Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11305-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-11305-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Experimental study on the evolution of droplet size distribution during the fog life cycle
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Frédéric Burnet
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Cyrielle Denjean
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Related authors
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376, https://doi.org/10.5194/egusphere-2024-3376, 2024
Short summary
Short summary
We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397, https://doi.org/10.5194/egusphere-2024-3397, 2024
Short summary
Short summary
We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts.
Chenjie Yu, Paola Formenti, Joel F. de Brito, Astrid Bauville, Antonin Bergé, Hichem Bouzidi, Mathieu Cazaunau, Manuela Cirtog, Claudia Di Biagio, Ludovico Di Antonio, Cécile Gaimoz, Franck Maisonneuve, Pascal Zapf, Tobias Seubert, Simone T. Andersen, Patrick Dewald, Gunther N. T. E. Türk, John N. Crowley, Alexandre Kukui, Chaoyang Xue, Cyrielle Denjean, Olivier Garrouste, Jean-Claude Etienne, Huihui Wu, James D. Allan, Dantong Liu, Yangzhou Wu, Christopher Cantrell, and Vincent Michoud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2667, https://doi.org/10.5194/egusphere-2025-2667, 2025
Short summary
Short summary
We presented a field measurement in a Paris suburban forest region to characterise the impacts of photochemical aging process on aerosol physical chemical properties. Photochemical production of organic aerosols increased forest fine particle mass and significantly enhanced absorption of short-wavelength sunlight. This study highlights the critical need to incorporate light absorbing carbonaceous particles formation mechanisms into models to accurately simulate their direct radiative impacts.
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Atmos. Chem. Phys., 25, 6539–6573, https://doi.org/10.5194/acp-25-6539-2025, https://doi.org/10.5194/acp-25-6539-2025, 2025
Short summary
Short summary
This study documents vertical profiles of liquid water content (LWC) in fogs from in situ measurements collected during the SOFOG3D field campaign in 2019–2020. The analysis of 140 vertical profiles reveals a reverse trend in LWC, maximum values at ground decreasing with height, during stable conditions in optically thin fogs, evolving towards quasi-adiabatic characteristics when fogs become thick. These results offer new perspectives for better constraining fog numerical simulations.
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 25, 5893–5909, https://doi.org/10.5194/acp-25-5893-2025, https://doi.org/10.5194/acp-25-5893-2025, 2025
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France, circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for, for example, alkyl nitrates and peroxy nitrates.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376, https://doi.org/10.5194/egusphere-2024-3376, 2024
Short summary
Short summary
We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397, https://doi.org/10.5194/egusphere-2024-3397, 2024
Short summary
Short summary
We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Véronique Pont, Mathilde Arnaud, Thierry Bourrianne, Maria Dias Alves, and Eric Gardrat
Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024, https://doi.org/10.5194/amt-17-3897-2024, 2024
Short summary
Short summary
The three most widely used techniques for measuring black carbon (BC) have been deployed continuously for 2 years at a French high-altitude research station. Despite a similar temporal variation in the BC load, we found significant biases by up to a factor of 8 between the three instruments. This study raises questions about the relevance of using these instruments for specific background sites, as well as the processing of their data, which can vary according to the atmospheric conditions.
Lucas Pailler, Laurent Deguillaume, Hélène Lavanant, Isabelle Schmitz, Marie Hubert, Edith Nicol, Mickaël Ribeiro, Jean-Marc Pichon, Mickaël Vaïtilingom, Pamela Dominutti, Frédéric Burnet, Pierre Tulet, Maud Leriche, and Angelica Bianco
Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024, https://doi.org/10.5194/acp-24-5567-2024, 2024
Short summary
Short summary
The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples collected in the Northern Hemisphere. In this work, the chemical composition of samples collected at Réunion Island (SH) is investigated and compared to samples collected at Puy de Dôme (NH). Sampling, analysis and data treatment with the same methodology produced a unique dataset for investigating the molecular composition of clouds.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023, https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Short summary
This paper documents the role of thermodynamics and turbulence in the fog life cycle over southwestern France. It is based on a unique dataset collected during the SOFOG3D field campaign in autumn and winter 2019–2020. The paper gives a threshold for turbulence driving the different phases of the fog life cycle and the role of advection in the night-time dissipation of fog. The results can be operationalised to nowcast fog and improve short-range forecasts in numerical weather prediction models.
Lambert Delbeke, Chien Wang, Pierre Tulet, Cyrielle Denjean, Maurin Zouzoua, Nicolas Maury, and Adrien Deroubaix
Atmos. Chem. Phys., 23, 13329–13354, https://doi.org/10.5194/acp-23-13329-2023, https://doi.org/10.5194/acp-23-13329-2023, 2023
Short summary
Short summary
Low-level stratiform clouds (LLSCs) appear frequently over southern West Africa during the West African monsoon. Local and remote aerosol sources (biomass burning aerosols from central Africa) play a significant role in the LLSC life cycle. Based on measurements by the DACCIWA campaign, large-eddy simulation (LES) was conducted using different aerosol scenarios. The results show that both indirect and semi-direct effects can act individually or jointly to influence the life cycles of LLSCs.
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023, https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Short summary
Cloud observations are necessary to characterize the cloud properties at local and global scales. The observations must be translated to cloud geophysical parameters. This paper presents the estimation of liquid water content (LWC) using radar and microwave radiometer (MWR) measurements. Liquid water path from MWR scales LWC and retrieves the scaling factor (ln a). The retrievals are compared with in situ observations. A climatology of ln a is built to estimate LWC using only radar information.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Michael John Weston, Stuart John Piketh, Frédéric Burnet, Stephen Broccardo, Cyrielle Denjean, Thierry Bourrianne, and Paola Formenti
Atmos. Chem. Phys., 22, 10221–10245, https://doi.org/10.5194/acp-22-10221-2022, https://doi.org/10.5194/acp-22-10221-2022, 2022
Short summary
Short summary
An aerosol-aware microphysics scheme is evaluated for fog cases in Namibia. AEROCLO-sA campaign observations are used to access and parameterise the model. The model cloud condensation nuclei activation is lower than the observations. The scheme is designed for clouds with updrafts, while fog typically forms in stable conditions. A pseudo updraft speed assigned to the lowest model levels helps achieve more realistic cloud droplet number concentration and size distribution in the model.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021, https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
Short summary
The work deals with optical properties of aerosol particles in dried and atmospheric states. Based on two measurement campaigns in the rural background of central Europe, different measurement approaches were compared with each other, such as modeling based on Mie theory and direct in situ or remote sensing measurements. Among others, it was shown that the aerosol extinction-to-backscatter ratio is relative humidity dependent, and refinement with respect to the model input parameters is needed.
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.
Cited articles
Baker, M., Corbin, R., and Latham, J.: The influence of entrainment on the
evolution of cloud droplet spectra: I. A model of inhomogeneous mixing,
Q. J. Roy. Meteor. Soc., 106, 581–598, 1980. a
Bardoel, S. L., Horna Muñoz, D. V., Grachev, A. A., Krishnamurthy, R.,
Chamorro, L. P., and Fernando, H. J.: Fog formation related to gravity
currents interacting with coastal topography, Bound.-Lay. Meteorol.,
181, 499–521, 2021. a
Bergot, T., Carrer, D., Noilhan, J., and Bougeault, P.: Improved site-specific
numerical prediction of fog and low clouds: A feasibility study, Weather
Forecast., 20, 627–646, 2005. a
Bergot, T., Escobar, J., and Masson, V.: Effect of small-scale surface
heterogeneities and buildings on radiation fog: Large-eddy simulation study
at Paris–Charles de Gaulle airport, Q. J. Roy. Meteor. Soc., 141, 285–298, 2015. a
Boutle, I., Finnenkoetter, A., Lock, A., and Wells, H.: The London Model:
forecasting fog at 333 m resolution, Q. J. Roy. Meteor. Soc., 142, 360–371, 2016. a
Boutle, I., Angevine, W., Bao, J.-W., Bergot, T., Bhattacharya, R., Bott, A., Ducongé, L., Forbes, R., Goecke, T., Grell, E., Hill, A., Igel, A. L., Kudzotsa, I., Lac, C., Maronga, B., Romakkaniemi, S., Schmidli, J., Schwenkel, J., Steeneveld, G.-J., and Vié, B.: Demistify: a large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog, Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, 2022. a, b, c
Burnet, F., Gomes, L., Haeffelin, M., Dupont, J., and Elias, T.: Analysis of
the microphysical structures of fog during the ParisFog project, ICCP
Leipzig, 2012. a
Duynkerke, P. G.: Radiation fog: A comparison of model simulation with detailed
observations, Month. Weather Rev., 119, 324–341, 1991. a
Egli, S., Maier, F., Bendix, J., and Thies, B.: Vertical distribution of
microphysical properties in radiation fogs – A case study, Atmos. Res., 151, 130–145, 2015. a
Elias, T., Haeffelin, M., Drobinski, P., Gomes, L., Rangognio, J., Bergot, T.,
Chazette, P., Raut, J.-C., and Colomb, M.: Particulate contribution to
extinction of visible radiation: Pollution, haze, and fog, Atmos. Res., 92, 443–454, 2009. a
Elias, T., Jolivet, D., Dupont, J.-C., Haeffelin, M., and Burnet, F.:
Preliminary results of the PreViBOSS project: description of the fog life
cycle by ground-based and satellite observation, in: SPIE Remote Sensing, International Society for Optics and Photonics, 853406–853406, 2012. a
Elias, T., Jolivet, D., Mazoyer, M., and Dupont, J.-C.: Favourable and
Unfavourable Scenarii of Radiative Fog Formation Defined by Ground-Based and
Satellite Observation Data, Aerosol Air Qual. Res., 18, 145–164,
2018. a
Frank, G., Martinsson, B. G., Cederfelt, S.-I., Berg, O. H., Swietlicki, E., Wendisch, M., Yuskiewicz, B., Heintzenberg, J., Wiedensohler, A., Orsini, D., Stratmann, F., Laj, P., and Ricci, L.:
Droplet formation and growth in polluted fogs, Contributions to Atmospheric
Physics, 71, 65–85, 1998.
Goodman, J.: The microstructure of California coastal fog and stratus, J. Appl. Meteorol., 16, 1056–1067, 1977. a
Gultepe, I. and Milbrandt, J.: Microphysical observations and mesoscale model
simulation of a warm fog case during FRAM project, in: Fog and Boundary Layer
Clouds: Fog Visibility and Forecasting, Springer, 1161–1178, 2007. a
Gultepe, I., Milbrandt, J. A., and Zhou, B.: Marine fog: A review on
microphysics and visibility prediction, in: Marine Fog: Challenges and
Advancements in Observations, Modeling, and Forecasting,
Springer, 345–394, 2017. a
Gultepe, I., Fernando, H. J., Pardyjak, E., Wang, Q., Hocut, C., Creegan, E.,
Hoch, S., Flagg, D., Scanland, N., Desjardins, S., et al.: C-FOG Field
Campaign for Coastal Fog: Emphases on Microphysics versus Dynamics., in:
Geophysical Research Abstracts, Vol. 21, 2019. a
Gultepe, I., Heymsfield, A., Fernando, H., Pardyjak, E., Dorman, C., Wang, Q.,
Creegan, E., Hoch, S., Flagg, D., Yamaguchi, R., et al.: A review of coastal
fog microphysics during C-FOG, Bound.-Lay. Meteorol., 181, 1–39, https://doi.org/10.3390/atmos11010012, 2021. a, b
Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Bouniol, D.,
Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë, J., et al.: SIRTA, a
ground-based atmospheric observatory for cloud and aerosol research, Ann.
Geophys., 23, 253–275, 2005. a
Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P.,
Colomb, M., Drobinski, P., Dupont, E., Dupont, J., et al.: PARISFOG: shedding
new light on fog physical processes, B. Am. Meteorol. Soc., 91, 767–783, 2010. a
Hong, S.-Y. and Lim, J.-O. J.: The WRF single-moment 6-class microphysics
scheme (WSM6), Asia-Pac. J. Atmos. Sci., 42, 129–151,
2006. a
Karimi, M.: Direct Numerical Simulation of Fog: The Sensitivity of a
Dissipation Phase to Environmental Conditions, Atmosphere, 11, 198 pp., 2020. a
Khain, A., Beheng, K., Heymsfield, A., Korolev, A., Krichak, S., Levin, Z.,
Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., et al.: Representation
of microphysical processes in cloud-resolving models: Spectral (bin)
microphysics versus bulk parameterization, Rev. Geophys., 53,
247–322, 2015. a
Koračin, D., Lewis, J., Thompson, W. T., Dorman, C. E., and Businger,
J. A.: Transition of stratus into fog along the California coast:
Observations and modeling, J. Atmos. Sci., 58,
1714–1731, 2001. a
Kulkarni, R., Jenamani, R. K., Pithani, P., Konwar, M., Nigam, N., and Ghude,
S. D.: Loss to Aviation Economy Due to Winter Fog in New Delhi during the
Winter of 2011–2016, Atmosphere, 10, 198 pp., 2019. a
Kutty, S. G., Dimri, A., and Gultepe, I.: Physical Processes Affecting
Radiation Fog Based on WRF Simulations and Validation, Pure Appl. Geophys., 10, 4265–4288, 2021. a
Liu, Q., Wu, B., Wang, Z., and Hao, T.: Fog Droplet Size Distribution and the
Interaction between Fog Droplets and Fine Particles during Dense Fog in
Tianjin, China, Atmosphere, 11, 258 pp., 2020. a
Maalick, Z., Kühn, T., Korhonen, H., Kokkola, H., Laaksonen, A., and
Romakkaniemi, S.: Effect of aerosol concentration and absorbing aerosol on
the radiation fog life cycle, Atmos. Environ., 133, 26–33, 2016. a
Martinet, P., Cimini, D., Burnet, F., Ménétrier, B., Michel, Y., and Unger, V.: Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study, Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, 2020. a
Nakanishi, M.: Large-eddy simulation of radiation fog, Bound.-Lay. Meteorol., 94, 461–493, 2000. a
Okita, T.: Observations of the vertical structure of a stratus cloud and
radiation fogs in relation to the mechanism of drizzle formation, Tellus, 14,
310–322, 1962. a
Pawlowska, H., Grabowski, W. W., and Brenguier, J.-L.: Observations of the
width of cloud droplet spectra in stratocumulus, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL026841, 2006. a
Philip, A., Bergot, T., Bouteloup, Y., and Bouyssel, F.: The impact of vertical
resolution on fog forecasting in the kilometric-scale model arome: a case
study and statistics, Weather Forecast., 31, 1655–1671, 2016. a
Pinnick, R. G., Hoihjelle, D., Fernandez, G., Stenmark, E., Lindberg, J.,
Hoidale, G., and Jennings, S.: Vertical structure in atmospheric fog and haze
and its effects on visible and infrared extinction, J. Atmos. Sci., 35, 2020–2032, 1978. a
Pithani, P., Ghude, S. D., Chennu, V. N., Kulkarni, R. G., Steeneveld, G.-J.,
Sharma, A., Prabhakaran, T., Chate, D., Gultepe, I., Jenamani, R., et al.:
WRF model prediction of a dense fog event occurred during the winter fog
experiment (WIFEX), Pure Appl. Geophys., 176, 1827–1846, 2019. a
Porson, A., Price, J., Lock, A., and Clark, P.: Radiation fog. Part II:
Large-eddy simulations in very stable conditions, Bound.-Lay. Meteorol.,
139, 193–224, 2011. a
Price, J., Lane, S., Boutle, I., Smith, D., Bergot, T., Lac, C., Duconge, L.,
McGregor, J., Kerr-Munslow, A., Pickering, M., et al.: LANFEX: a field and
modeling study to improve our understanding and forecasting of radiation fog,
B. Am. Meteorol. Soc., 99, 2061–2077, 2018. a
Rodhe, B.: The effect of turbulence on fog formation, Tellus, 14, 49–86, 1962. a
Rosenfeld, D. and Lensky, I. M.: Satellite-based insights into precipitation
formation processes in continental and maritime convective clouds, B. Am. Meteorol. Soc., 79, 2457–2476, 1998. a
Schwenkel, J. and Maronga, B.: Large-eddy simulation of radiation fog with comprehensive two-moment bulk microphysics: impact of different aerosol activation and condensation parameterizations, Atmos. Chem. Phys., 19, 7165–7181, https://doi.org/10.5194/acp-19-7165-2019, 2019. a, b, c, d
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,
F., Lac, C., and Masson, V.: The AROME-France convective-scale operational
model, Month. Weather Rev., 139, 976–991, 2011. a
Tav, J., Masson, O., Burnet, F., Paulat, P., Bourrianne, T., Conil, S., and
Pourcelot, L.: Determination of Fog-Droplet Deposition Velocity from a Simple
Weighing Method, Aerosol Air Qual. Res., 18, 103–113, 2018. a
Van der Velde, I., Steeneveld, G., Wichers Schreur, B., and Holtslag, A.:
Modeling and forecasting the onset and duration of severe radiation fog under
frost conditions, Monthly Weather Rev., 138, 4237–4253, 2010. a
Vié, B., Pinty, J.-P., Berthet, S., and Leriche, M.: LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei, Geosci. Model Dev., 9, 567–586, https://doi.org/10.5194/gmd-9-567-2016, 2016. a
Wærsted, E. G., Haeffelin, M., Dupont, J.-C., Delanoë, J., and Dubuisson, P.: Radiation in fog: quantification of the impact on fog liquid water based on ground-based remote sensing, Atmos. Chem. Phys., 17, 10811–10835, https://doi.org/10.5194/acp-17-10811-2017, 2017. a
Wærsted, E. G., Haeffelin, M., Steeneveld, G.-J., and Dupont, J.-C.:
Understanding the dissipation of continental fog by analysing the LWP budget
using idealized LES and in situ observations, Q. J. Roy. Meteor. Soc., 145, 784–804, 2019. a
Yang, F., Kollias, P., Shaw, R. A., and Vogelmann, A. M.: Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation, Atmos. Chem. Phys., 18, 7313–7328, https://doi.org/10.5194/acp-18-7313-2018, 2018. a, b, c
Short summary
The evolution of the droplet size distribution during the fog life cycle remains poorly understood and progress is required to reduce the uncertainty of fog forecasts. To gain insights into the physical processes driving the microphysics, intensive field campaigns were conducted during three winters at the SIRTA site in the south of Paris. This study analyzed the variations in fog microphysical properties and their potential interactions at the different evolutionary stages of the fog events.
The evolution of the droplet size distribution during the fog life cycle remains poorly...
Altmetrics
Final-revised paper
Preprint