Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8805-2023
https://doi.org/10.5194/acp-23-8805-2023
Research article
 | 
09 Aug 2023
Research article |  | 09 Aug 2023

Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles

Lan Ma, Reed Worland, Wenqing Jiang, Christopher Niedek, Chrystal Guzman, Keith J. Bein, Qi Zhang, and Cort Anastasio

Related authors

Formation and loss of light absorbance by phenolic aqueous SOA by OH and an organic triplet excited state
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024,https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024,https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024,https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024,https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024,https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024,https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Formation and loss of light absorbance by phenolic aqueous SOA by OH and an organic triplet excited state
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024,https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary

Cited articles

Albinet, A., Minero, C., and Vione, D.: Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter, Sci. Total Environ., 408, 3367–3373, https://doi.org/10.1016/j.scitotenv.2010.04.011, 2010. 
Anastasio, C. and McGregor, K. G.: Chemistry of fog waters in California's Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen, Atmos. Environ., 35, 1079–1089, https://doi.org/10.1016/S1352-2310(00)00281-8, 2001. 
Anastasio, C. and Newberg, J. T.: Sources and sinks of hydroxyl radical in sea-salt particles, J. Geophys. Res., 112, D10306, https://doi.org/10.1029/2006JD008061, 2007. 
Andreae, M. O.: Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols, Science, 220, 1148–1151, https://doi.org/10.1126/science.220.4602.1148, 1983. 
Appiani, E., Ossola, R., Latch, D. E., Erickson, P. R., and McNeill, K.: Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content, Environ. Sci. Process. Impacts, 19, 507–516, https://doi.org/10.1039/C6EM00646A, 2017. 
Download
Short summary
Although photooxidants are important in airborne particles, little is known of their concentrations. By measuring oxidants in a series of particle dilutions, we predict their concentrations in aerosol liquid water (ALW). We find OH concentrations in ALW are on the order of 10−15 M, similar to their cloud/fog values, while oxidizing triplet excited states and singlet molecular oxygen have ALW values of ca. 10−13 M and 10−12 M, respectively, roughly 10–100 times higher than in cloud/fog drops.
Altmetrics
Final-revised paper
Preprint