Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The (mis)identification of high-latitude dust events using remote sensing methods in the Yukon, Canada: a sub-daily variability analysis
Rosemary Huck
CORRESPONDING AUTHOR
School of Geography and the Environment, Oxford University Centre for the Environment, University of Oxford, Oxford OX1 3QY, UK
Robert G. Bryant
Department of Geography, University of Sheffield, Sheffield S10 2TN, UK
James King
Laboratoire d'Érosion Éolienne, Département de
Géographie, Université de Montréal, Montréal, H2V 0B3,
Canada
Related authors
No articles found.
Arnold Ross Downey, Alisée Dourlent, Daniel Bellamy, James King, and Patrick Lewis Hayes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3485, https://doi.org/10.5194/egusphere-2025-3485, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We report findings from a field campaign carried out in the ’A’ą̈y Chù’ Valley in Kluane National Park, Yukon. Direct sampling of a major mineral dust source for airborne particles of different size fractions was conducted, along with continuous measurements of particle size distributions and concentrations. Subsequently, mineral dust samples were analyzed for total concentrations of many metals and metalloids, revealing distinct trends in their concentrations with particle size.
Claudia Di Biagio, Elisa Bru, Avila Orta, Servanne Chevaillier, Clarissa Baldo, Antonin Bergé, Mathieu Cazaunau, Sandra Lafon, Sophie Nowak, Edouard Pangui, Meinrat O. Andreae, Pavla Dagsson-Waldhauserova, Kebonyethata Dintwe, Konrad Kandler, James S. King, Amelie Chaput, Gregory S. Okin, Stuart Piketh, Thuraya Saeed, David Seibert, Zongbo Shi, Earle Williams, Pasquale Sellitto, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3512, https://doi.org/10.5194/egusphere-2025-3512, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Spectroscopy measurements show that the absorbance of dust in the far-infrared up to 25 μm is comparable in intensity to that in the mid-infrared (3–15μm) suggesting its relevance for dust direct radiative effect. Data evidence different absorption signatures for high and low/mid latitude dust, due to differences in mineralogical composition. These differences could be used to characterise the mineralogy and differentiate the origin of airborne dust based on infrared remote sensing observations.
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510, https://doi.org/10.5194/egusphere-2024-2510, 2024
Short summary
Short summary
Thermal undercutting of the terminus has driven recent rapid retreat of an Arctic glacier. Water temperatures (~4 °C) at the ice front were warmer than previously assumed and thermal undercutting was over several metres deep. This triggered phases of high calving activity, playing a substantial role in the rapid retreat of Kaskasapakte glacier since 2012, with important implications for processes occurring at glacier-water contact points and implications for hydrology and ecology downstream.
Seyed Ali Sayedain, Norman T. O'Neill, James King, Patrick L. Hayes, Daniel Bellamy, Richard Washington, Sebastian Engelstaedter, Andy Vicente-Luis, Jill Bachelder, and Malo Bernhard
Atmos. Meas. Tech., 16, 4115–4135, https://doi.org/10.5194/amt-16-4115-2023, https://doi.org/10.5194/amt-16-4115-2023, 2023
Short summary
Short summary
We used (columnar) ground-based remote sensing (RS) tools and surface measurements to characterize local (drainage-basin) dust plumes at a site in the Yukon. Plume height, particle size, and column-to-surface ratios enabled insights into how satellite RS could be used to analyze Arctic-wide dust transport. This helps modelers refine dust impacts in their climate change simulations. It is an important step since local dust is a key source of dust deposition on snow in the sensitive Arctic region.
Elias Nkiaka, Robert G. Bryant, Joshua Ntajal, and Eliézer I. Biao
Hydrol. Earth Syst. Sci., 26, 5899–5916, https://doi.org/10.5194/hess-26-5899-2022, https://doi.org/10.5194/hess-26-5899-2022, 2022
Short summary
Short summary
Achieving water security in poorly gauged regions is hindered by a lack of in situ hydrometeorological data. In this study, we validated nine existing gridded water resource reanalyses and eight evapotranspiration products in eight representative gauged basins in Central–West Africa. Our results show the strengths and and weaknesses of the existing products and that these products can be used to assess water security in ungauged basins. However, it is imperative to validate these products.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Phillipe Gauvin-Bourdon, James King, and Liliana Perez
Earth Surf. Dynam., 9, 29–45, https://doi.org/10.5194/esurf-9-29-2021, https://doi.org/10.5194/esurf-9-29-2021, 2021
Short summary
Short summary
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with impacts from grazing, it can result in quick changes in vegetation cover. We present a wind erosion and vegetation health model with active grazers over 100-year tests to find the limits of arid environments for different levels of vegetation, rainfall, wind speed, and grazing. The model shows the resilience of grass landscapes to grazing and its role as an improved tool for managing arid landscapes.
Cited articles
Amino, T., Iizuka, Y., Matoba, S., Shimada, R., Oshima, N., Suzuki, T., Ando, T., Aoki, T., and Fujita, K.: Increasing dust emission from ice free terrain in southeastern Greenland since 2000, Polar Sci., 27, 100599, https://doi.org/10.1016/j.polar.2020.100599, 2021.
Arnalds, O.: Dust sources and deposition of aeolian materials in Iceland,
Icel. Agric. Sci., 23, 3–21, 2010.
Arnalds, O., Dagsson-Waldhauserova, P., and Olafsson, H.: The Icelandic
volcanic aeolian environment: Processes and impacts – A review, Aeolian
Res., 20, 176–195, https://doi.org/10.1016/j.aeolia.2016.01.004, 2016.
Arola, A., Eck, T. F., Kokkola, H., Pitkänen, M. R. A., and Romakkaniemi, S.: Assessment of cloud-related fine-mode AOD enhancements based on AERONET SDA product, Atmos. Chem. Phys., 17, 5991–6001, https://doi.org/10.5194/acp-17-5991-2017, 2017.
Bachelder, J., Cadieux, M., Liu-Kang, C., Lambert, P., Filoche, A.,
Galhardi, J. A., Hadioui, M., Chaput, A., Bastien-Thibault, M. P.,
Wilkinson, K. J., King, J., and Hayes, P. L.: Chemical and microphysical
properties of wind-blown dust near an actively retreating glacier in Yukon,
Canada, Aerosol Sci. Technol., 54, 2–20,
https://doi.org/10.1080/02786826.2019.1676394, 2020.
Baddock, M. C., Bullard, J. E., and Bryant, R. G.: Dust source
identification using MODIS: A comparison of techniques applied to the Lake
Eyre Basin, Australia, Remote Sens. Environ., 113, 1511–1528,
https://doi.org/10.1016/j.rse.2009.03.002, 2009.
Baddock, M. C., Bryant, R. G., Acosta, M. D., and Gill, T. E.: Understanding
dust sources through remote sensing: Making a case for CubeSats, J. Arid
Environ., 184, 104335, https://doi.org/10.1016/j.jaridenv.2020.104335, 2021.
Baldo, C., Formenti, P., Nowak, S., Chevaillier, S., Cazaunau, M., Pangui, E., Di Biagio, C., Doussin, J.-F., Ignatyev, K., Dagsson-Waldhauserova, P., Arnalds, O., MacKenzie, A. R., and Shi, Z.: Distinct chemical and mineralogical composition of Icelandic dust compared to northern African and Asian dust, Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, 2020.
Bibi, H., Alam, K., and Bibi, S.: In-depth discrimination of aerosol types
using multiple clustering techniques over four locations in Indo-Gangetic
plains, Atmos. Res., 181, 106–114,
https://doi.org/10.1016/j.atmosres.2016.06.017, 2016.
Bateman, M. D.: Aeolian Processes in Periglacial Environments – Treatise of
Geomorphology, 5–10, ISBN 978-0-08-088522-3, 2013.
Binietoglou, I., Basart, S., Alados-Arboledas, L., Amiridis, V., Argyrouli, A., Baars, H., Baldasano, J. M., Balis, D., Belegante, L., Bravo-Aranda, J. A., Burlizzi, P., Carrasco, V., Chaikovsky, A., Comerón, A., D'Amico, G., Filioglou, M., Granados-Muñoz, M. J., Guerrero-Rascado, J. L., Ilic, L., Kokkalis, P., Maurizi, A., Mona, L., Monti, F., Muñoz-Porcar, C., Nicolae, D., Papayannis, A., Pappalardo, G., Pejanovic, G., Pereira, S. N., Perrone, M. R., Pietruczuk, A., Posyniak, M., Rocadenbosch, F., Rodríguez-Gómez, A., Sicard, M., Siomos, N., Szkop, A., Terradellas, E., Tsekeri, A., Vukovic, A., Wandinger, U., and Wagner, J.: A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals, Atmos. Meas. Tech., 8, 3577–3600, https://doi.org/10.5194/amt-8-3577-2015, 2015.
Bryant, R. G.: Recent advances in our understanding of dust source emission
processes, Prog. Phys. Geogr., 37, 397–421,
https://doi.org/10.1177/0309133313479391, 2013.
Bryant, R. G. and Baddock, M. C.: Remote Sensing of Aeolian Processes, in:
Treatise on Geomorphology, 44, 84–119,
https://doi.org/10.1016/b978-0-12-818234-5.00132-2, 2022.
Bullard, J. E.: Contemporary glaciogenic inputs to the dust cycle, Earth
Surf. Proc. Land., 38, 71–89, https://doi.org/10.1002/esp.3315,
2013.
Bullard, J. E. and Mockford, T.: Seasonal and decadal variability of dust
observations in the Kangerlussuaq area, west Greenland, Arctic, Antarct.
Alp. Res., 50, S100011, https://doi.org/10.1080/15230430.2017.1415854, 2018.
Bullard, J. E., Harrison, S. P., Baddock, M. C., Drake, N., Gill, T. E.,
McTainsh, G., and Sun, Y.: Preferential dust sources: A geomorphological
classification designed for use in global dust-cycle models, J. Geophys.
Res.-Earth, 116, F04034, https://doi.org/10.1029/2011JF002061, 2011.
Bullard, J. E., Matthew, B., Tom, B., John, C., Eleanor, D., Diego, G.,
Santiago, G., Gudrun, G., Richard, H., Robert, M., Cheryl, M.-N., Tom, M.,
Helena, S., and Thorsteinsson, T.: High latitude dust in the Earth system, Rev. Geophys., 54, 447–485,
https://doi.org/10.1002/2016RG000518, 2016.
Chepil, W. S.: Influence of moisture on erodibility of soil by wind, Soil
Sci. Soc. America Proc., 20, 288–292, 1956.
Ciren, P. and Kondragunta, S.: Journal Dust aerosol index (DAI) algorithm
for MODIS, J. Geophys. Res., 119, 6196–6206,
https://doi.org/10.1002/2014JD021606, 2014.
Cook, J., Edwards, A., Takeuchi, N., and Irvine-Fynn, T.: Cryoconite: The
dark biological secret of the cryosphere, Prog. Phys. Geogr., 40, 66–111,
https://doi.org/10.1177/0309133315616574, 2016.
Cornelis, W. M. and Gabriels, D.: The effect of surface moisture on the
entrainment of dune sand by wind: An evaluation of selected models,
Sedimentology, 50, 771–790,
https://doi.org/10.1046/j.1365-3091.2003.00577.x, 2003.
Corte, A. E.: Laboratory formation of extrusion features by multicyclic
freeze-thaw in soils, Bulletin-Centre de Géomorphologie de Caen, 13–15,
157–182, 1971.
Crocchianti, S., Moroni, B., Waldhauserová, P. D., Becagli, S., Severi,
M., Traversi, R., and Cappelletti, D.: Potential source contribution
function analysis of high latitude dust sources over the arctic: Preliminary
results and prospects, Atmosphere-Basel, 12, 347,
https://doi.org/10.3390/atmos12030347, 2021.
Crusius, J.: Dissolved Fe Supply to the Central Gulf of Alaska Is Inferred
to Be Derived From Alaskan Glacial Dust That Is Not Resolved by Dust
Transport Models, J. Geophys. Res.-Biogeo., 126, 1–13,
https://doi.org/10.1029/2021JG006323, 2021.
Crusius, J., Schroth, A. W., Gassó, S., Moy, C. M., Levy, R. C., and
Gatica, M.: Glacial flour dust storms in the Gulf of Alaska: Hydrologic and
meteorological controls and their importance as a source of bioavailable
iron, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2010GL046573,
2011.
Crusius, J., Schroth, A. W., Resing, J. A., Cullen, J., and Campbell, R. W.:
Seasonal and spatial variabilities in northern Gulf of Alaska surface water
iron concentrations driven by shelf sediment resuspension, glacial
meltwater, a Yakutat eddy, and dust, Global Biogeochem. Cy., 31,
942–960, https://doi.org/10.1002/2016GB005493, 2017.
Djossou, J., Léon, J.-F., Akpo, A. B., Liousse, C., Yoboué, V., Bedou, M., Bodjrenou, M., Chiron, C., Galy-Lacaux, C., Gardrat, E., Abbey, M., Keita, S., Bahino, J., Touré N'Datchoh, E., Ossohou, M., and Awanou, C. N.: Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire), Atmos. Chem. Phys., 18, 6275–6291, https://doi.org/10.5194/acp-18-6275-2018, 2018.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck,
T. F., and Slutsker, I.: Accuracy assessments of aerosol optical properties
retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance
measurements, J. Geophys. Res.-Atmos., 105, 9791–9806,
https://doi.org/10.1029/2000JD900040, 2000.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M.
D., Tanré, D., and Slutsker, I.: Variability of absorption and optical
properties of key aerosol types observed in worldwide locations, J. Atmos.
Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:voaaop>2.0.co;2, 2002.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill,
N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical
depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res.-Atmos., 104, 31333–31349,
https://doi.org/10.1029/1999JD900923, 1999.
Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H.,
Chatenet, B., Li, Z., Singh, R. P., Tripathi, S. N., Reid, J. S., Giles, D.
M., Dubovik, O., O'Neill, N. T., Smirnov, A., Wang, P., and Xia, X.:
Climatological aspects of the optical properties of fine/coarse mode aerosol
mixtures, J. Geophys. Res.-Atmos., 115, 1–20,
https://doi.org/10.1029/2010JD014002, 2010.
Environment Canada: Daily Water Level Graph for KLUANE LAKE NEAR BURWASH LANDING (09CA001) [YT], Environment Canada [data set], https://wateroffice.ec.gc.ca/report/historical_e.html?stn=09CA001, last access: 13 May 2023.
Estevan, R., Martínez-Castro, D., Suarez-Salas, L., Moya, A., and
Silva, Y.: First two and a half years of aerosol measurements with an
AERONET sunphotometer at the Huancayo Observatory, Peru, Atmos. Environ.,
3, 100037, https://doi.org/10.1016/j.aeaoa.2019.100037, 2019.
Evan, A. T.: Downslope winds and dust storms in the salton basin, Mon.
Weather Rev., 147, 2387–2402, https://doi.org/10.1175/MWR-D-18-0357.1,
2019.
Formenti, P., Schütz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., and Zhang, D.: Recent progress in understanding physical and chemical properties of African and Asian mineral dust, Atmos. Chem. Phys., 11, 8231–8256, https://doi.org/10.5194/acp-11-8231-2011, 2011.
Foster, C., Hallam, H., and Mason, J.: Orbit determination and
differential-drag control of Planet Labs cubesat constellations, Adv.
Astronaut. Sci., 156, 645–657, 2016.
Foy, N., Copland, L., Zdanowicz, C., Demuth, M., and Hopkinson, C.: Recent
volume and area changes of Kaskawulsh Glacier, Yukon, Canada, J. Glaciol.,
57, 515–525, https://doi.org/10.3189/002214311796905596, 2011.
Gassó, S. and Stein, A. F.: Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean?, Geophys. Res. Lett., 34, L01801, https://doi.org/10.1029/2006GL027693, 2007.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Groot Zwaaftink, C. D., Grythe, H., Skov, H., and Stohl, A.: Substantial
contribution of northern high-latitude sources to mineral dust in the
Arctic, J. Geophys. Res., 121, 13678–13697,
https://doi.org/10.1002/2016JD025482, 2016.
Harley, G. L., King, J., and Maxwell, J. T.: Trans-Atlantic connections between North African dust flux and tree growth in the Florida Keys, United States, Earth Interact., 21, 1–22, https://doi.org/10.1175/EI-D-16-0035.1, 2017.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543,
https://doi.org/10.1029/1999RG000078, 2000.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Huang, Y., Kok, J. F., Martin, R. L., Swet, N., Katra, I., Gill, T. E., Reynolds, R. L., and Freire, L. S.: Fine dust emissions from active sands at coastal Oceano Dunes, California, Atmos. Chem. Phys., 19, 2947–2964, https://doi.org/10.5194/acp-19-2947-2019, 2019.
Huck, R., Bryant, R. G., and King, J.: Meterological data, Remote camera images, Zenodo [data set], https://doi.org/10.5281/zenodo.7249227, 2022.
Iftikhar, M., Alam, K., Sorooshian, A., Syed, W. A., Bibi, S., and Bibi, H.:
Contrasting aerosol optical and radiative properties between dust and urban
haze episodes in megacities of Pakistan, Atmos. Environ., 173, 157–172,
https://doi.org/10.1016/j.atmosenv.2017.11.011, 2018.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., ISBN 978-1-107-05799-1, 2013.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019.
Jacobson, Z.: A physically-based treatment of elemental carbon optics:
Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27,
217–220, 2000.
Jethva, H., Torres, O., and Yoshida, Y.: Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America, Atmos. Meas. Tech., 12, 4291–4307, https://doi.org/10.5194/amt-12-4291-2019, 2019.
Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as retrieved by MISR, J. Geophys. Res.-Atmos., 120, 4248–4281, https://doi.org/10.1002/2015JD023322, 2015.
Kandakji, T., Gill, T. E., and Lee, J. A.: Identifying and characterizing
dust point sources in the southwestern United States using remote sensing
and GIS, Geomoprhology, 353, 107019, https://doi.org/10.1016/j.geomorph.2019.107019, 2020.
Kok, J. F., Parteli, E. J. R., Michaels, T. I., and Karam, D. B.: The
physics of wind-blown sand and dust, Rep. Prog. Phys., 75, 106901,
https://doi.org/10.1088/0034-4885/75/10/106901, 2012.
Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L.,
Ward, D. S., Albani, S., and Haustein, K.: Smaller desert dust cooling
effect estimated from analysis of dust size and abundance, Nat. Geosci., 10,
274–278, https://doi.org/10.1038/ngeo2912, 2017.
Krinner, G., Boucher, O., and Balkanski, Y.: Ice-free glacial northern Asia
due to dust deposition on snow, Clim. Dynam., 27, 613–625,
https://doi.org/10.1007/s00382-006-0159-z, 2006.
Kylling, A., Groot Zwaaftink, C. D., and Stohl, A.: Mineral Dust
Instantaneous Radiative Forcing in the Arctic, Geophys. Res. Lett., 45,
4290–4298, https://doi.org/10.1029/2018GL077346, 2018.
Léon, J.-F., Akpo, A. B., Bedou, M., Djossou, J., Bodjrenou, M., Yoboué, V., and Liousse, C.: PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations, Atmos. Chem. Phys., 21, 1815–1834, https://doi.org/10.5194/acp-21-1815-2021, 2021.
Luo, T., Wang, Z., Zhang, D., Liu, X., Wang, Y., and Yuan, R.: Global dust
distribution from improved thin dust layer detection using A-train satellite
lidar observations, Geophys. Res. Lett., 42, 620–628,
https://doi.org/10.1002/2014GL062111, 2015.
Lyapustin, A., Korkin, S., Wang, Y., Quayle, B., and Laszlo, I.: Discrimination of biomass burning smoke and clouds in MAIAC algorithm, Atmos. Chem. Phys., 12, 9679–9686, https://doi.org/10.5194/acp-12-9679-2012, 2012.
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018.
Martins, V. S., Lyapustin, A., De Carvalho, L. A. S., Barbosa, C. C. F., and
Novo, E. M. L. M.: Validation of high-resolution MAIAC aerosol product over
South America, J. Geophys. Res., 122, 7537–7559,
https://doi.org/10.1002/2016JD026301, 2017.
McGrath, D., Steffen, K., Overeem, I., Mernild, S. H., Hasholt, B., and Van
Den Broeke, M.: Sediment plumes as a proxy for local ice-sheet runoff in
Kangerlussuaq Fjord, West Greenland, J. Glaciol., 56, 813–821,
https://doi.org/10.3189/002214310794457227, 2010.
McKnight, E. A., Swanson, H., Brahney, J., and Hik, D. S.: The physical and
chemical limnology of yukon's largest lake, lhù'ààn mân'
(Kluane lake), prior to the 2016 `aäy chù' diversion, Arct. Sci., 7,
655–678, https://doi.org/10.1139/as-2020-0012, 2021.
Meinander, O., Dagsson-Waldhauserova, P., Amosov, P., Aseyeva, E., Atkins, C., Baklanov, A., Baldo, C., Barr, S. L., Barzycka, B., Benning, L. G., Cvetkovic, B., Enchilik, P., Frolov, D., Gassó, S., Kandler, K., Kasimov, N., Kavan, J., King, J., Koroleva, T., Krupskaya, V., Kulmala, M., Kusiak, M., Lappalainen, H. K., Laska, M., Lasne, J., Lewandowski, M., Luks, B., McQuaid, J. B., Moroni, B., Murray, B., Möhler, O., Nawrot, A., Nickovic, S., O’Neill, N. T., Pejanovic, G., Popovicheva, O., Ranjbar, K., Romanias, M., Samonova, O., Sanchez-Marroquin, A., Schepanski, K., Semenkov, I., Sharapova, A., Shevnina, E., Shi, Z., Sofiev, M., Thevenet, F., Thorsteinsson, T., Timofeev, M., Umo, N. S., Uppstu, A., Urupina, D., Varga, G., Werner, T., Arnalds, O., and Vukovic Vimic, A.: Newly identified climatically and environmentally significant high-latitude dust sources, Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, 2022.
Mhawish, A., Banerjee, T., Sorek-Hamer, M., Lyapustin, A., Broday, D. M.,
and Chatfield, R.: Comparison and evaluation of MODIS Multi-angle
Implementation of Atmospheric Correction (MAIAC) aerosol product over South
Asia, Remote Sens. Environ., 224, 12–28,
https://doi.org/10.1016/j.rse.2019.01.033, 2019.
Mockford, T., Bullard, J. E., and Thorsteinsson, T.: The dynamic effects of
sediment availability on the relationship between wind speed and dust
concentration, Earth Surf. Proc. Land, 43, 2484–2492,
https://doi.org/10.1002/esp.4407, 2018.
Moroni, B., Arnalds, O., Dagsson-Waldhauserová, P., Crocchianti, S.,
Vivani, R., and Cappelletti, D.: Mineralogical and chemical records of
Icelandic dust sources upon Ny-Ålesund (Svalbard Islands), Front. Earth
Sci., 6, 1–13, https://doi.org/10.3389/feart.2018.00187, 2018.
Murray, B. J., Carslaw, K. S., and Field, P. R.: Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles, Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021, 2021.
Murray, J. E., Brindley, H. E., Bryant, R. G., Russell, J. E., Jenkins, K. F., and Washington, R.: Enhancing weak transient signals in SEVIRI false color imagery: Application to dust source detection in southern Africa, J. Geophys. Res.-Atmos., 121, 10199–10219, https://doi.org/10.1002/2016JD025221, 2016.
NASA: Kluane Lake V3 AOD, AERONET, NASA [data set], https://aeronet.gsfc.nasa.gov/cgi-bin/data_display_aod_v3?site=Kluane_Lake&nachal=2&level=3&place_code=10, last access: 13 May 2023.
Nickling, W. G.: Eolian Sediment Transport During Dust Storms: Slims River
Valley, Yukon Territory, Can. J. Earth Sci., 15, 1069–1084,
https://doi.org/10.1139/e78-114, 1978.
Nickling, W. G. and Brazel, A. J.: Surface wind characteristics along the
Icefield Ranges, Yukon Territory, Canada, Arct. Alp. Res., 17, 125–134,
https://doi.org/10.2307/1550842, 1985.
O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman,
S.: Spectral discrimination of coarse and fine mode optical depth, J. Geophys. Res., 108, 4559–4573, https://doi.org/10.1029/2002JD002975, 2003.
Ranjbar, K., O'Neill, N. T., Ivanescu, L., King, J., and Hayes, P. L.:
Remote sensing of a high-Arctic, local dust event over Lake Hazen (Ellesmere
Island, Nunavut, Canada), Atmos. Environ., 246, 118102,
https://doi.org/10.1016/j.atmosenv.2020.118102, 2021.
Platero, I. Y., Estevan, R., Moya, A., and Yuli, R. A.: Determining the
desert dust aerosol presence in the Mantaro Valley, Peru, Opt. Pura y Apl.,
51, 1–14, https://doi.org/10.7149/OPA.51.3.50023, 2018.
Prospero, J. M., Bullard, J. E., and Hodgkins, R.: High-latitude dust over the North Atlantic: Inputs from Icelandic proglacial dust storms, Science, 335, 1078–1082, https://doi.org/10.1126/science.1217447, 2012.
Ravi, S., Zobeck, T. M., Over, T. M., Okin, G. S., and D'Odorico, P.: On the
effect of moisture bonding forces in air-dry soils on threshold friction
velocity of wind erosion, Sedimentology, 53, 597–609,
https://doi.org/10.1111/j.1365-3091.2006.00775.x, 2006.
Réveillet, M., Dumont, M., Gascoin, S., Lafaysse, M., Nabat, P., Ribes,
A., Nheili, R., Tuzet, F., Ménégoz, M., Morin, S., Picard, G., and
Ginoux, P.: Black carbon and dust alter the response of mountain snow cover
under climate change, Nat. Commun., 13, 1–12,
https://doi.org/10.1038/s41467-022-32501-y, 2022.
Santese, M., De Tomasi, F., and Perrone, M. R.: Moderate Resolution Imaging
Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) retrievals
during dust outbreaks over the Mediterranean, J. Geophys. Res.-Atmos., 112,
1–14, https://doi.org/10.1029/2007JD008482, 2007.
Schepanski, K.: Transport of mineral dust and its impact on climate,
Geosci., 8, 151, https://doi.org/10.3390/geosciences8050151, 2018.
Schmale, J., Zieger, P., and Ekman, A. M. L.: Aerosols in current and future
Arctic climate, Nat. Clim. Chang., 11, 95–105,
https://doi.org/10.1038/s41558-020-00969-5, 2021.
Schroth, A. W., Crusius, J., Gassó, S., Moy, C. M., Buck, N. J., Resing,
J. A., and Campbell, R. W.: Atmospheric deposition of glacial iron in the
Gulf of Alaska impacted by the position of the Aleutian Low, Geophys. Res.
Lett., 44, 5053–5061, https://doi.org/10.1002/2017GL073565, 2017.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and
bimodal aerosol size distributions, J. Geophys. Res.-Atmos., 111, 1–14,
https://doi.org/10.1029/2005JD006328, 2006.
Shi, Y., Liu, X., Wu, M., Zhao, X., Ke, Z., and Brown, H.: Relative importance of high-latitude local and long-range-transported dust for Arctic ice-nucleating particles and impacts on Arctic mixed-phase clouds, Atmos. Chem. Phys., 22, 2909–2935, https://doi.org/10.5194/acp-22-2909-2022, 2022.
Shugar, D. H., Clague, J. J., Best, J. L., Schoof, C., Willis, M. J.,
Copland, L., and Roe, G. H.: River piracy and drainage basin reorganization
led by climate-driven glacier retreat, Nat. Geosci., 10, 370–375,
https://doi.org/10.1038/ngeo2932, 2017.
Singh, P., Vaishya, A., Rastogi, S., and Babu, S. S.: Seasonal heterogeneity
in aerosol optical properties over the subtropical humid region of northern
India, J. Atmos. Sol.-Terr. Phys., 201, 105246,
https://doi.org/10.1016/j.jastp.2020.105246, 2020.
Thorsteinsson, T., Gísladóttir, G., Bullard, J., and McTainsh, G.:
Dust storm contributions to airborne particulate matter in Reykjavík,
Iceland, Atmos. Environ., 45, 5924–5933,
https://doi.org/10.1016/j.atmosenv.2011.05.023, 2011.
Tobo, Y., Adachi, K., DeMott, P. J., Hill, T. C. J., Hamilton, D. S.,
Mahowald, N. M., Nagatsuka, N., Ohata, S., Uetake, J., Kondo, Y., and Koike,
M.: Glacially sourced dust as a potentially significant source of ice
nucleating particles, Nat. Geosci., 12, 253–258,
https://doi.org/10.1038/s41561-019-0314-x, 2019.
Urban, F. E., Goldstein, H. L., Fulton, R., and Reynolds, R. L.: Unseen Dust
Emission and Global Dust Abundance: Documenting Dust Emission from the
Mojave Desert (USA) by Daily Remote Camera Imagery and Wind-Erosion
Measurements, J. Geophys. Res.-Atmos., 123, 8735–8753,
https://doi.org/10.1029/2018JD028466, 2018.
van Soest, M. A. J., Bullard, J. E., Prater, M. C., Baddock, M. C., and
Anderson, N. J.: Annual and seasonal variability in high latitude dust
deposition, West Greenland, Earth Surf. Proc. Land., 47, 2393–2409,
https://doi.org/10.1002/esp.5384, 2022.
Verma, S., Prakash, D., Ricaud, P., Payra, S., Attié, J. L., and Soni,
M.: A new classification of aerosol sources and types as measured over
Jaipur, India, Aerosol Air Qual. Res., 15, 985–993,
https://doi.org/10.4209/aaqr.2014.07.0143, 2015.
Wang, L., Shi, Z. H., Wu, G. L., and Fang, N. F.: Freeze/thaw and soil
moisture effects on wind erosion, Geomorphology, 207, 141–148,
https://doi.org/10.1016/j.geomorph.2013.10.032, 2014.
Wientjes, I. G. M., Van de Wal, R. S. W., Reichart, G. J., Sluijs, A., and Oerlemans, J.: Dust from the dark region in the western ablation zone of the Greenland ice sheet, The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, 2011.
Williamson, S. N., Hik, D. S., Gamon, J. A., Kavanaugh, J. L., and Koh, S.:
Evaluating cloud contamination in clear-sky MODIS Terra daytime land surface
temperatures using ground-based meteorology station observations, J. Climate,
26, 1551–1560, https://doi.org/10.1175/JCLI-D-12-00250.1, 2014.
Xi, Y., Xu, C., Downey, A., Stevens, R., Bachelder, J. O., King, J., Hayes,
P. L., and Bertram, A. K.: Ice nucleating properties of airborne dust from
an actively retreating glacier in Yukon, Canada, RSC Chem. Biol., 2, 714–726,
https://doi.org/10.1039/d1ea00101a, 2022.
Yoshioka, M., Mahowald, N. M., Conley, A. J., Collins, W. D., Fillmore, D.
W., Zender, C. S., and Coleman, D. B.: Impact of desert dust radiative
forcing on sahel precipitation: Relative importance of dust compared to sea
surface temperature variations, vegetation changes, and greenhouse gas
warming, J. Climate, 20, 1445–1467, https://doi.org/10.1175/JCLI4056.1, 2007.
Yu, X., Shi, C., Ma, J., Zhu, B., Li, M., Wang, J., Yang, S., and Kang, N.:
Aerosol optical properties during firework, biomass burning and dust
episodes in Beijing, Atmos. Environ., 81, 475–484,
https://doi.org/10.1016/j.atmosenv.2013.08.067, 2013.
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
This study shows that mineral aerosol (dust) emission events in high-latitude areas are...
Altmetrics
Final-revised paper
Preprint