Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-14957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Bernard Legras
CORRESPONDING AUTHOR
Laboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL,
École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, France
Clair Duchamp
Laboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL,
École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, France
Pasquale Sellitto
Univ. Paris Est Créteil and Université de Paris Cité, CNRS, Laboratoire
Interuniversitaire des Systèmes Atmosphériques (LISA-IPSL), Institut Pierre-Simon
Laplace, Créteil, France
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Etneo (OE), Catania, Italy
Aurélien Podglajen
Laboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL,
École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, France
Elisa Carboni
UK Research and Innovation, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, UK
Richard Siddans
UK Research and Innovation, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, UK
Jens-Uwe Grooß
Institute for Energy and Climate Research: Stratosphere (IEK–7), Forschungszentrum Jülich, Jülich, Germany
Sergey Khaykin
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS-IPSL), UMR
CNRS 8190, Institut Pierre Simon Laplace, Sorbonne Univ./UVSQ, Guyancourt, France
Felix Ploeger
Institute for Energy and Climate Research: Stratosphere (IEK–7), Forschungszentrum Jülich, Jülich, Germany
Viewed
Total article views: 6,539 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Jul 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,995 | 1,475 | 69 | 6,539 | 96 | 65 |
- HTML: 4,995
- PDF: 1,475
- XML: 69
- Total: 6,539
- BibTeX: 96
- EndNote: 65
Total article views: 5,162 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Nov 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,239 | 875 | 48 | 5,162 | 85 | 54 |
- HTML: 4,239
- PDF: 875
- XML: 48
- Total: 5,162
- BibTeX: 85
- EndNote: 54
Total article views: 1,377 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Jul 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
756 | 600 | 21 | 1,377 | 11 | 11 |
- HTML: 756
- PDF: 600
- XML: 21
- Total: 1,377
- BibTeX: 11
- EndNote: 11
Viewed (geographical distribution)
Total article views: 6,539 (including HTML, PDF, and XML)
Thereof 6,357 with geography defined
and 182 with unknown origin.
Total article views: 5,162 (including HTML, PDF, and XML)
Thereof 5,117 with geography defined
and 45 with unknown origin.
Total article views: 1,377 (including HTML, PDF, and XML)
Thereof 1,240 with geography defined
and 137 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
41 citations as recorded by crossref.
- Anomalous trends in global ocean carbon concentrations following the 2022 eruptions of Hunga Tonga-Hunga Ha’apai B. Franz et al. 10.1038/s43247-024-01421-8
- Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022 S. Šebela et al. 10.3390/atmos14071088
- Siege in the Southern Stratosphere: Hunga Tonga‐Hunga Ha'apai Water Vapor Excluded From the 2022 Antarctic Polar Vortex G. Manney et al. 10.1029/2023GL103855
- Aerosol and cloud data processing and optical property retrieval algorithms for the spaceborne ACDL/DQ-1 G. Dai et al. 10.5194/amt-17-1879-2024
- Tomographic Retrievals of Hunga Tonga‐Hunga Ha'apai Volcanic Aerosol A. Bourassa et al. 10.1029/2022GL101978
- Diffusion Height and Order of Sulfur Dioxide and Bromine Monoxide Plumes from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption Q. Li et al. 10.3390/rs15061534
- Measurements of Stratospheric Water Vapor at Mauna Loa and the Effect of the Hunga Tonga Eruption G. Nedoluha et al. 10.1029/2022JD038100
- Observation of the Aerosol Plume From the 2022 Hunga Tonga—Hunga Ha'apai Eruption With SAGE III/ISS C. Duchamp et al. 10.1029/2023GL105076
- Strong Evidence of Heterogeneous Processing on Stratospheric Sulfate Aerosol in the Extrapolar Southern Hemisphere Following the 2022 Hunga Tonga‐Hunga Ha'apai Eruption M. Santee et al. 10.1029/2023JD039169
- AEROSOL PARTICLES IN THE STRATOSPHERE: ORIGIN, COMPOSITION AND PROPERTIES V. DANYLEVSKY & A. MOZGOVA 10.17721/BTSNUA.2023.68.51-56
- Stratospheric aerosol size reduction after volcanic eruptions F. Wrana et al. 10.5194/acp-23-9725-2023
- Atmospheric effects of the Tonga volcanic sulfate aerosols N. Raymond et al. 10.1016/j.jqsrt.2024.109056
- Compensating atmospheric adjustments reduce the volcanic forcing from Hunga stratospheric water vapor enhancement Y. Wang & Y. Huang 10.1126/sciadv.adl2842
- Characterization of stratospheric particle size distribution uncertainties using SAGE II and SAGE III/ISS extinction spectra T. Knepp et al. 10.5194/amt-17-2025-2024
- Opinion: Stratospheric ozone – depletion, recovery and new challenges M. Chipperfield & S. Bekki 10.5194/acp-24-2783-2024
- Unexpected self-lofting and dynamical confinement of volcanic plumes: the Raikoke 2019 case S. Khaykin et al. 10.1038/s41598-022-27021-0
- Growth and Global Persistence of Stratospheric Sulfate Aerosols From the 2022 Hunga Tonga–Hunga Ha'apai Volcanic Eruption M. Boichu et al. 10.1029/2023JD039010
- Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements F. Prata 10.5194/amt-17-3751-2024
- Stratospheric Water Vapor from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption Deduced from COSMIC-2 Radio Occultation W. Randel et al. 10.3390/rs15082167
- Effects of the Hunga Tonga‐Hunga Ha'apai Eruption on MODIS‐Retrieved Sea Surface Temperatures C. Jia & P. Minnett 10.1029/2023GL104297
- Characterization of dust aerosols from ALADIN and CALIOP measurements R. Song et al. 10.5194/amt-17-2521-2024
- Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga Eruption S. Evan et al. 10.1126/science.adg2551
- Stratospheric Climate Anomalies and Ozone Loss Caused by the Hunga Tonga‐Hunga Ha'apai Volcanic Eruption X. Wang et al. 10.1029/2023JD039480
- Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations B. Madhavan et al. 10.3390/rs15010029
- Stratospheric Temperature and Ozone Impacts of the Hunga Tonga‐Hunga Ha'apai Water Vapor Injection E. Fleming et al. 10.1029/2023JD039298
- SAGE III/ISS aerosol/cloud categorization and its impact on GloSSAC M. Kovilakam et al. 10.5194/amt-16-2709-2023
- Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis T. Banyard et al. 10.5194/acp-24-2465-2024
- The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses M. Ern et al. 10.5194/acp-23-9549-2023
- Strong persistent cooling of the stratosphere after the Hunga eruption M. Stocker et al. 10.1038/s43247-024-01620-3
- The Impact of the Hunga Tonga–Hunga Ha’apai Volcanic Eruption on the Stratospheric Environment Q. Sun et al. 10.3390/atmos15040483
- Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence M. Ratynski et al. 10.5194/amt-16-997-2023
- Early Evolution of the Stratospheric Aerosol Plume Following the 2022 Hunga Tonga‐Hunga Ha'apai Eruption: Lidar Observations From Reunion (21°S, 55°E) A. Baron et al. 10.1029/2022GL101751
- Indirect stratospheric moisture increase after a Pinatubo-magnitude eruption can be comparable to direct increase after 2022 Hunga C. Kroll & A. Schmidt 10.1038/s43247-024-01651-w
- Unexpectedly rapid aerosol formation in the Hunga Tonga plume E. Asher et al. 10.1073/pnas.2219547120
- First detection of aerosols of the Hunga Tonga eruption in the Northern Hemisphere stratospheric westerlies J. Bian et al. 10.1016/j.scib.2023.03.002
- The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022 P. Sellitto et al. 10.1038/s43247-022-00618-z
- How the Hunga Tonga—Hunga Ha'apai Water Vapor Cloud Impacts Its Transport Through the Stratosphere: Dynamical and Radiative Effects U. Niemeier et al. 10.1029/2023GL106482
- Tracking the 2022 Hunga Tonga‐Hunga Ha'apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space‐Based Observations G. Taha et al. 10.1029/2022GL100091
- Global perturbation of stratospheric water and aerosol burden by Hunga eruption S. Khaykin et al. 10.1038/s43247-022-00652-x
- Observed Atmospheric Features for the 2022 Hunga Tonga Volcanic Eruption from Joint Polar Satellite System Science Data Products L. Zhou et al. 10.3390/atmos14020263
- Analysis and Impact of the Hunga Tonga‐Hunga Ha'apai Stratospheric Water Vapor Plume M. Schoeberl et al. 10.1029/2022GL100248
35 citations as recorded by crossref.
- Anomalous trends in global ocean carbon concentrations following the 2022 eruptions of Hunga Tonga-Hunga Ha’apai B. Franz et al. 10.1038/s43247-024-01421-8
- Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022 S. Šebela et al. 10.3390/atmos14071088
- Siege in the Southern Stratosphere: Hunga Tonga‐Hunga Ha'apai Water Vapor Excluded From the 2022 Antarctic Polar Vortex G. Manney et al. 10.1029/2023GL103855
- Aerosol and cloud data processing and optical property retrieval algorithms for the spaceborne ACDL/DQ-1 G. Dai et al. 10.5194/amt-17-1879-2024
- Tomographic Retrievals of Hunga Tonga‐Hunga Ha'apai Volcanic Aerosol A. Bourassa et al. 10.1029/2022GL101978
- Diffusion Height and Order of Sulfur Dioxide and Bromine Monoxide Plumes from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption Q. Li et al. 10.3390/rs15061534
- Measurements of Stratospheric Water Vapor at Mauna Loa and the Effect of the Hunga Tonga Eruption G. Nedoluha et al. 10.1029/2022JD038100
- Observation of the Aerosol Plume From the 2022 Hunga Tonga—Hunga Ha'apai Eruption With SAGE III/ISS C. Duchamp et al. 10.1029/2023GL105076
- Strong Evidence of Heterogeneous Processing on Stratospheric Sulfate Aerosol in the Extrapolar Southern Hemisphere Following the 2022 Hunga Tonga‐Hunga Ha'apai Eruption M. Santee et al. 10.1029/2023JD039169
- AEROSOL PARTICLES IN THE STRATOSPHERE: ORIGIN, COMPOSITION AND PROPERTIES V. DANYLEVSKY & A. MOZGOVA 10.17721/BTSNUA.2023.68.51-56
- Stratospheric aerosol size reduction after volcanic eruptions F. Wrana et al. 10.5194/acp-23-9725-2023
- Atmospheric effects of the Tonga volcanic sulfate aerosols N. Raymond et al. 10.1016/j.jqsrt.2024.109056
- Compensating atmospheric adjustments reduce the volcanic forcing from Hunga stratospheric water vapor enhancement Y. Wang & Y. Huang 10.1126/sciadv.adl2842
- Characterization of stratospheric particle size distribution uncertainties using SAGE II and SAGE III/ISS extinction spectra T. Knepp et al. 10.5194/amt-17-2025-2024
- Opinion: Stratospheric ozone – depletion, recovery and new challenges M. Chipperfield & S. Bekki 10.5194/acp-24-2783-2024
- Unexpected self-lofting and dynamical confinement of volcanic plumes: the Raikoke 2019 case S. Khaykin et al. 10.1038/s41598-022-27021-0
- Growth and Global Persistence of Stratospheric Sulfate Aerosols From the 2022 Hunga Tonga–Hunga Ha'apai Volcanic Eruption M. Boichu et al. 10.1029/2023JD039010
- Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements F. Prata 10.5194/amt-17-3751-2024
- Stratospheric Water Vapor from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption Deduced from COSMIC-2 Radio Occultation W. Randel et al. 10.3390/rs15082167
- Effects of the Hunga Tonga‐Hunga Ha'apai Eruption on MODIS‐Retrieved Sea Surface Temperatures C. Jia & P. Minnett 10.1029/2023GL104297
- Characterization of dust aerosols from ALADIN and CALIOP measurements R. Song et al. 10.5194/amt-17-2521-2024
- Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga Eruption S. Evan et al. 10.1126/science.adg2551
- Stratospheric Climate Anomalies and Ozone Loss Caused by the Hunga Tonga‐Hunga Ha'apai Volcanic Eruption X. Wang et al. 10.1029/2023JD039480
- Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations B. Madhavan et al. 10.3390/rs15010029
- Stratospheric Temperature and Ozone Impacts of the Hunga Tonga‐Hunga Ha'apai Water Vapor Injection E. Fleming et al. 10.1029/2023JD039298
- SAGE III/ISS aerosol/cloud categorization and its impact on GloSSAC M. Kovilakam et al. 10.5194/amt-16-2709-2023
- Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis T. Banyard et al. 10.5194/acp-24-2465-2024
- The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses M. Ern et al. 10.5194/acp-23-9549-2023
- Strong persistent cooling of the stratosphere after the Hunga eruption M. Stocker et al. 10.1038/s43247-024-01620-3
- The Impact of the Hunga Tonga–Hunga Ha’apai Volcanic Eruption on the Stratospheric Environment Q. Sun et al. 10.3390/atmos15040483
- Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence M. Ratynski et al. 10.5194/amt-16-997-2023
- Early Evolution of the Stratospheric Aerosol Plume Following the 2022 Hunga Tonga‐Hunga Ha'apai Eruption: Lidar Observations From Reunion (21°S, 55°E) A. Baron et al. 10.1029/2022GL101751
- Indirect stratospheric moisture increase after a Pinatubo-magnitude eruption can be comparable to direct increase after 2022 Hunga C. Kroll & A. Schmidt 10.1038/s43247-024-01651-w
- Unexpectedly rapid aerosol formation in the Hunga Tonga plume E. Asher et al. 10.1073/pnas.2219547120
- First detection of aerosols of the Hunga Tonga eruption in the Northern Hemisphere stratospheric westerlies J. Bian et al. 10.1016/j.scib.2023.03.002
6 citations as recorded by crossref.
- The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022 P. Sellitto et al. 10.1038/s43247-022-00618-z
- How the Hunga Tonga—Hunga Ha'apai Water Vapor Cloud Impacts Its Transport Through the Stratosphere: Dynamical and Radiative Effects U. Niemeier et al. 10.1029/2023GL106482
- Tracking the 2022 Hunga Tonga‐Hunga Ha'apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space‐Based Observations G. Taha et al. 10.1029/2022GL100091
- Global perturbation of stratospheric water and aerosol burden by Hunga eruption S. Khaykin et al. 10.1038/s43247-022-00652-x
- Observed Atmospheric Features for the 2022 Hunga Tonga Volcanic Eruption from Joint Polar Satellite System Science Data Products L. Zhou et al. 10.3390/atmos14020263
- Analysis and Impact of the Hunga Tonga‐Hunga Ha'apai Stratospheric Water Vapor Plume M. Schoeberl et al. 10.1029/2022GL100248
Discussed (final revised paper)
Discussed (preprint)
Latest update: 23 Nov 2024
Executive editor
This article describes the effect of the recent (January 2022) Hunga Tonga-Hunga Ha’apai volcanic eruption on the stratosphere. The eruption was highly energetic and as a result erupted material reached altitudes of around 30km. Such eruptions, with the 1991 Pinatubo eruption being a noteworthy example, often have a significant effect on tropospheric weather and climate, through the radiative effects of the volcanic aerosol, which may remain in the stratosphere for 2 or 3 years or more. In the 30 years since the Pinatubo eruption observations of the stratosphere, primarily from satellites, have improved enormously and in this Letter the authors provide a detailed description of the evolution of volcanic aerosol and of other chemical species injected by the eruption over a 6-month period following the eruption. The authors show that one important effect of the eruption was to inject a large quantity of water vapour into the stratosphere and suggest that the largest impact of the eruption on tropospheric weather and climate will be via the radiative effect of this water vapour, rather than of the injected aerosol. The initial detailed picture of the impact of the Hunga Tonga-Hunga Ha’apai eruption on the stratosphere provided in this Letter will stimulate further study of this remarkable natural event, which provides a rare opportunity to test our scientific understanding.
This article describes the effect of the recent (January 2022) Hunga Tonga-Hunga Ha’apai...
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water...
Altmetrics
Final-revised paper
Preprint