Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10517-2023
https://doi.org/10.5194/acp-23-10517-2023
Research article
 | 
25 Sep 2023
Research article |  | 25 Sep 2023

An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation

Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen

Related authors

Rapid formation of secondary aerosol precursors from the autoxidation of C5–C8 n-aldehydes
Shawon Barua, Avinash Kumar, Prasenjit Seal, Siddharth Iyer, and Matti Rissanen
EGUsphere, https://doi.org/10.5194/egusphere-2025-5207,https://doi.org/10.5194/egusphere-2025-5207, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Cited articles

Albaladejo, J., Ballesteros, B., Jiménez, E., Martín, P., and Martínez, E.: A PLP–LIF kinetic study of the atmospheric reactivity of a series of C4C7 saturated and unsaturated aliphatic aldehydes with OH, Atmos. Environ., 36, 3231–3239, https://doi.org/10.1016/S1352-2310(02)00323-0, 2002. a, b
Atkinson, R.: Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method, Atmos. Environ., 41, 8468–8485, https://doi.org/10.1016/j.atmosenv.2007.07.002, 2007. a
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003. a, b
Barua, S.: An aldehyde as a rapid source of secondary aerosol precursors: Theoretical and experimental study of hexanal autoxidation, Zenodo [data set], https://doi.org/10.5281/zenodo.8212748, 2022. a
Berndt, T. and Böge, O.: Formation of phenol and carbonyls from the atmospheric reaction of OH radicals with benzene, Phys. Chem. Chem. Phys., 8, 1205–1214, https://doi.org/10.1039/B514148F, 2006. a
Download
Short summary
This work illustrates how a common volatile hydrocarbon, hexanal, has the potential to undergo atmospheric autoxidation that leads to prompt formation of condensable material that subsequently contributes to aerosol formation, deteriorating the air quality of urban atmospheres. We used the combined state-of-the-art quantum chemical modeling and experimental flow reactor experiments under atmospheric conditions to resolve the autoxidation mechanism of hexanal initiated by a common oxidant.
Share
Altmetrics
Final-revised paper
Preprint