Articles | Volume 22, issue 9
https://doi.org/10.5194/acp-22-5743-2022
https://doi.org/10.5194/acp-22-5743-2022
Research article
 | 
03 May 2022
Research article |  | 03 May 2022

Stability-dependent increases in liquid water with droplet number in the Arctic

Rebecca J. Murray-Watson and Edward Gryspeerdt

Related authors

Investigating the development of clouds within marine cold air outbreaks
Rebecca J. Murray-Watson, Edward Gryspeerdt, and Tom Goren
EGUsphere, https://doi.org/10.5194/egusphere-2023-734,https://doi.org/10.5194/egusphere-2023-734, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Observing short-timescale cloud development to constrain aerosol–cloud interactions
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022,https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023,https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023,https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Surface-based observations of cold-air outbreak clouds during the COMBLE field campaign
Zackary Mages, Pavlos Kollias, Zeen Zhu, and Edward P. Luke
Atmos. Chem. Phys., 23, 3561–3574, https://doi.org/10.5194/acp-23-3561-2023,https://doi.org/10.5194/acp-23-3561-2023, 2023
Short summary
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023,https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Profile-based estimated inversion strength
Zhenquan Wang, Jian Yuan, Robert Wood, Yifan Chen, and Tiancheng Tong
Atmos. Chem. Phys., 23, 3247–3266, https://doi.org/10.5194/acp-23-3247-2023,https://doi.org/10.5194/acp-23-3247-2023, 2023
Short summary

Cited articles

Ackerman, A., Kirkpatrick, M., Stevens, D., and Toon, O.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004. a, b
Albrecht, B. A.: Aerosols, Cloud Microphys. Fract. Cloud. Sci., 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006JD007547, 2007. a
Bennartz, R., Shupe, M., Turner, D., Walden, V., Steffan, K., Cox, C., Kulie, M., Miller, N., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002, 2013. a
Boeke, R. C., Taylor, P. C., and Sejas, S. A.: On the Nature of the Arctic's Positive Lapse-Rate Feedback, Geophys. Res. Lett., 48, e2020GL091109, https://doi.org/10.1029/2020GL091109, 2021. a
Download
Short summary
Clouds are important to the Arctic surface energy budget, but the impact of aerosols on their properties is largely uncertain. This work shows that the response of liquid water path to cloud droplet number increases is strongly dependent on lower tropospheric stability (LTS), with weaker cooling effects in polluted clouds and at high LTS. LTS is projected to decrease in a warmer Arctic, reducing the cooling effect of aerosols and producing a positive, aerosol-dependent cloud feedback.
Altmetrics
Final-revised paper
Preprint