speeds obtained
from GEOS FP (Molod et al., 2012). The plume mask of plume Turkmenistan-c (Fig. 10; Table B2) was curated in order to exclude an artifact
which was caused by a nearby road. Retrieval artifacts in high-resolution methane retrievals from hyperspectral instruments resulting from
surface features such as roads is a known issue (Sánchez-García et al., 2022; Gorroño et al., 2023). PRISMA and Sentinel-2 are more prone
to such issues than GHGSat-Cx. Note that “O&G facility” is for oil and gas facilities.

PRISMA Observation time Latitude Longitude Source rate Wind speed Sector
(UTC) (◦) (◦) (t h−1) U10 (m s−1)

Turkmenistan a 13 Feb 2021, 06:51:45 40.0106 60.9346 3.0± 1.0 1.9 O&G facility
b 13 Feb 2021, 06:51:45 40.0496 61.0456 3.5± 1.1 1.9 O&G facility
c 13 Feb 2021, 06:51:45 40.0240 61.0536 2.5± 0.8 1.9 O&G facility

Shanxi, China 22 Dec 2021, 03:18:33 35.6083 112.5282 11.6± 3.7 2.7 Coal facility

Table B3. Observation, location, and quantification details corresponding to the Sentinel-2 scenes, one of which is Kazakhstan (natural gas
pipeline in Fig. 9). Wind speeds are 10 m wind speeds obtained from GEOS FP (Molod et al., 2012).

Sentinel-2 Observation time Latitude Longitude Source rate Wind speed Sector
(UTC) (◦) (◦) (t h−1) U10 (m s−1)

Kazakhstan a 14 May 2021, 07:15:51 49.7205 59.0809 179.8± 59.1 2.6 Natural gas pipeline
b 14 May 2021, 07:15:37 49.3704 59.0660 74.6± 23.0 2.2 Natural gas pipeline

Iran a 24 Aug 2021, 07:12:03 27.5345 53.2946 10.0± 3.0 2.1 O&G facility
b 8 Sep 2021, 07:11:57 27.5345 53.2946 16.1± 5.3 2.7 O&G facility
c 23 Oct 2021, 07:12:06 27.5345 53.2946 1.3± 0.4 1.8 O&G facility

Table B4. Observation, location, and quantification details of the TROPOMI scenes corresponding to the high-resolution observations in
Figs. 8–10. Wind speeds presented in this table are the GEOS 10 m, GEOS PBL, and ERA5 10 m wind products (Molod et al., 2012; Hersbach
et al., 2020), which are used to compute three Ueff values, which are then averaged (Sect. 2.5.1).

TROPOMI Observation time Latitude Longitude Source rate Wind speed Sector estimate
(UTC) (◦) (◦) (t h−1) GEOS 10 m/ (bottom-up)

GEOS PBL/
ERA5 10 m (m s−1)

Casablanca, Morocco 12 Jun 2021, 13:48:37 33.48 −7.54 14.6± 8.8 6.9/2.6/2.8 Landfill
Madrid, Spain 5 Jan 2021, 13:13:19 40.30 −3.64 6.8± 2.6 0.6/0.6/1.0 Landfill
Libya 26 Jul 2021, 11:40:42 28.88 20.93 87.3± 28.7 4.4/4.6/3.4 Oil
Australia 25 Sep 2021, 03:56:01 −21.91 148.06 17.5± 6.1 3.0/2.0/2.5 Coal
Uzbekistan 10 Aug 2021, 08:39:36 38.76 64.59 15.2± 5.6 4.2/3.6/4.9 Gas
Louisiana, USA 23 Sep 2021, 20:02:42 32.13 −93.72 31.1± 12.1 1.1/1.9/1.6 Gas
Russia 8 Jun 2021, 06:43:36 54.61 86.10 40.4± 16.9 1.1/1.8/1.0 Coal
India 4 Jan 2021, 06:42:43 27.38 95.69 21.1± 9.0 1.0/0.8/0.5 Gas
Turkmenistan 5 Dec 2021, 08:47:19 40.10 60.99 11.1± 3.9 2.4/3.2/3.3 Oil
Shanxi, China 23 Jan 2021, 05:47:47 35.63 112.52 47.7± 15.3 3.5/4.6/3.6 Coal
Kazakhstan a 14 May 2021, 07:53:19 49.85 59.12 35.2± 13.2 2.2/2.5/1.4 Gas
Kazakhstan b 14 May 2021, 07:53:14 49.46 59.08 28.1± 11.2 2.3/3.0/1.5 Gas
Iran 4 Nov 2021, 10:05:30 27.48 53.41 45.4± 13.7 2.1/1.8/2.0 Oil
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Appendix C: Features used as input for the SVC

Table C1. Overview of the features used by the SVC as input. Each scene is represented as a feature vector with a shape (1×41). This table
provides the name of the feature, the category the feature is aiming to provide information about, the ranking of the top 10 features in the
feature importance analysis (FIR is the feature importance ranking), the possible range of values the feature can attain, and a description of
the feature. Note that AOT is for aerosol optical thickness, and QA is for quality assurance.

Feature name Category FIR Value range Description

CNN_score Plume-like morphology 1 [0.5, 1] Prediction score assigned by the CNN

valid_pixels Quality of the scene 7 [0.2, 1] Fraction of valid pixels in the scene, N/(32×
32)

count_mask_high Plume mask [1, > Number of pixels in the high-confidence plume
mask

sum_mask_high Plume mask [1, > Sum of enhancement of the pixels in the high-
confidence plume mask

stdev XCH4 statistical
distribution

[0, > Standard deviation of the XCH4 value of all
pixels in the scene

skew XCH4 statistical
distribution

−2, > Skewness of the XCH4 value of all pixels in the
scene

kurtosis XCH4 statistical
distribution

[1, > Kurtosis of the XCH4 value of all pixels in the
scene

IME Magnitude of plume [0, > (kg), integrated mass enhancement (Sect. 2.5.1)

L Magnitude of plume [0, > (m), plume length (Sect. 2.5.1)

U_10 wind [0, ∼ 8] (m s−1), 10 m wind speed,
obtained from ERA5, present in L2
data product

cba_sum Clouds [0, > Sum product of a 3× 3 kernel multiplying
enhancements of the high-confidence plume
mask with cloud fraction

cba_count Clouds [0, > Number of pixels in the high-confidence plume
mask close to cloudy pixels based on 3× 3
kernel

angle_PCA_mean_wind
_plume_mask_weighted

Wind 8 [0, 90] (◦), angle between principle axis of the plume
mask and mean wind vector (Sect. 2.3)

exp_var_ratio
_pca_weighted

Plume elongation [0, > Ratio between the variance along the primary
and secondary axis

albedo_rvalue_bg Correlation XCH4 and
supporting data

[−1, 1] Pearson r value between XCH4 and albedo for
the full scene

albedo_rvalue_dil_1 Correlation XCH4 and
supporting data

3 [−1, 1] Pearson r value between XCH4 and albedo for
pixels within one dilation around the low-
confidence mask

aero_rvalue_bg Correlation XCH4 and
supporting data

[−1, 1] Pearson r value betweenXCH4 and AOT for the
full scene

aero_rvalue_dil_1 Correlation XCH4 and
supporting data

[−1, 1] Pearson r value between XCH4 and AOT for
pixels within one dilation around the low-
confidence mask
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Table C1. Continued.

Feature name Category FIR Value range Description

surf_pres_rvalue_bg Correlation XCH4 and
supporting data

[−1, 1] Pearson r value between XCH4 and surface
pressure for the full scene

surf_pres_rvalue_dil_1 Correlation XCH4 and
supporting data

[−1, 1] Pearson r value between XCH4 and surface
pressure for pixels within one dilation around
the low-confidence mask

chi2_rvalue_bg Correlation XCH4 and
supporting data

5 [−1, 1] Pearson r value between XCH4 and χ2 for the
full scene

chi2_rvalue_dil_1 Correlation XCH4 and
supporting data

0 [−1, 1] Pearson r value between XCH4 and χ2 for
pixels within one dilation around the low-
confidence mask

cloud_angle_high Clouds [0, 90] Angle of the principle axis of the high-
confidence plume mask with the principle axis
of a cloud

cloud_angle_low Clouds [0, 90] Angle of the principle axis of the low-
confidence plume mask with the principle axis
of a cloud

coast_angle Surface conditions [0, 90] Angle of the principle axis of the high-
confidence plume mask with a coast

avg_chi2_mask_high Supporting data 4 [0, > Average χ2 value of the pixels within the high-
confidence plume mask

avg_chi2_mask_low Supporting data [0, > Average χ2 value of the pixels within the low-
confidence plume mask

avg_albedo_mask_high Supporting data [0, 1] Average albedo value of the pixels within the
high-confidence plume mask

avg_albedo_mask_low Supporting data [0, 1] Average albedo value of the pixels within the
low-confidence plume mask

avg_aot_mask_high Supporting data [0, 1] Average AOT value of the pixels within the
high-confidence plume mask

avg_aot_mask_low Supporting data [0, 1] Average AOT value of the pixels within the low-
confidence plume mask

avg_QA_mask_high Supporting data 2 [0.4, 1] Average QA value of the pixels within the high-
confidence plume mask

avg_QA_mask_low Supporting data 9 [0.4, 1] Average QA value of the pixels within the low-
confidence plume mask

std_bg_xch4_high Background homo-
geneity

[0, > Standard deviation of the XCH4 values of pix-
els outside of the high-confidence plume mask,
similar to the pixel precision of Varon2021

std_bg_xch4_low Background homo-
geneity

[0, > Standard deviation of the XCH4 values of pix-
els outside of the low-confidence plume mask,
similar to the pixel precision of Varon2021

avg_enh_plumemask
_high_above_bg

Magnitude of plume [0, > Average enhancement above the background of
the pixels within the high-confidence
plume mask
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Table C1. Continued.

Feature name Category FIR Value range Description

avg_enh_plumemask
_low_above_bg

Magnitude of plume [0, > Average enhancement above the background
of the pixels within the low-confidence plume
mask

max_enh_plumemask
_high_above_bg

Magnitude of plume 6 [0, > Maximum enhancement above the background
of the pixels within the high-confidence
plume mask

frac_land_pixels_high Surface conditions [0, 1] Fraction of pixels with surface classification
“land” in the high-confidence plume mask

frac_landwater
_pixels_high

Surface conditions [0, 1] Fraction of pixels with surface classification
“land+water” in the high-confidence plume
mask

frac_coast
_pixels_high

Surface conditions [0, 1] Fraction of pixels with surface classification
“coast” in the high-confidence plume mask

Code and data availability. The specific version of the
TROPOMI data used in this study is publicly available at https:
//ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/18_17/
(Lorente et al., 2022). GHGSat-C1 and GHGSat-C2 methane
plume data used in this study (Varon, 2022) are avail-
able at https://doi.org/10.7910/DVN/QQQ9IU. Sentinel-2
data are publicly available at the Copernicus Open Access
Hub (https://scihub.copernicus.eu/, ESA, 2023). PRISMA
data are available at https://prismauserregistration.asi.it
(ASI, 2023). GEOS FP wind data can be downloaded from
https://gmao.gsfc.nasa.gov/GMAO_products/ (GMAO et al., 2023).
ERA5 wind data are available at https://cds.climate.copernicus.eu
(Copernicus Climate Change Service, 2023). The WRF-
Chem (Skamarock et al., 2019) code is available at
https://github.com/wrf-model/WRF/releases/ (Contributors
to the WRF repository, 2023); in this work, version 4.1.5
was used. The GFEI (v2) emission inventory is available at
https://doi.org/10.7910/DVN/HH4EUM (Scarpelli and Jacob,
2022). The WetCHARTs emission inventory is available at
https://doi.org/10.3334/ORNLDAAC/1915 (Bloom et al., 2021).
EDGAR v6 data are available at http://data.europa.eu/89h/
97a67d67-c62e-4826-b873-9d972c4f670b (Crippa et al., 2021).
The dataset of detected plumes in 2021 TROPOMI data is
available at https://doi.org/10.5281/zenodo.8087134 (Schuit
et al., 2023a). An interactive map showing the TROPOMI
and high-resolution scenes of Figs. 8–10 is available at
https://doi.org/10.5281/zenodo.8355808 (Schuit et al., 2023b).
Details on those plumes are provided in Tables B1–B4.
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