Articles | Volume 22, issue 24
https://doi.org/10.5194/acp-22-16111-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-16111-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Record-breaking statistics detect islands of cooling in a sea of warming
Elisa T. Sena
Multidisciplinary Department, Federal University of São Paulo,
São Paulo, Brazil
Department of Earth and Planetary Sciences, Weizmann Institute of
Sciences, Rehovot, Israel
Orit Altaratz
Department of Earth and Planetary Sciences, Weizmann Institute of
Sciences, Rehovot, Israel
Alexander B. Kostinski
Department of Physics, Michigan Technological University, Houghton, MI,
USA
Related authors
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Huan Liu, Ilan Koren, Orit Altaratz, and Shutian Mu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2574, https://doi.org/10.5194/egusphere-2025-2574, 2025
Short summary
Short summary
Clouds play a crucial role in Earth's climate by reflecting sunlight and trapping heat. Understanding how clouds respond to global warming (cloud feedback) is essential for climate change. However, the natural climate variability, like ENSO, can distort these estimates. Relying on long-term reanalysis data and simulations, this study finds that ENSO with a typical periodicity of 2–7 years can introduce a significant bias on cloud feedback estimates on even decadal to century time scales.
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/10.48550/arXiv.2405.11545, https://doi.org/10.48550/arXiv.2405.11545, 2024
Preprint withdrawn
Short summary
Short summary
This letter explores a novel approach for the formation of cloud droplets in rising adiabatic air parcels. Our approach combines microphysical equations accounting for moisture, updrafts and concentration of aerosols. Our analysis reveals three regimes: A) Low moisture and high concentration can hinder activation; B) Droplets can activate and stabilize above critical sizes, and C) sparse clouds can have droplets exhibiting activation and deactivation cycles.
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024, https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
Short summary
In this article, we demonstrate the feasibility of applying advanced radar technology to detect liquid droplets generated in the cloud chamber. Specifically, we show that using radar with centimeter-scale resolution, single drizzle drops with a diameter larger than 40 µm can be detected. This study demonstrates the applicability of remote sensing instruments in laboratory experiments and suggests new applications of ultrahigh-resolution radar for atmospheric sensing.
Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun
Atmos. Chem. Phys., 23, 6559–6569, https://doi.org/10.5194/acp-23-6559-2023, https://doi.org/10.5194/acp-23-6559-2023, 2023
Short summary
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021, https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Short summary
Describing cloud mixing processes is among the most challenging fronts in cloud physics. Therefore, the adiabatic fraction (AF) that serves as a mixing measure is a valuable metric. We use high-resolution (10 m) simulations of single clouds with a passive tracer to test the skill of different methods used to derive AF. We highlight a method that is insensitive to the available cloud samples and allows considering microphysical effects on AF estimations in different environmental conditions.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020, https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
Cited articles
Alexander, L. V.: Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond, Weather and Climate Extremes, 11, 4–16,
https://doi.org/10.1016/j.wace.2015.10.007, 2016.
Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A.,
Pershing, A. J., Thomas, A. C., and Carmack, E. C.: Projected sea surface
temperatures over the 21st century: Changes in the mean, variability and
extremes for large marine ecosystem regions of Northern Oceans, Elem.
Sci. Anth., 6, 9, https://doi.org/10.1525/elementa.191, 2018.
Anderson, A. and Kostinski, A.: Reversible record breaking and variability:
Temperature distributions across the globe, J. Appl. Meteorol. Clim., 49, 1681–1691, https://doi.org/10.1175/2010JAMC2407.1, 2010.
Anderson, A. and Kostinski, A.: Evolution and distribution of
record-breaking high and low monthly mean temperatures,
J. Appl. Meteorol. Clim., 50, 1859–1871, https://doi.org/10.1175/JAMC-D-10-05025.1, 2011.
Anderson, A. and Kostinski, A.: Temperature variability and early clustering
of record-breaking events, Theor. Appl. Climatol., 124,
825–833, https://doi.org/10.1007/s00704-015-1455-5, 2016.
Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., and Newsom, E. R.:
Southern Ocean warming delayed by circumpolar upwelling and equatorward
transport, Nat. Geosci., 9, 549–554,
https://doi.org/10.1038/ngeo2731,2016.
Arnold, B. C., Balakrishnan, N., and Nagaraja, H. N.: Records, 768, John
Wiley & Sons, ISBN 0-471-08108-6, 2011.
Benestad, R. E.: Record-values, nonstationarity tests and extreme value
distributions, Global Planet. Change, 44, 11–26,
https://doi.org/10.1016/j.gloplacha.2004.06.002, 2004.
Chan, D., Kent, E. C., Berry, D. I., and Huybers, P.: Correcting datasets
leads to more homogeneous early-twentieth-century sea surface warming,
Nature, 571, 393–397, https://doi.org/10.1038/s41586-019-1349-2, 2019.
Chemke, R., Zanna, L., and Polvani, L. M.: Identifying a human signal in the
North Atlantic warming hole, Nat. Commun., 11, 1–7,
https://doi.org/10.1038/s41467-020-15285-x, 2020.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu,
J.: Improved estimates of ocean heat content from 1960 to 2015, Sci.
Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017.
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse,
T., and Riva, R.: Reassessment of 20th century global mean sea level rise,
P. Natl. Acad. Sci. USA, 114, 5946–5951,
https://doi.org/10.1073/pnas.1616007114, 2017.
Deser, C., Phillips, A. S., and Alexander, M. A.: Twentieth century tropical
sea surface temperature trends revisited, Geophys. Res. Lett.,
37, https://doi.org/10.1029/2010GL043321, 2010.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Foster, F. G. and Stuart, A.: Distribution-Free Tests in Time-Series Based
on the Breaking of Records Division of Research Techniques, London School of
Economics, J. Roy. Stat. Soc. B Met., 16, 1–13,
https://doi.org/10.1111/j.2517-6161.1954.tb00143.x, 1954.
Frölicher, T. L., Fischer, E. M., and Gruber, N.: Marine heatwaves under
global warming, Nature, 560, 360–364, https://doi.org/10.1038/s41586-018-0383-9, 2018.
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M.
E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P.:
Advanced spectral methods for climatic time series, Rev. Geophys.,
40, 3-1–3-41, https://doi.org/10.1029/2000RG000092, 2002.
Glick, N.: Breaking records and breaking boards, Am. Math. Mon., 85, 2–26, https://doi.org/10.1080/00029890.1978.11994501, 1978.
Glienke, S., Kostinski, A. B., Shaw, R. A., Larsen, M. L., Fugal, J. P.,
Schlenczek, O., and Borrmann, S.: Holographic observations of
centimeter-scale nonuniformities within marine stratocumulus clouds, J. Atmos. Sci., 77, 499–512, https://doi.org/10.1175/JAS-D-19-0164.1, 2020.
Gluhovsky, A. and Agee, E.: On the analysis of atmospheric and climatic time
series, J. Appl. Meteorol. Clim., 46, 1125–1129,
https://doi.org/10.1175/JAM2512.1, 2007.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global Surface Temperature
Change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010rg000345, 2010.
Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y. A. R., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., and Soden, B. J.: Observations: atmosphere and
surface, in: Climate change 2013 the physical science basis: Working group I
contribution to the fifth assessment report of the intergovernmental panel
on climate change, Cambridge University Press, 159–254, ISBN 978-1-107-05799-1, 2013.
Haumann, F. A., Gruber, N., and Münnich, M.: Sea-ice induced Southern
Ocean subsurface warming and surface cooling in a warming climate, AGU
Advances, 1, e2019AV000132, https://doi.org/10.1029/2019AV000132, 2020.
Huang, B., Thorne, P. W., Smith, T. M., Liu, W., Lawrimore, J., Banzon, V.
F., Zhang, H. M., Peterson, T. C., and Menne, M.: Further exploring and
quantifying uncertainties for extended reconstructed sea surface temperature
(ERSST) version 4 (v4), J. Climate, 29, 3119–3142,
https://doi.org/10.1175/JCLI-D-15-0430.1, 2016.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.: Extended
reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades,
validations, and intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017a.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5T72FNM, 2017b.
Jordan, C.: Calculus of Finite Differences, Budapest (1939), Repr. Chelsea
Publ. Co., Inc., New York, ISBN 978-0-828-40033-6, 1950.
Josey, S. A., Hirschi, J. J. M., Sinha, B., Duchez, A., Grist, J. P., and
Marsh, R.: The recent Atlantic cold anomaly: Causes, consequences, and
related phenomena, Annu. Rev. Mar. Sci., 10, 475–501,
https://doi.org/10.1146/annurev-marine-121916-063102, 2018.
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D., and
Ghosh, R.: Multiple drivers of the North Atlantic warming hole, Nat.
Clim. Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8, 2020.
Kostinski, A. and Anderson, A.: Spatial patterns of record-setting
temperatures, J. Environ. Stat., 6, 1–13, 2014.
Krug, J. and Jain, K.: Breaking records in the evolutionary race, Physica A, 358, 1–9, https://doi.org/10.1016/j.physa.2005.06.002, 2005.
Laufkötter, C., Zscheischler, J., and Frölicher, T. L.: High-impact
marine heatwaves attributable to human-induced global warming, Science,
369, 1621–1625, https://doi.org/10.1126/science.aba0690, 2020.
Lehmann, J., Coumou, D., and Frieler, K.: Increased record-breaking
precipitation events under global warming, Climatic Change, 132, 501–515,
https://doi.org/10.1007/s10584-015-1434-y, 2015.
Lehmann, J., Mempel, F., and Coumou, D.: Increased occurrence of record-wet
and record-dry months reflect changes in mean rainfall, Geophys. Res. Lett., 45, 13–468, https://doi.org/10.1029/2018GL079439, 2018.
Llovel, W., Purkey, S., Meyssignac, B., Blazquez, A., Kolodziejczyk, N., and
Bamber, J.: Global ocean freshening, ocean mass increase and global mean sea
level rise over 2005–2015, Sci. Rep., 9, 17717,
https://doi.org/10.1038/s41598-019-54239-2, 2019.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., 2021.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F.,
Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting
equilibrium climate sensitivity and transient climate response from the
CMIP6 Earth system models, Sci. Adv., 6, eaba1981,
https://doi.org/10.1126/sciadv.aba1981, 2020.
Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L.,
Samset, B. H., Sillmann, J., Schaller, N., Fischer, E., Schulz, M., and
Stohl, A.: Frequency of extreme precipitation increases extensively with
event rareness under global warming, Sci. Rep., 9, 16063,
https://doi.org/10.1038/s41598-019-52277-4, 2019.
Oliver, E. C., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A.,
Alexander, L. V., Benthuysen, J. A., Feng, M., Gupta, A. S., Hobday, A. J., and Holbrook, N. J.: Longer and more frequent marine heatwaves over the past
century, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-03732-9, 2018.
Pendergrass, A. G. and Hartmann, D. L.: Changes in the Distribution of Rain
Frequency and Intensity in Response to Global Warming, J. Climate, 27,
8372–8383, https://doi.org/10.1175/jcli-d-14-00183.1, 2014.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A.,
Rutherford, S., and Schaffernicht, E. J.: Exceptional twentieth-century
slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Change,
5, 475–480, https://doi.org/10.1038/nclimate2554, 2015.
Redner, S. and Petersen, M. R.: Role of global warming on the statistics of
record-breaking temperatures, Phys. Rev. E, 74, 061114,
https://doi.org/10.1103/PhysRevE.74.061114, 2006.
Shcherbakov, R., Davidsen, J., and Tiampo, K. F.: Record-breaking avalanches
in driven threshold systems, Phys. Rev. E, 87, 052811,
https://doi.org/10.1103/PhysRevE.87.052811, 2013.
Van Aalsburg, J., Newman, W. I., Turcotte, D. L., and Rundle, J. B.:
Record-breaking earthquakes, B. Seismol. Soc. Am., 100, 1800–1805, https://doi.org/10.1785/0120090015, 2010.
Vogel, R. M., Zafirakou-Koulouris, A., and Matalas, N. C.: Frequency of
record-breaking floods in the United States, Water Resour. Res.,
37, 1723–1731, https://doi.org/10.1029/2001WR900019, 2001.
Watson, C., White, N., Church, J., King, M. A., Burgette, R. J., and Legresy,
B.: Unabated global mean sea-level rise over the satellite altimeter era,
Nat. Clim. Change, 5, 565–568, https://doi.org/10.1038/nclimate2635, 2015.
Wergen, G., Bogner, M., and Krug, J.: Record statistics for biased random
walks, with an application to financial data, Phys. Rev. E, 83,
051109, https://doi.org/10.1103/PhysRevE.83.051109, 2011.
Wilcox, R. R.: Applying contemporary statistical techniques, Elsevier, ISBN 978-0-127-51541-0, 2003.
Wuebbles, D. J., Fahey, D. W., and Hibbard, K. A.: Climate science special report: fourth national climate assessment, volume I, U.S. Global Change Research Program, Washington, DC, USA, 470 pp., https://doi.org/10.7930/J0J964J6, 2017.
Yoder, M. R., Turcotte, D. L., and Rundle, J. B.: Record-breaking earthquake intervals in a global catalogue and an aftershock sequence, Nonlin. Processes Geophys., 17, 169–176, https://doi.org/10.5194/npg-17-169-2010, 2010.
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., and Yabu, S.: The
Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component, J. Meteorol. Soc. Jpn. Ser. II, 97, 931–965, https://doi.org/10.2151/jmsj.2019-051, 2019a.
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP piControl, Version 20220808, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6900, 2019b.
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical, Version 20220808, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6842, 2019c.
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP ssp245, Version 20220808, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6910, 2019d.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate
sensitivity in CMIP6 models, Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Short summary
We used record-breaking statistics together with spatial information to create record-breaking SST maps. The maps reveal warming patterns in the overwhelming majority of the ocean and coherent islands of cooling, where low records occur more frequently than high ones. Some of these cooling spots are well known; however, a surprising elliptical area in the Southern Ocean is observed as well. Similar analyses can be performed on other key climatological variables to explore their trend patterns.
We used record-breaking statistics together with spatial information to create record-breaking...
Altmetrics
Final-revised paper
Preprint