Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4521-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4521-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ground solar absorption observations of total column CO, CO2, CH4, and aerosol optical depth from California's Sequoia Lightning Complex Fire: emission factors and modified combustion efficiency at regional scales
Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
Sajjan Heerah
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Aaron G. Meyer
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Harrison A. Parker
Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
Manvendra Dubey
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Francesca M. Hopkins
Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
Related authors
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024, https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Short summary
Increases in agriculture, oil and gas, and waste management activities have contributed to the increase in atmospheric methane levels and resultant climate warming. In this paper, we explore the use of small uncrewed aircraft systems (sUASs) and AirCore technology to detect and quantify methane emissions. Results from field experiments demonstrate that sUASs and AirCore technology can be effective for detecting and quantifying methane emissions in near real time.
Emily Follansbee, James E. Lee, Mohit L. Dubey, Jonathan F. Dooley, Curtis Shuck, Ken Minschwaner, Andre Santos, Sebastien C. Biraud, and Manvendra K. Dubey
Atmos. Meas. Tech., 18, 4527–4542, https://doi.org/10.5194/amt-18-4527-2025, https://doi.org/10.5194/amt-18-4527-2025, 2025
Short summary
Short summary
This work uses ambient methane and wind measurements to quantify methane emissions from a leaking orphaned oil and gas well using Gaussian plume inversions. Our analysis shows that existing Gaussian plume methods that assume atmospheric stability are prone to large errors. We report a more robust analysis that determines plume dispersion coefficients from our in situ observations. Our technique enables more accurate methane quantification of orphaned oil and gas wells to prioritize plugging.
Marc N. Fiddler, Vaios Moschos, Megan M. McRee, Abu Sayeed Md Shawon, Kyle Gorkowski, James E. Lee, Nevil A. Franco, Katherine B. Benedict, Samir Kattel, Chelia Thompson, Manvendra K. Dubey, and Solomon Bililign
EGUsphere, https://doi.org/10.5194/egusphere-2025-2720, https://doi.org/10.5194/egusphere-2025-2720, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The study used a photoacoustic spectrometer as a reference instrument to determine the multiple-scattering correction factor Cλ for an AE33 aethalometer at three wavelengths, which we believe is critical for aerosol absorption measurements using aethalometer. This is an important parametrization of Cλ specifically geared towards BB aerosol from African fuels under different aging states, and is of particular importance for future field work in that continent which is at present least studied.
Mohit L. Dubey, Andre Santos, Andrew B. Moyes, Ken Reichl, James E. Lee, Manvendra K. Dubey, Corentin LeYhuelic, Evan Variano, Emily Follansbee, Fotini K. Chow, and Sébastien C. Biraud
Atmos. Meas. Tech., 18, 2987–3007, https://doi.org/10.5194/amt-18-2987-2025, https://doi.org/10.5194/amt-18-2987-2025, 2025
Short summary
Short summary
Orphaned wells, meaning wells lacking responsible owners, pose a significant and poorly understood environmental challenge. We propose, develop and test a novel method for estimating emissions from orphaned wells using a forced advection sampling technique (FAST) that can overcome many of the limitations in current methods (cost, accuracy, safety). Our results suggest that the FAST method can provide a low-cost alternative to existing methods over a range of leak rates.
Sina Hasheminassab, David M. Tratt, Olga V. Kalashnikova, Clement S. Chang, Morad Alvarez, Kerry N. Buckland, Michael J. Garay, Francesca M. Hopkins, Eric R. Keim, Le Kuai, Yaning Miao, Payam Pakbin, William C. Porter, and Mohammad H. Sowlat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1378, https://doi.org/10.5194/egusphere-2025-1378, 2025
Short summary
Short summary
Ammonia (NH3) is a key air pollutant linked to fine particle pollution, yet its sources remain poorly understood. Using airborne infrared imaging and ground sensors, we mapped NH3 emissions in California’s Salton Sea region with unprecedented detail. We found high emissions from farms, geothermal plants, and waste sites, including sources missing from inventories. These findings highlight the need for better NH3 monitoring to improve air quality models and guide pollution reduction strategies.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024, https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary
Short summary
Methane is a powerful greenhouse gas originating from both natural and human activities. We describe a new uncrewed aerial system (UAS) designed to measure methane emission rates over a wide range of scales. This system has been used for direct quantification of point sources and distributed emitters over scales of up to 1 km. The system uses simultaneous measurements of methane and ethane to distinguish between different kinds of natural and human-related emission sources.
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024, https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Short summary
Increases in agriculture, oil and gas, and waste management activities have contributed to the increase in atmospheric methane levels and resultant climate warming. In this paper, we explore the use of small uncrewed aircraft systems (sUASs) and AirCore technology to detect and quantify methane emissions. Results from field experiments demonstrate that sUASs and AirCore technology can be effective for detecting and quantifying methane emissions in near real time.
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Joshin Kumar, Theo Paik, Nishit J. Shetty, Patrick Sheridan, Allison C. Aiken, Manvendra K. Dubey, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 15, 4569–4583, https://doi.org/10.5194/amt-15-4569-2022, https://doi.org/10.5194/amt-15-4569-2022, 2022
Short summary
Short summary
Accurate long-term measurement of aerosol light absorption is vital for assessing direct aerosol radiative forcing. Light absorption by aerosols at the US Department of Energy long-term climate monitoring SGP site is measured using the Particle Soot Absorption Photometer (PSAP), which suffers from artifacts and biases difficult to quantify. Machine learning offers a promising path forward to correct for biases in the long-term absorption dataset at the SGP site and similar Class-I areas.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Nicole Jacobs, William R. Simpson, Kelly A. Graham, Christopher Holmes, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Debra Wunch, Rigel Kivi, Pauli Heikkinen, Justus Notholt, Christof Petri, and Thorsten Warneke
Atmos. Chem. Phys., 21, 16661–16687, https://doi.org/10.5194/acp-21-16661-2021, https://doi.org/10.5194/acp-21-16661-2021, 2021
Short summary
Short summary
Spatial patterns of carbon dioxide seasonal cycle amplitude and summer drawdown timing derived from the OCO-2 satellite over northern high latitudes agree well with corresponding estimates from two models. The Asian boreal forest is anomalous with the largest amplitude and earliest seasonal drawdown. Modeled land contact tracers suggest that accumulated CO2 exchanges during atmospheric transport play a major role in shaping carbon dioxide seasonality in northern high-latitude regions.
Taylor S. Jones, Jonathan E. Franklin, Jia Chen, Florian Dietrich, Kristian D. Hajny, Johannes C. Paetzold, Adrian Wenzel, Conor Gately, Elaine Gottlieb, Harrison Parker, Manvendra Dubey, Frank Hase, Paul B. Shepson, Levi H. Mielke, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 13131–13147, https://doi.org/10.5194/acp-21-13131-2021, https://doi.org/10.5194/acp-21-13131-2021, 2021
Short summary
Short summary
Methane emissions from leaks in natural gas pipes are often a large source in urban areas, but they are difficult to measure on a city-wide scale. Here we use an array of innovative methane sensors distributed around the city of Indianapolis and a new method of combining their data with an atmospheric model to accurately determine the magnitude of these emissions, which are about 70 % larger than predicted. This method can serve as a framework for cities trying to account for their emissions.
Alison R. Marklein, Deanne Meyer, Marc L. Fischer, Seongeun Jeong, Talha Rafiq, Michelle Carr, and Francesca M. Hopkins
Earth Syst. Sci. Data, 13, 1151–1166, https://doi.org/10.5194/essd-13-1151-2021, https://doi.org/10.5194/essd-13-1151-2021, 2021
Short summary
Short summary
Dairy cow farms produce half of California's (CA) methane (CH4) emissions. Current CH4 emission inventories lack regional variation in management and are inadequate to assess CH4 mitigation measures. We develop a spatial database of CH4 emissions for CA dairy farms including farm-scale herd demographics and management data. This database is useful to predict CH4 emission reductions from mitigation efforts, to compare with atmospheric CH4 observations and to attribute emissions to specific farms.
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
Nicole Jacobs, William R. Simpson, Debra Wunch, Christopher W. O'Dell, Gregory B. Osterman, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Rigel Kivi, and Pauli Heikkinen
Atmos. Meas. Tech., 13, 5033–5063, https://doi.org/10.5194/amt-13-5033-2020, https://doi.org/10.5194/amt-13-5033-2020, 2020
Short summary
Short summary
The boreal forest is the largest seasonally varying biospheric CO2-exchange region on Earth. This region is also undergoing amplified climate warming, leading to concerns about the potential for altered regional carbon exchange. Satellite missions, such as the Orbiting Carbon Observatory-2 (OCO-2) project, can measure CO2 abundance over the boreal forest but need validation for the assurance of accuracy. Therefore, we carried out a ground-based validation of OCO-2 CO2 data at three locations.
Cited articles
Adams, C., McLinden, C. A., Shephard, M. W., Dickson, N., Dammers, E., Chen, J., Makar, P., Cady-Pereira, K. E., Tam, N., Kharol, S. K., Lamsal, L. N., and Krotkov, N. A.: Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area, Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, 2019.
Aguilera, R., Corringham, T., Gershunov, A., and Benmarhnia, T.: Wildfire
smoke impacts respiratory health more than fine particles from other
sources: observational evidence from Southern California, Nat. Commun., 12,
1493, https://doi.org/10.1038/s41467-021-21708-0, 2021.
Ahangar, F., Cobian-Iñiguez, J., and Cisneros, R.: Combining Regulatory
Instruments and Low-Cost Sensors to Quantify the Effects of 2020 California
Wildfires on PM2.5 in San Joaquin Valley, Fire, 5, 64,
https://doi.org/10.3390/fire5030064, 2022.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Alberti, C., Hase, F., Frey, M., Dubravica, D., Blumenstock, T., Dehn, A., Castracane, P., Surawicz, G., Harig, R., Baier, B. C., Bès, C., Bi, J., Boesch, H., Butz, A., Cai, Z., Chen, J., Crowell, S. M., Deutscher, N. M., Ene, D., Franklin, J. E., García, O., Griffith, D., Grouiez, B., Grutter, M., Hamdouni, A., Houweling, S., Humpage, N., Jacobs, N., Jeong, S., Joly, L., Jones, N. B., Jouglet, D., Kivi, R., Kleinschek, R., Lopez, M., Medeiros, D. J., Morino, I., Mostafavipak, N., Müller, A., Ohyama, H., Palmer, P. I., Pathakoti, M., Pollard, D. F., Raffalski, U., Ramonet, M., Ramsay, R., Sha, M. K., Shiomi, K., Simpson, W., Stremme, W., Sun, Y., Tanimoto, H., Té, Y., Tsidu, G. M., Velazco, V. A., Vogel, F., Watanabe, M., Wei, C., Wunch, D., Yamasoe, M., Zhang, L., and Orphal, J.: Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON), Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, 2022a.
Alberti, C., Tu, Q., Hase, F., Makarova, M. V., Gribanov, K., Foka, S. C., Zakharov, V., Blumenstock, T., Buchwitz, M., Diekmann, C., Ertl, B., Frey, M. M., Imhasin, H. Kh., Ionov, D. V., Khosrawi, F., Osipov, S. I., Reuter, M., Schneider, M., and Warneke, T.: Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations, Atmos. Meas. Tech., 15, 2199–2229, https://doi.org/10.5194/amt-15-2199-2022, 2022b.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.
Bader, W., Bovy, B., Conway, S., Strong, K., Smale, D., Turner, A. J., Blumenstock, T., Boone, C., Collaud Coen, M., Coulon, A., Garcia, O., Griffith, D. W. T., Hase, F., Hausmann, P., Jones, N., Krummel, P., Murata, I., Morino, I., Nakajima, H., O'Doherty, S., Paton-Walsh, C., Robinson, J., Sandrin, R., Schneider, M., Servais, C., Sussmann, R., and Mahieu, E.: The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005, Atmos. Chem. Phys., 17, 2255–2277, https://doi.org/10.5194/acp-17-2255-2017, 2017.
Barreto, Á., García, O. E., Schneider, M., García, R. D., Hase, F., Sepúlveda, E., Almansa, A. F., Cuevas, E., and Blumenstock, T.: Spectral Aerosol Optical Depth Retrievals by Ground-Based Fourier Transform Infrared Spectrometry, Remote Sens., 12, 3148, https://doi.org/10.3390/rs12193148, 2020.
Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres, P., Roberts, J. M., Warneke, C., Urbanski, S. P., Reardon, J., Weise, D. R., Hao, W. M., and de Gouw, J.: Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States, Atmos. Chem. Phys., 10, 11115–11130, https://doi.org/10.5194/acp-10-11115-2010, 2010.
Burling, I. R., Yokelson, R. J., Akagi, S. K., Urbanski, S. P., Wold, C. E., Griffith, D. W. T., Johnson, T. J., Reardon, J., and Weise, D. R.: Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States, Atmos. Chem. Phys., 11, 12197–12216, https://doi.org/10.5194/acp-11-12197-2011, 2011.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth Calculations, J. Atmos. Oceanic Technol., 16, 1854–1861, https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2, 1999.
CARB: California Wildfire Emission Estimates, https://ww2.arb.ca.gov/wildfire-emissions (last access: 1 August 2022), 2020.
CARB: California Carbon Dioxide Inventory for 2000–2020,
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/ghg_inventory_scopingplan_2000-20co2.pdf (last access:
31 January 2023), 2022a.
CARB: California Methane Inventory for 2000–2020,
https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/ghg_inventory_scopingplan_2000-20ch4.pdf (last access: 31 January 2023), 2022b.
Chen, J., Viatte, C., Hedelius, J. K., Jones, T., Franklin, J. E., Parker, H., Gottlieb, E. W., Wennberg, P. O., Dubey, M. K., and Wofsy, S. C.: Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479–8498, https://doi.org/10.5194/acp-16-8479-2016, 2016.
Chen, X., Wang, J., Xu, X., Zhou, M., Zhang, H., Castro Garcia, L., Colarco,
P. R., Janz, S. J., Yorks, J., McGill, M., Reid, J. S., de Graaf, M., and
Kondragunta, S.: First retrieval of absorbing aerosol height over dark
target using TROPOMI oxygen B band: Algorithm development and application
for surface particulate matter estimates, Remote Sens. Environ., 265, 112674, https://doi.org/10.1016/j.rse.2021.112674, 2021.
Cho, C., Kim, S.-W., Choi, W., and Kim, M.-H.: Significant light absorption
of brown carbon during the 2020 California wildfires, Sci. Total Environ., 813, 152453, https://doi.org/10.1016/j.scitotenv.2021.152453, 2022.
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J.-C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., and Strahan, S. E.: The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives, Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, 2018.
Dietrich, F., Chen, J., Voggenreiter, B., Aigner, P., Nachtigall, N., and Reger, B.: MUCCnet: Munich Urban Carbon Column network, Atmos. Meas. Tech., 14, 1111–1126, https://doi.org/10.5194/amt-14-1111-2021, 2021.
ESA: Sentinel-5P Pre-Operations Data Hub, ESA [data set], https://s5phub.copernicus.eu/dhus, last access: 15 July 2022.
Freeborn, P. H., Jolly, W. M., Cochrane, M. A., and Roberts, G.: Large
wildfire driven increases in nighttime fire activity observed across CONUS
from 2003–2020, Remote Sens. Environ., 268, 112777, https://doi.org/10.1016/j.rse.2021.112777, 2022.
Frey, M., Sha, M. K., Hase, F., Kiel, M., Blumenstock, T., Harig, R., Surawicz, G., Deutscher, N. M., Shiomi, K., Franklin, J. E., Bösch, H., Chen, J., Grutter, M., Ohyama, H., Sun, Y., Butz, A., Mengistu Tsidu, G., Ene, D., Wunch, D., Cao, Z., Garcia, O., Ramonet, M., Vogel, F., and Orphal, J.: Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer, Atmos. Meas. Tech., 12, 1513–1530, https://doi.org/10.5194/amt-12-1513-2019, 2019.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Griffin, D., McLinden, C. A., Dammers, E., Adams, C., Stockwell, C. E., Warneke, C., Bourgeois, I., Peischl, J., Ryerson, T. B., Zarzana, K. J., Rowe, J. P., Volkamer, R., Knote, C., Kille, N., Koenig, T. K., Lee, C. F., Rollins, D., Rickly, P. S., Chen, J., Fehr, L., Bourassa, A., Degenstein, D., Hayden, K., Mihele, C., Wren, S. N., Liggio, J., Akingunola, A., and Makar, P.: Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation, Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, 2021.
Gutierrez, A. A., Hantson, S., Langenbrunner, B., Chen, B., Jin, Y.,
Goulden, M. L., and Randerson, J. T.: Wildfire response to changing daily
temperature extremes in California's Sierra Nevada, Sci. Adv., 7, eabe6417,
https://doi.org/10.1126/sciadv.abe6417, 2021.
Hase, F., Frey, M., Kiel, M., Blumenstock, T., Harig, R., Keens, A., and Orphal, J.: Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements, Atmos. Meas. Tech., 9, 2303–2313, https://doi.org/10.5194/amt-9-2303-2016, 2016.
Hedelius, J. K., Viatte, C., Wunch, D., Roehl, C. M., Toon, G. C., Chen, J., Jones, T., Wofsy, S. C., Franklin, J. E., Parker, H., Dubey, M. K., and Wennberg, P. O.: Assessment of errors and biases in retrievals of XCO2, XCH4, XCO, and XN2O from a 0.5 cm−1 resolution solar-viewing spectrometer, Atmos. Meas. Tech., 9, 3527–3546, https://doi.org/10.5194/amt-9-3527-2016, 2016.
Hedelius, J. K. and Wennberg, P. O.: EM27/SUN GGG interferogram processing suite (2014.3), CaltechDATA [code], https://doi.org/10.22002/D1.306, 2017.
Heerah, S., Frausto-Vicencio, I., Jeong, S., Marklein, A. R., Ding, Y.,
Meyer, A. G., Parker, H. A., Fischer, M. L., Franklin, J. E., Hopkins, F.
M., and Dubey, M.: Dairy Methane Emissions in California's San Joaquin
Valley Inferred With Ground-Based Remote Sensing Observations in the Summer
and Winter, J. Geophys. Res.-Atmos., 126, e2021JD034785, https://doi.org/10.1029/2021JD034785, 2021.
Herrera, S. A., Diskin, G. S., Harward, C., Sachse, G., De Wekker, S. F. J.,
Yang, M., Choi, Y., Wisthaler, A., Mallia, D. V., and Pusede, S. E.:
Wintertime Nitrous Oxide Emissions in the San Joaquin Valley of California
Estimated from Aircraft Observations, Environ. Sci. Technol., 55,
4462–4473, https://doi.org/10.1021/acs.est.0c08418, 2021.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani,
A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L.,
Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, T. K.,
Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.,
2021.
Jacobs, N.: Vetting Model and Satellite-Based Estimates of Regional Scale Carbon Exchange at Northern High Latitudes Using Solar-Viewing Infrared Spectroscopy, Ph.D. Dissertation, University of Alaska Fairbanks, ProQuest Publishing, https://www.proquest.com/openview/71a47e7ba937aa70a227fed926ab5826/1?pq-origsite=gscholar&cbl=18750&diss=y (last access: 15 September 2022), 2021.
Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T., and
Flannigan, M. D.: Observed increases in extreme fire weather driven by
atmospheric humidity and temperature, Nat. Clim. Change, 12, 63–70,
https://doi.org/10.1038/s41558-021-01224-1, 2022.
Jin, X., Zhu, Q., and Cohen, R. C.: Direct estimates of biomass burning NO2 emissions and lifetimes using daily observations from TROPOMI, Atmos. Chem. Phys., 21, 15569–15587, https://doi.org/10.5194/acp-21-15569-2021, 2021.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kampe, T. U. and Sokolik, I. N.: Remote sensing retrievals of fine mode
aerosol optical depth and impacts on its correlation with CO from biomass
burning, Geophys. Res. Lett., 34, L12806, https://doi.org/10.1029/2007GL029805, 2007.
Kasten, F. and Young, A. T.: Revised optical air mass tables and approximation formula, Appl. Opt., 28, 4735, https://doi.org/10.1364/AO.28.004735, 1989.
Kille, N., Zarzana, K. J., Alvarez, J. R., Lee, C. F., Rowe, J. P., Howard,
B., Campos, T., Hills, A., Hornbrook, R. S., Ortega, I., Permar, W., Ku, I.
T., Lindaas, J., Pollack, I. B., Sullivan, A. P., Zhou, Y., Fredrickson, C.
D., Palm, B. B., Peng, Q., Apel, E. C., Hu, L., Collett, J. L., Fischer, E.
V., Flocke, F., Hannigan, J. W., Thornton, J., and Volkamer, R.: The CU
Airborne Solar Occultation Flux Instrument: Performance Evaluation during
BB-FLUX, ACS Earth Space Chem., 6, 582–596, 2022.
Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, C., and Veraverbeke, S.:
Influence of Fire on the Carbon Cycle and Climate, Curr. Clim. Change Rep., 5, 112–123, https://doi.org/10.1007/s40641-019-00128-9, 2019.
Li, M., Karu, E., Brenninkmeijer, C., Fischer, H., Lelieveld, J., and
Williams, J.: Tropospheric OH and stratospheric OH and Cl concentrations
determined from CH4, CH3Cl, and SF6 measurements, npj Clim. Atmos. Sci., 1, 1–7, https://doi.org/10.1038/s41612-018-0041-9, 2018.
Lindenmaier, R., Dubey, M. K., Henderson, B. G., Butterfield, Z. T., Herman,
J. R., Rahn, T., and Lee, S.-H.: Multiscale observations of CO2,
13CO2, and pollutants at Four Corners for emission verification
and attribution, P. Natl. Acad. Sci. USA, 111, 8386–8391,
https://doi.org/10.1073/pnas.1321883111, 2014.
Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J.,
Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin,
G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E.,
Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B. B.,
Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J.,
Shilling, J. E., Springston, S., St. Clair, J. M., Tanner, D. J., Teng, A.
P., Wennberg, P. O., Wisthaler, A., and Wolfe, G. M.: Airborne measurements
of western U.S. wildfire emissions: Comparison with prescribed burning and
air quality implications, J. Geophys. Res.-Atmos., 122, 6108–6129,
https://doi.org/10.1002/2016JD026315, 2017.
Lobert, J. M.: Trace gases and air mass origin at Kaashidhoo, Indian Ocean,
J. Geophys. Res., 107, 8013, https://doi.org/10.1029/2001JD000731, 2002.
Lueker, T. J., Keeling, R. F., and Dubey, M. K.: The oxygen to carbon
dioxide ratios observed in emissions from a wildfire in northern California,
Geophys. Res. Lett., 28, 2413–2416, https://doi.org/10.1029/2000GL011860,
2001.
Lutsch, E., Dammers, E., Conway, S., and Strong, K.: Long-range transport of
NH3, CO, HCN, and C2H6 from the 2014 Canadian Wildfires, Geophys. Res. Lett., 43, 8286–8297, https://doi.org/10.1002/2016GL070114, 2016.
Lutsch, E., Strong, K., Jones, D. B. A., Blumenstock, T., Conway, S., Fisher, J. A., Hannigan, J. W., Hase, F., Kasai, Y., Mahieu, E., Makarova, M., Morino, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Poberovskii, A. V., Sussmann, R., and Warneke, T.: Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem, Atmos. Chem. Phys., 20, 12813–12851, https://doi.org/10.5194/acp-20-12813-2020, 2020.
Makarova, M. V., Alberti, C., Ionov, D. V., Hase, F., Foka, S. C., Blumenstock, T., Warneke, T., Virolainen, Y. A., Kostsov, V. S., Frey, M., Poberovskii, A. V., Timofeyev, Y. M., Paramonova, N. N., Volkova, K. A., Zaitsev, N. A., Biryukov, E. Y., Osipov, S. I., Makarov, B. K., Polyakov, A. V., Ivakhov, V. M., Imhasin, H. Kh., and Mikhailov, E. F.: Emission Monitoring Mobile Experiment (EMME): an overview and first results of the St. Petersburg megacity campaign 2019, Atmos. Meas. Tech., 14, 1047–1073, https://doi.org/10.5194/amt-14-1047-2021, 2021.
Marklein, A. R., Meyer, D., Fischer, M. L., Jeong, S., Rafiq, T., Carr, M., and Hopkins, F. M.: Facility-scale inventory of dairy methane emissions in California: implications for mitigation, Earth Syst. Sci. Data, 13, 1151–1166, https://doi.org/10.5194/essd-13-1151-2021, 2021.
McKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R.,
Floerchinger, C., Herndon, S. C., Nehrkorn, T., Zahniser, M. S., Jackson, R.
B., Phillips, N., and Wofsy, S. C.: Methane emissions from natural gas
infrastructure and use in the urban region of Boston, Massachusetts, P. Natl. Acad. Sci. USA, 112, 1941–1946, https://doi.org/10.1073/pnas.1416261112, 2015.
McMillan, W. W., Warner, J. X., Comer, M. M., Maddy, E., Chu, A., Sparling,
L., Eloranta, E., Hoff, R., Sachse, G., Barnet, C., Razenkov, I., and Wolf,
W.: AIRS views transport from 12 to 22 July 2004 Alaskan/Canadian fires:
Correlation of AIRS CO and MODIS AOD with forward trajectories and
comparison of AIRS CO retrievals with DC-8 in situ measurements during
INTEX-A/ICARTT, J. Geophys. Res., 113, D20301,
https://doi.org/10.1029/2007JD009711, 2008.
Moody, T. J., Fites-Kaufman, J., and Stephens, S. L.: Fire history and
climate influences from forests in the Northern Sierra Nevada, USA, Fire
Ecol., 2, 115–141, https://doi.org/10.4996/fireecology.0201115, 2006.
Morris III, G. and Dennis, C.: 2020 Fire Siege, CALFIRE, https://www.fire.ca.gov/media/hsviuuv3/cal-fire-2020-fire-siege.pdf (last access: 15 July 2022), 2020.
Mühle, J., Lueker, T. J., Su, Y., Miller, B. R., Prather, K. A., and Weiss, R. F.: Trace gas and particulate emissions from the 2003 southern California wildfires, J. Geophys. Res., 112, D03307, https://doi.org/10.1029/2006JD007350, 2007.
Navarro, K. M., Cisneros, R., and Balmes, J. R.: Air-Quality Impacts and
Intake Fraction of PM2.5 during the 2013 Rim Megafire, Environ. Sci.
Technol., 50, 11965–11973, 2016.
NASA: Observing System Data and Information System (EOSDIS), NASA [data set], https://worldview.earthdata.nasa.gov, last access: 15 July 2022a.
NASA: AErosol RObotic NETwork (AERONET), NASA [data set], https://aeronet.gsfc.nasa.gov, last access: 15 June 2022b.
NASA: Fire Information for Resource Management System (FIRMS), NASA [data set], https://firms.modaps.eosdis.nasa.gov/, last access: 15 June 2022c.
NOAA: Physical Sciences Laboratory (PSL), NOAA [data set], ftp://ftp1.psl.noaa.gov/psd2/data/realtime/Radar915/, last access: 15 June 2022.
Paton-Walsh, C., Jones, N. B., Wilson, S. R., Haverd, V., Meier, A.,
Griffith, D. W. T., and Rinsland, C. P.: Measurements of trace gas emissions
from Australian forest fires and correlations with coincident measurements
of aerosol optical depth, J. Geophys. Res., 110, D24305,
https://doi.org/10.1029/2005JD006202, 2005.
Prichard, S. J., O'Neill, S. M., Eagle, P., Andreu, A. G., Drye, B., Dubowy,
J., Urbanski, S., and Strand, T. M.: Wildland fire emission factors in North
America: synthesis of existing data, measurement needs and management
applications, Int. J. Wildland Fire, 29, 132, https://doi.org/10.1071/WF19066, 2020.
Reinhardt, E. D. and Dickinson, M. B.: First-Order Fire Effects Models for
Land Management: Overview and Issues, Fire Ecol., 6, 131–142,
https://doi.org/10.4996/fireecology.0601131, 2010.
Rowe, J. P., Zarzana, K. J., Kille, N., Borsdorff, T., Goudar, M., Lee, C. F., Koenig, T. K., Romero-Alvarez, J., Campos, T., Knote, C., Theys, N., Landgraf, J., and Volkamer, R.: Carbon Monoxide in Optically Thick Wildfire Smoke: Evaluating TROPOMI Using CU Airborne SOF Column Observations, ACS Earth Space Chem., 6, 1799–1812, https://doi.org/10.1021/acsearthspacechem.2c00048, 2022.
Sagar, V. K., Pathakoti, M., D. V., M., K. S., R., M. V. R., S. S., Hase, F.,
Dubravica, D., and Sha, M. K.: Ground-Based Remote Sensing of Total Columnar
CO2, CH4, and CO Using EM27/SUN FTIR Spectrometer at a
Suburban Location (Shadnagar) in India and Validation of
Sentinel-5P/TROPOMI, IEEE Geosci. Remote S., 19, 1–5,
https://doi.org/10.1109/LGRS.2022.3171216, 2022.
Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., and Burrows, J. P.: Severe Californian wildfires in November 2018 observed from space: the carbon monoxide perspective, Atmos. Chem. Phys., 20, 3317–3332, https://doi.org/10.5194/acp-20-3317-2020, 2020.
Scholl, A. E. and Taylor, A. H.: Fire regimes, forest change, and
self-organization in an old-growth mixed-conifer forest, Yosemite National
Park, USA, Ecol. Appl., 20, 362–380, https://doi.org/10.1890/08-2324.1, 2010.
Sha, M. K., Langerock, B., Blavier, J.-F. L., Blumenstock, T., Borsdorff, T., Buschmann, M., Dehn, A., De Mazière, M., Deutscher, N. M., Feist, D. G., García, O. E., Griffith, D. W. T., Grutter, M., Hannigan, J. W., Hase, F., Heikkinen, P., Hermans, C., Iraci, L. T., Jeseck, P., Jones, N., Kivi, R., Kumps, N., Landgraf, J., Lorente, A., Mahieu, E., Makarova, M. V., Mellqvist, J., Metzger, J.-M., Morino, I., Nagahama, T., Notholt, J., Ohyama, H., Ortega, I., Palm, M., Petri, C., Pollard, D. F., Rettinger, M., Robinson, J., Roche, S., Roehl, C. M., Röhling, A. N., Rousogenous, C., Schneider, M., Shiomi, K., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., Uchino, O., Velazco, V. A., Vigouroux, C., Vrekoussis, M., Wang, P., Warneke, T., Wizenberg, T., Wunch, D., Yamanouchi, S., Yang, Y., and Zhou, M.: Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations, Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, 2021.
Stephensen, N. and Brigham, C.: Preliminary Estimates of Sequoia Mortality
in the 2020 Castle Fire, U.S. National Park Service,
https://www.nps.gov/articles/000/preliminary-estimates-of-sequoia-mortality-in-the-2020-castle-fire.htm (last access: 15 June 2022),
2021.
Toon, G., Blavier, J.-F., Washenfelder, R., Wunch, D., Keppel-Aleks, G.,
Wennberg, P., Connor, B., Sherlock, V., Griffith, D., Deutscher, N., and
Notholt, J.: Total Column Carbon Observing Network (TCCON), Advances in Imaging, OSA Technical Digest (CD) (Optica Publishing Group), paper JMA3,
https://doi.org/10.1364/FTS.2009.JMA3, 2009.
UNEP: Spreading like Wildfire – The Rising Threat of Extraordinary
Landscape Fires – A Rapid Response Assessment, United Nations Environment Programme, Nairobi, https://wedocs.unep.org/20.500.11822/38372, (last access: July 15, 2022), 2022.
Urbanski, S.: Wildland fire emissions, carbon, and climate: Emission
factors, Forest Ecol. Manag., 317, 51–60, https://doi.org/10.1016/j.foreco.2013.05.045, 2014.
Urbanski, S. P.: Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US, Atmos. Chem. Phys., 13, 7241–7262, https://doi.org/10.5194/acp-13-7241-2013, 2013.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Viatte, C., Strong, K., Walker, K. A., and Drummond, J. R.: Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic, Atmos. Meas. Tech., 7, 1547–1570, https://doi.org/10.5194/amt-7-1547-2014, 2014.
Viatte, C., Strong, K., Hannigan, J., Nussbaumer, E., Emmons, L. K., Conway, S., Paton-Walsh, C., Hartley, J., Benmergui, J., and Lin, J.: Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models, Atmos. Chem. Phys., 15, 2227–2246, https://doi.org/10.5194/acp-15-2227-2015, 2015.
Viatte, C., Lauvaux, T., Hedelius, J. K., Parker, H., Chen, J., Jones, T., Franklin, J. E., Deng, A. J., Gaudet, B., Verhulst, K., Duren, R., Wunch, D., Roehl, C., Dubey, M. K., Wofsy, S., and Wennberg, P. O.: Methane emissions from dairies in the Los Angeles Basin, Atmos. Chem. Phys., 17, 7509–7528, https://doi.org/10.5194/acp-17-7509-2017, 2017.
Vogel, F. R., Frey, M., Staufer, J., Hase, F., Broquet, G., Xueref-Remy, I., Chevallier, F., Ciais, P., Sha, M. K., Chelin, P., Jeseck, P., Janssen, C., Té, Y., Groß, J., Blumenstock, T., Tu, Q., and Orphal, J.: XCO2 in an emission hot-spot region: the COCCON Paris campaign 2015, Atmos. Chem. Phys., 19, 3271–3285, https://doi.org/10.5194/acp-19-3271-2019, 2019.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Whitburn, S., Van Damme, M., Kaiser, J. W., van der Werf, G. R., Turquety,
S., Hurtmans, D., Clarisse, L., Clerbaux, C., and Coheur, P.-F.: Ammonia
emissions in tropical biomass burning regions: Comparison between
satellite-derived emissions and bottom-up fire inventories, Atmos. Environ., 121, 42–54, https://doi.org/10.1016/j.atmosenv.2015.03.015, 2015.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Wilmot, T. Y., Mallia, D. V., Hallar, A. G., and Lin, J. C.: Wildfire plumes
in the Western US are reaching greater heights and injecting more aerosols
aloft as wildfire activity intensifies, Sci. Rep.-UK, 12, 12400,
https://doi.org/10.1038/s41598-022-16607-3, 2022.
Wunch, D., Wennberg, P. O., Toon, G. C., Keppel-Aleks, G., and Yavin, Y. G.:
Emissions of greenhouse gases from a North American megacity, Geophys. Res. Lett., 36, L15810, https://doi.org/10.1029/2009GL039825, 2009.
Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J.,
Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The
Total Carbon Column Observing Network, Philos. T. Roy. Soc. A, 369,
2087–2112, https://doi.org/10.1098/rsta.2010.0240, 2011.
Xu, Q., Westerling, A. L., Notohamiprodjo, A., Wiedinmyer, C., Picotte, J.
J., Parks, S. A., Hurteau, M. D., Marlier, M. E., Kolden, C. A., Sam, J. A.,
Baldwin, W. J., and Ade, C.: Wildfire burn severity and emissions inventory:
an example implementation over California, Environ. Res. Lett., 17, 085008,
https://doi.org/10.1088/1748-9326/ac80d0, 2022.
Yates, E. L., Iraci, L. T., Singh, H. B., Tanaka, T., Roby, M. C., Hamill,
P., Clements, C. B., Lareau, N., Contezac, J., Blake, D. R., Simpson, I. J.,
Wisthaler, A., Mikoviny, T., Diskin, G. S., Beyersdorf, A. J., Choi, Y.,
Ryerson, T. B., Jimenez, J. L., Campuzano-Jost, P., Loewenstein, M., and
Gore, W.: Airborne measurements and emission estimates of greenhouse gases
and other trace constituents from the 2013 California Yosemite Rim wildfire,
Atmos. Environ., 127, 293–302, https://doi.org/10.1016/j.atmosenv.2015.12.038, 2016.
Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E.,
Wade, D. D., Bertschi, I., Griffith, D. W. T., and Hao, W. M.: Emissions of
formaldehyde, acetic acid, methanol, and other trace gases from biomass
fires in North Carolina measured by airborne Fourier transform infrared
spectroscopy, J. Geophys. Res., 104, 30109–30125,
https://doi.org/10.1029/1999JD900817, 1999.
Yokelson, R. J., Burling, I. R., Urbanski, S. P., Atlas, E. L., Adachi, K., Buseck, P. R., Wiedinmyer, C., Akagi, S. K., Toohey, D. W., and Wold, C. E.: Trace gas and particle emissions from open biomass burning in Mexico, Atmos. Chem. Phys., 11, 6787–6808, https://doi.org/10.5194/acp-11-6787-2011, 2011.
Yokelson, R. J., Andreae, M. O., and Akagi, S. K.: Pitfalls with the use of enhancement ratios or normalized excess mixing ratios measured in plumes to characterize pollution sources and aging, Atmos. Meas. Tech., 6, 2155–2158, https://doi.org/10.5194/amt-6-2155-2013, 2013.
Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E., and Hall, A.:
Quantifying contributions of natural variability and anthropogenic forcings
on increased fire weather risk over the western United States, P. Natl. Acad. Sci. USA, 118, e2111875118, https://doi.org/10.1073/pnas.2111875118, 2021.
Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E.,
Al-Saadi, J. A., Hilton, B. B., Nicks, D. K., Newchurch, M. J., Carr, J. L.,
Janz, S. J., Andraschko, M. R., Arola, A., Baker, B. D., Canova, B. P., Chan
Miller, C., Cohen, R. C., Davis, J. E., Dussault, M. E., Edwards, D. P.,
Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J. R.,
Houck, J., Jacob, D. J., Joiner, J., Kerridge, B. J., Kim, J., Krotkov, N.
A., Lamsal, L., Li, C., Lindfors, A., Martin, R. V., McElroy, C. T.,
McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R., O'Sullivan,
E. J., Palmer, P. I., Pierce, R. B., Pippin, M. R., Saiz-Lopez, A., Spurr,
R. J. D., Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang,
H., Wang, J., and Chance, K.: Tropospheric emissions: Monitoring of
pollution (TEMPO), J. Quant. Spectrosc. Ra., 186, 17–39, https://doi.org/10.1016/j.jqsrt.2016.05.008, 2017.
Short summary
Wildfires are increasing in the western USA, making it critical to understand the impacts of greenhouse gases and air pollutants on the atmosphere. We used a ground-based remote sensing technique to measure the greenhouse gases and aerosol in the atmosphere. We isolate a large smoke plume from a nearby wildfire and calculate variables to understand the fuel properties and combustion phases. We find that a significant amount of methane is emitted from the 2020 California wildfire season.
Wildfires are increasing in the western USA, making it critical to understand the impacts of...
Altmetrics
Final-revised paper
Preprint