Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14957-2022
https://doi.org/10.5194/acp-22-14957-2022
Research article
 | Highlight paper
 | 
23 Nov 2022
Research article | Highlight paper |  | 23 Nov 2022

The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere

Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger

Related authors

Radiative impacts of the Australian bushfires 2019–2020 – Part 2: Large-scale and in-vortex radiative heating
Pasquale Sellitto, Redha Belhadji, Juan Cuesta, Aurélien Podglajen, and Bernard Legras
Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023,https://doi.org/10.5194/acp-23-15523-2023, 2023
Short summary
Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
Pasquale Sellitto, Redha Belhadji, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 22, 9299–9311, https://doi.org/10.5194/acp-22-9299-2022,https://doi.org/10.5194/acp-22-9299-2022, 2022
Short summary
Persistence of moist plumes from overshooting convection in the Asian monsoon anticyclone
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022,https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 1: Summary of StratoClim results
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021,https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021,https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024,https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Convective gravity wave events during summer near 54° N, present in both AIRS and Rayleigh–Mie–Raman (RMR) lidar observations
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024,https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Signatures of the Madden–Julian oscillation in middle-atmosphere zonal mean temperature: triggering the interhemispheric coupling pattern
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023,https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023,https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022,https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary

Cited articles

Baron, A., Chazette, P., Khaykin, S., Payen, G., Marquestaut, N., Bègue, N., and Duflot, V.: Early Evolution of the Hunga-Tonga Stratospheric Aerosol Plume observed by Lidar at La Réunion (21 S, 55 E), preprint, in review, https://doi.org/10.1002/essoar.10512319.1, 2022. a
Carn, S. A., Krotkov, N. A., Fisher, B. L., and Li, C.: Out of the blue: Volcanic SO2 emissions during the 2021–2022 eruptions of Hunga Tonga–Hunga Ha’apai (Tonga), Front. Earth Sci., 10, 976962, https://doi.org/10.3389/feart.2022.976962, 2022. a
Carr, J. L., Horvath, A., Wu, D. L., and Friberg, M. D.: Stereo Plume Height and Motion Retrievals for the Record‐Setting Hunga Tonga‐Hunga Ha'apai Eruption of 15 January 2022, Geophys. Res. Lett., 49, e2022GL098131, https://doi.org/10.1029/2022GL098131, 2022. a, b
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009. a
Coy, L., Newman, P. A., Wargan, K., Partyka, G., Strahan, S., and Pawson, S.: Stratospheric Circulation Changes Associated with the Hunga Tonga-Hunga Ha'apai Eruption, Geophys. Res. Lett., 49, e2022GL100982, https://doi.org/10.1029/2022GL100982, 2022. a, b, c
Download
Executive editor
This article describes the effect of the recent (January 2022) Hunga Tonga-Hunga Ha’apai volcanic eruption on the stratosphere. The eruption was highly energetic and as a result erupted material reached altitudes of around 30km. Such eruptions, with the 1991 Pinatubo eruption being a noteworthy example, often have a significant effect on tropospheric weather and climate, through the radiative effects of the volcanic aerosol, which may remain in the stratosphere for 2 or 3 years or more. In the 30 years since the Pinatubo eruption observations of the stratosphere, primarily from satellites, have improved enormously and in this Letter the authors provide a detailed description of the evolution of volcanic aerosol and of other chemical species injected by the eruption over a 6-month period following the eruption. The authors show that one important effect of the eruption was to inject a large quantity of water vapour into the stratosphere and suggest that the largest impact of the eruption on tropospheric weather and climate will be via the radiative effect of this water vapour, rather than of the injected aerosol. The initial detailed picture of the impact of the Hunga Tonga-Hunga Ha’apai eruption on the stratosphere provided in this Letter will stimulate further study of this remarkable natural event, which provides a rare opportunity to test our scientific understanding.
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Altmetrics
Final-revised paper
Preprint