Articles | Volume 21, issue 12
https://doi.org/10.5194/acp-21-9887-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9887-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review
Department of Forest and Climate, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431-Ås, Norway
Marianne T. Lund
Centre for International Climate Research (CICERO), 0349 Oslo, Norway
Related authors
No articles found.
Carley Elizabeth Iles, Bjørn Hallvard Samset, and Marianne Tronstad Lund
EGUsphere, https://doi.org/10.5194/egusphere-2025-4115, https://doi.org/10.5194/egusphere-2025-4115, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Polar sea ice changes and midlatitude weather affect each other, but how these teleconnections play out differ between the poles and between sea ice regions. Knowing how they interact is important for climate risk assessments, but few studies have investigated how the teleconnections evolve with global warming. Using large ensembles of climate model simulations, we find teleconnections patterns that differ between sea ice regions, but are quite robust to changes in global surface temperature.
This article is included in the Encyclopedia of Geosciences
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica M. L. Ekman
Atmos. Chem. Phys., 25, 8127–8145, https://doi.org/10.5194/acp-25-8127-2025, https://doi.org/10.5194/acp-25-8127-2025, 2025
Short summary
Short summary
The effects of warmer sea surface temperatures and decreasing sea ice cover on polar climates have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice.
This article is included in the Encyclopedia of Geosciences
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 25, 5793–5836, https://doi.org/10.5194/acp-25-5793-2025, https://doi.org/10.5194/acp-25-5793-2025, 2025
Short summary
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in situ data collected aboard passenger aircraft to assess the ability of four chemistry–climate models to reproduce (bi-)decadal climatologies of ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere well.
This article is included in the Encyclopedia of Geosciences
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
This article is included in the Encyclopedia of Geosciences
Joe Adabouk Amooli, Marianne T. Lund, Sourangsu Chowdhury, Gunnar Myhre, Ane N. Johansen, Bjørn H. Samset, and Daniel M. Westervelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-948, https://doi.org/10.5194/egusphere-2025-948, 2025
Short summary
Short summary
We analyze various projections of African aerosol emissions and their potential impacts on climate and public health. We find that future emissions vary widely across emission projections, with differences in sectoral emission distributions. Using the Oslo chemical transport model, we show that air pollution exposure in some regions of Africa could increase significantly by 2050, increasing pollution-related deaths, with most scenarios projecting aerosol-induced warming over sub-Saharan Africa.
This article is included in the Encyclopedia of Geosciences
Mingxuan Wu, Hailong Wang, Zheng Lu, Xiaohong Liu, Huisheng Bian, David Cohen, Yan Feng, Mian Chin, Didier A. Hauglustaine, Vlassis A. Karydis, Marianne T. Lund, Gunnar Myhre, Andrea Pozzer, Michael Schulz, Ragnhild B. Skeie, Alexandra P. Tsimpidi, Svetlana G. Tsyro, and Shaocheng Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-235, https://doi.org/10.5194/egusphere-2025-235, 2025
Short summary
Short summary
A key challenge in simulating the lifecycle of nitrate aerosol in global climate models is to accurately represent mass size distribution of nitrate aerosol, which lacks sufficient observational constraints. We found that most climate models underestimate the mass fraction of fine-mode nitrate at surface in all regions. Our study highlights the importance of gas-aerosol partitioning parameterization and simulation of dust and sea salt in correctly simulating mass size distribution of nitrate.
This article is included in the Encyclopedia of Geosciences
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
This article is included in the Encyclopedia of Geosciences
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
This article is included in the Encyclopedia of Geosciences
Saroj Kumar Sahu, Poonam Mangaraj, Gufran Beig, Marianne T. Lund, Bjørn Hallvard Samset, Pallavi Sahoo, and Ashirbad Mishra
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-310, https://doi.org/10.5194/essd-2023-310, 2023
Revised manuscript not accepted
Short summary
Short summary
Elevated emission of particulate matter is not limited to urban areas, led to poor air quality across the country. Emission Inventory is the first line of defensive tools for air quality management and understanding and identification of the source of pollutants. The present work is an attempt to develop a high-resolution (~10 km) national inventory of particulate pollutants in India for 2020 using IPCC methodology. The developed dataset is vital piece of information for mitigation strategies.
This article is included in the Encyclopedia of Geosciences
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
This article is included in the Encyclopedia of Geosciences
Marianne Tronstad Lund, Gunnar Myhre, Ragnhild Bieltvedt Skeie, Bjørn Hallvard Samset, and Zbigniew Klimont
Atmos. Chem. Phys., 23, 6647–6662, https://doi.org/10.5194/acp-23-6647-2023, https://doi.org/10.5194/acp-23-6647-2023, 2023
Short summary
Short summary
Here we show that differences, in magnitude and trend, between recent global anthropogenic emission inventories have a notable influence on simulated regional abundances of anthropogenic aerosol over the 1990–2019 period. This, in turn, affects estimates of radiative forcing. Our findings form a basis for comparing existing and upcoming studies on anthropogenic aerosols using different emission inventories.
This article is included in the Encyclopedia of Geosciences
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
This article is included in the Encyclopedia of Geosciences
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
This article is included in the Encyclopedia of Geosciences
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Dirk J. L. Olivié, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, https://doi.org/10.5194/acp-21-15929-2021, 2021
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds but is poorly constrained in models. A total of 15 different aerosol models from AeroCom phase III have reported total aerosol absorption, and for the first time, 11 of these models have reported in a consistent experiment the contributions to absorption from black carbon, dust, and organic aerosol. Here, we document the model diversity in aerosol absorption.
This article is included in the Encyclopedia of Geosciences
Liang Guo, Laura J. Wilcox, Massimo Bollasina, Steven T. Turnock, Marianne T. Lund, and Lixia Zhang
Atmos. Chem. Phys., 21, 15299–15308, https://doi.org/10.5194/acp-21-15299-2021, https://doi.org/10.5194/acp-21-15299-2021, 2021
Short summary
Short summary
Severe haze remains serious over Beijing despite emissions decreasing since 2008. Future haze changes in four scenarios are studied. The pattern conducive to haze weather increases with the atmospheric warming caused by the accumulation of greenhouse gases. However, the actual haze intensity, measured by either PM2.5 or optical depth, decreases with aerosol emissions. We show that only using the weather pattern index to predict the future change of Beijing haze is insufficient.
This article is included in the Encyclopedia of Geosciences
Na Zhao, Xinyi Dong, Kan Huang, Joshua S. Fu, Marianne Tronstad Lund, Kengo Sudo, Daven Henze, Tom Kucsera, Yun Fat Lam, Mian Chin, and Simone Tilmes
Atmos. Chem. Phys., 21, 8637–8654, https://doi.org/10.5194/acp-21-8637-2021, https://doi.org/10.5194/acp-21-8637-2021, 2021
Short summary
Short summary
Black carbon acts as a strong climate forcer, especially in vulnerable pristine regions such as the Arctic. This work utilizes ensemble modeling results from the task force Hemispheric Transport of Air Pollution Phase 2 to investigate the responses of Arctic black carbon and surface temperature to various source emission reductions. East Asia contributed the most to Arctic black carbon. The response of Arctic temperature to black carbon was substantially more sensitive than the global average.
This article is included in the Encyclopedia of Geosciences
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
This article is included in the Encyclopedia of Geosciences
Marianne T. Lund, Borgar Aamaas, Camilla W. Stjern, Zbigniew Klimont, Terje K. Berntsen, and Bjørn H. Samset
Earth Syst. Dynam., 11, 977–993, https://doi.org/10.5194/esd-11-977-2020, https://doi.org/10.5194/esd-11-977-2020, 2020
Short summary
Short summary
Achieving the Paris Agreement temperature goals requires both near-zero levels of long-lived greenhouse gases and deep cuts in emissions of short-lived climate forcers (SLCFs). Here we quantify the near- and long-term global temperature impacts of emissions of individual SLCFs and CO2 from 7 economic sectors in 13 regions in order to provide the detailed knowledge needed to design efficient mitigation strategies at the sectoral and regional levels.
This article is included in the Encyclopedia of Geosciences
Laura J. Wilcox, Zhen Liu, Bjørn H. Samset, Ed Hawkins, Marianne T. Lund, Kalle Nordling, Sabine Undorf, Massimo Bollasina, Annica M. L. Ekman, Srinath Krishnan, Joonas Merikanto, and Andrew G. Turner
Atmos. Chem. Phys., 20, 11955–11977, https://doi.org/10.5194/acp-20-11955-2020, https://doi.org/10.5194/acp-20-11955-2020, 2020
Short summary
Short summary
Projected changes in man-made aerosol range from large reductions to moderate increases in emissions until 2050. Rapid reductions between the present and the 2050s lead to enhanced increases in global and Asian summer monsoon precipitation relative to scenarios with continued increases in aerosol. Relative magnitude and spatial distribution of aerosol changes are particularly important for South Asian summer monsoon precipitation changes, affecting the sign of the trend in the coming decades.
This article is included in the Encyclopedia of Geosciences
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
This article is included in the Encyclopedia of Geosciences
Cited articles
Akbari, H., Menon, S., and Rosenfeld, A.:
Global cooling: increasing world-wide urban albedos to offset CO2,
Climatic Change,
94, 275–286, 2009.
Allen, M. R., Fuglestvedt, J. S., Shine, K. P., Reisinger, A., Pierrehumbert, R. T., and Forster, P. M.:
New use of global warming potentials to compare cumulative and short-lived climate pollutants,
Nat. Clim. Change,
6, 773–776, https://doi.org/10.1038/nclimate2998, 2016.
Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M., Frame, D. J., and Macey, A. H.:
A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation,
npj Climate and Atmospheric Science,
1, 16, https://doi.org/10.1038/s41612-018-0026-8, 2018.
Bala, G., Duffy, P. B., and Taylor, K. E.:
Impact of geoengineering schemes on the global hydrological cycle,
P. Natl. Acad. Sci. USA,
105, 7664, https://doi.org/10.1073/pnas.0711648105, 2008.
Bellouin, N. and Boucher, O.:
Climate response and efficacy of snow albedo forcings in the HadGEM2-AML climate model,
Hadley Centre Technical Note, HCTN82,
UK Met Office, Exeter, United Kingdom, 8, 2010.
Bernier, P. Y., Desjardins, R. L., Karimi-Zindashty, Y., Worth, D., Beaudoin, A., Luo, Y., and Wang, S.:
Boreal lichen woodlands: A possible negative feedback to climate change in eastern North America,
Agr. Forest Meteorol.,
151, 521–528, https://doi.org/10.1016/j.agrformet.2010.12.013, 2011.
Betts, R.:
Biogeophysical impacts of land use on present-day climate: near-surface termperature change and radiative forcing,
Atmos. Sci. Lett.,
1, 39–51, https://doi.org/10.1006/asle.2001.0037, 2001.
Betts, R. A.:
Offset of the potential carbon sink from boreal forestation by decreases in surface albedo,
Nature,
408, 187–190, 2000.
Block, K. and Mauritsen, T.:
Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2,
J. Adv. Model. Earth Sy.,
5, 676–691, https://doi.org/10.1002/jame.20041, 2014.
Boucher, O. and Reddy, M. S.:
Climate trade-off between black carbon and carbon dioxide emissions,
Energ. Policy,
36, 193–200, 2008.
Boysen, L. R., Lucht, W., Gerten, D., and Heck, V.:
Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations,
Environ. Res. Lett.,
11, 095010, https://doi.org/10.1088/1748-9326/11/9/095010, 2016.
Bright, R. M. and O'Halloran, T. L.: Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth's shortwave radiation budget: CACK v1.0, Geosci. Model Dev., 12, 3975–3990, https://doi.org/10.5194/gmd-12-3975-2019, 2019.
Bright, R. M., Cherubini, F., and Strømman, A. H.:
Climate Impacts of Bioenergy: Inclusion of Temporary Carbon Cycle and Albedo Change in Life Cycle Impact Assessment,
Environ. Impact Assess.,
37, 2–11, 2012.
Bright, R. M., Zhao, K., Jackson, R. B., and Cherubini, F.:
Quantifying surface albedo changes and direct biogeophysical climate forcings of forestry activities,
Glob. Change Biol.,
21, 3246–3266, 2015.
Bright, R. M., Bogren, W., Bernier, P. Y., and Astrup, R.:
Carbon equivalent metrics for albedo changes in land management contexts: Relevance of the time dimension,
Ecol. Appl.,
26, 1868–1880, 2016.
Bright, R. M., Davin, E., O/'Halloran, T., Pongratz, J., Zhao, K., and Cescatti, A.:
Local temperature response to land cover and management change driven by non-radiative processes,
Nat. Clim. Change,
7, 296–302, https://doi.org/10.1038/nclimate3250, 2017.
Bright, R. M., Allen, M., Antón-Fernández, C., Belbo, H., Dalsgaard, L., Eisner, S., Granhus, A., Kjønaas, O. J., Søgaard, G., and Astrup, R.:
Evaluating the terrestrial carbon dioxide removal potential of improved forest management and accelerated forest conversion in Norway,
Glob. Change Biol.,
26, 5087–5105, https://doi.org/10.1111/gcb.15228, 2020.
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudré, N., Pacifico, F., Pongratz, J., and Weiss, M.:
Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century,
J. Climate,
26, 6859–6881, https://doi.org/10.1175/JCLI-D-12-00623.1, 2013.
Caiazzo, F., Malina, R., Staples, M. D., Wolfe, P. J., Yim, S. H. L., and Barrett, S. R. H.:
Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects,
Environ. Res. Lett.,
9, 024015, https://doi.org/10.1088/1748-9326/9/2/024015, 2014.
Cain, M., Lynch, J., Allen, M. R., Fuglestvedt, J. S., Frame, D. J., and Macey, A. H.:
Improved calculation of warming-equivalent emissions for short-lived climate pollutants,
npj Climate and Atmospheric Science,
2, 29, https://doi.org/10.1038/s41612-019-0086-4, 2019.
Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X., and Ceschia, E.:
What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops,
Environ. Res. Lett.,
13, 044030, https://doi.org/10.1088/1748-9326/aab650, 2018.
Cess, R. D.:
Biosphere-Albedo Feedback and Climate Modeling,
J. Atmos. Sci.,
35, 1765–1768, https://doi.org/10.1175/1520-0469(1978)035<1765:BAFACM>2.0.CO;2, 1978.
Chen, L. and Dirmeyer, P. A.:
Reconciling the disagreement between observed and simulated temperature responses to deforestation,
Nat. Commun.,
11, 202, https://doi.org/10.1038/s41467-019-14017-0, 2020.
Cherubini, F., Bright, R. M., and Strømman, A. H.:
Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics,
Environ. Res. Lett.,
7, 045902, https://doi.org/10.1088/1748-9326/7/4/045902, 2012.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J. G., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P. E.:
Carbon and other biogeochemical cycles,
in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2013.
Davin, E. L., de Noblet-Ducoudré, N., and Friedlingstein, P.:
Impact of land cover change on surface climate: Relevance of the radiative forcing concept,
Geophys. Res. Lett.,
34, L13702, https://doi.org/10.1029/2007GL029678, 2007.
de Noblet-Ducoudré, N., Boisier, J.-P., Pitman, A., Bonan, G. B., Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C. H., Strengers, B. J., and Voldoire, A.:
Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments,
J. Climate,
25, 3261–3281, https://doi.org/10.1175/JCLI-D-11-00338.1, 2012.
Denison, S., Forster, P. M., and Smith, C. J.:
Guidance on emissions metrics for nationally determined contributions under the Paris Agreement,
Environ. Res. Lett.,
14, 124002, https://doi.org/10.1088/1748-9326/ab4df4, 2019.
Donohoe, A. and Battisti, D. S.:
Atmospheric and Surface Contributions to Planetary Albedo,
J. Climate,
24, 4402–4418, https://doi.org/10.1175/2011JCLI3946.1, 2011.
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.:
Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing,
Geophys. Res. Lett.,
43, 12614–12623, https://doi.org/10.1002/2016GL071930, 2016.
Favero, A., Sohngen, B., Huang, Y., and Jin, Y.:
Global cost estimates of forest climate mitigation with albedo: a new integrative policy approach,
Environ. Res. Lett.,
13, 125002, https://doi.org/10.1088/1748-9326/aaeaa2, 2018.
Field, L., Ivanova, D., Bhattacharyya, S., Mlaker, V., Sholtz, A., Decca, R., Manzara, A., Johnson, D., Christodoulou, E., Walter, P., and Katuri, K.:
Increasing Arctic Sea Ice Albedo Using Localized Reversible Geoengineering,
Earths Future,
6, 882–901, https://doi.org/10.1029/2018EF000820, 2018.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.:
Changes in atmospheric consituents and in radiative forcing,
in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Soloman, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Fortier, M.-O. P., Roberts, G. W., Stagg-Williams, S. M., and Sturm, B. S. M.:
Determination of the life cycle climate change impacts of land use and albedo change in algal biofuel production,
Algal Res.,
28, 270–281, https://doi.org/10.1016/j.algal.2017.06.009, 2017.
Fuglestvedt, J. S., Berntsen, T. K., Godal, O., Sausen, R., Shine, K. P., and Skodvin, T.:
Metrics of Climate Change: Assessing Radiative Forcing and Emission Indices,
Climatic Change,
58, 267–331, https://doi.org/10.1023/A:1023905326842, 2003.
Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., Skeie, R. B., Velders, G. J. M., and Waitz, I. A.:
Transport impacts on atmosphere and climate: Metrics,
Atmos. Environ.,
44, 4648–4677, https://doi.org/10.1016/j.atmosenv.2009.04.044, 2010.
Gasser, T., Peters, G. P., Fuglestvedt, J. S., Collins, W. J., Shindell, D. T., and Ciais, P.: Accounting for the climate–carbon feedback in emission metrics, Earth Syst. Dynam., 8, 235–253, https://doi.org/10.5194/esd-8-235-2017, 2017.
Genesio, L., Bright, R. M., Alberti, G., Peressotti, A., Vedove, G. D., Incerti, G., Toscano, P., Rinaldi, M., Muller, O., and Miglietta, F.:
A Chlorophyll-deficient, highly reflective soybean mutant: radiative forcing and yield gaps,
Environ. Res. Lett.,
15, 074014, https://doi.org/10.1088/1748-9326/ab865e, 2020.
Georgescu, M., Lobell, D. B., and Field, C. B.:
Direct climate effects of perennial bioenergy crops in the United States,
P. Natl. Acad. Sci. USA,
108, 4307–4312, 2011.
Global Carbon Project: Supplemental data of Global Carbon Budget 2019 (Version 1.0), Global Carbon Project [Data set], https://doi.org/10.18160/gcp-2019, 2019.
Guest, G., Bright, R. M., Cherubini, F., and Strømman, A. H.:
Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems,
Environ. Impact Assess.,
43, 21–30, https://doi.org/10.1016/j.eiar.2013.05.002, 2013.
Hansen, J. and Nazarenko, L.:
Soot climate forcing via snow and ice albedos,
P. Natl. Acad. Sci. USA,
101, 423–428, https://doi.org/10.1073/pnas.2237157100, 2004.
Hansen, J., Sato, M., and Ruedy, R.:
Radiative forcing and climate response,
J. Geophys. Res.-Atmos.,
102, 6831–6864, https://doi.org/10.1029/96JD03436, 1997.
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.:
Efficacy of climate forcings,
J. Geophys. Res.-Atmos.,
110, D18104, https://doi.org/10.1029/2005jd005776, 2005.
Hansen, J. E., Lacis, A., Rind, D., and Russell, G.:
Climate Processes and Climate Sensitivity,
Geophys. Monogr. Ser.,
edited by: Hansen, J. E. and Takahashi, T.,
AGU, Washington, DC, 368 pp., 1984.
Heijungs, R. and Guineév, J. B.:
An Overview of the Life Cycle Assessment Method – Past, Present, and Future,
in: Life Cycle Assessment Handbook,
edited by: Curran, M. A.,
Scrivener Publishing, Beverly, Massachusetts, USA, 15–41, 2012.
Houghton, J. T., Filho, L. G. M., Bruce, J., Lee, H., Callander, B. A., Haites, E., Harris, N., and Maskell, K. (Eds.):
Radiative forcing of climate change,
in: Climate change 1994,
Cambridge University Press, Cambridge, UK, 1995.
Huang, H., Xue, Y., Chilukoti, N., Liu, Y., Chen, G., and Diallo, I.:
Assessing global and regional effects of reconstructed land use and land cover change on climate since 1950 using a coupled land–atmosphere–ocean model,
J. Climate,
33, 8997–9013, https://doi.org/10.1175/jcli-d-20-0108.1, 2020.
IPCC:
Climate change 2001: The scientific basis,
edited by: Houghton, J., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.,
Cambridge University Press, New York, 2001.
Jacobson, M. Z. and Ten Hoeve, J. E.:
Effects of Urban Surfaces and White Roofs on Global and Regional Climate,
J. Climate,
25, 1028–1044, https://doi.org/10.1175/jcli-d-11-00032.1, 2012.
Jenkins, S., Millar, R. J., Leach, N., and Allen, M. R.:
Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions,
Geophys. Res. Lett.,
45, 2795–2804, https://doi.org/10.1002/2017GL076173, 2018.
Jones, A. D., Collins, W. D., and Torn, M. S.:
On the additivity of radiative forcing between land use change and greenhouse gases,
Geophys. Res. Lett.,
40, 4036–4041, https://doi.org/10.1002/grl.50754, 2013.
Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, N. R., Friedrich, T., Frölicher, T. L., Halloran, P. R., Holden, P. B., Jones, C., Kleinen, T., Mackenzie, F. T., Matsumoto, K., Meinshausen, M., Plattner, G.-K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A., and Weaver, A. J.: Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis, Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, 2013.
Joshi, M., Shine, K., Ponater, M., Stuber, N., Sausen, R., and Li, L.:
A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change,
Clim. Dynam.,
20, 843–854, https://doi.org/10.1007/s00382-003-0305-9, 2003.
Kramer, R. J., Matus, A. V., Soden, B. J., and L'Ecuyer, T. S.:
Observation-Based Radiative Kernels From CloudSat/CALIPSO,
J. Geophys. Res.-Atmos.,
124, 5431–5444, https://doi.org/10.1029/2018JD029021, 2019.
Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P. J., Alterskjær, K., Karam, D. B., Cole, J. N. S., Curry, C. L., Haywood, J. M., Irvine, P. J., Ji, D., Jones, A., Kristjánsson, J. E., Lunt, D. J., Moore, J. C., Niemeier, U., Schmidt, H., Schulz, M., Singh, B., Tilmes, S., Watanabe, S., Yang, S., and Yoon, J.-H.:
Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP),
J. Geophys. Res.-Atmos.,
118, 8320–8332, https://doi.org/10.1002/jgrd.50646, 2013.
Kravitz, B., Rasch, P. J., Wang, H., Robock, A., Gabriel, C., Boucher, O., Cole, J. N. S., Haywood, J., Ji, D., Jones, A., Lenton, A., Moore, J. C., Muri, H., Niemeier, U., Phipps, S., Schmidt, H., Watanabe, S., Yang, S., and Yoon, J.-H.: The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering, Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, 2018.
Laguë, M. M., Bonan, G. B., and Swann, A. L. S.:
Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System,
J. Climate,
32, 5725–5744, https://doi.org/10.1175/jcli-d-18-0812.1, 2019.
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.:
The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018,
Atmos. Environ.,
244, 117834, https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.
Lugato, E., Cescatti, A., Jones, A., Ceccherini, G., and Duveiller, G.:
Maximising climate mitigation potential by carbon and radiative agricultural land management with cover crops,
Environ. Res. Lett.,
15, 094075, https://doi.org/10.1088/1748-9326/aba137, 2020.
Lutz, D. and Howarth, R.:
Valuing albedo as an ecosystem service: implications for forest management,
Climatic Change,
124, 53–63, https://doi.org/10.1007/s10584-014-1109-0, 2014.
Lynch, J., Cain, M., Pierrehumbert, R., and Allen, M.:
Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants,
Environ. Res. Lett.,
15, 044023, https://doi.org/10.1088/1748-9326/ab6d7e, 2020.
Marvel, K., Schmidt, G. A., Miller, R. L., and Nazarenko, L. S.:
Implications for climate sensitivity from the response to individual forcings,
Nat. Clim. Change,
6, 386–389, https://doi.org/10.1038/nclimate2888, 2016.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., Taylor, K. E., and Schlund, M.:
Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models,
Science Advances,
6, eaba1981, https://doi.org/10.1126/sciadv.aba1981, 2020.
Menon, S., Akbari, H., Mahanama, S., Sednev, I., and Levinson, R. M.:
Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets,
Environ. Res. Lett.,
5, 014005, https://doi.org/10.1088/1748-9326/5/1/014005, 2010.
Millar, R. J., Nicholls, Z. R., Friedlingstein, P., and Allen, M. R.: A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions, Atmos. Chem. Phys., 17, 7213–7228, https://doi.org/10.5194/acp-17-7213-2017, 2017.
Modak, A., Bala, G., Cao, L., and Caldeira, K.:
Why must a solar forcing be larger than a CO 2 forcing to cause the same global mean surface temperature change?,
Environ. Res. Lett.,
11, 044013, https://doi.org/10.1088/1748-9326/11/4/044013, 2016.
Montenegro, A., Eby, M., Mu, Q., Mulligan, M., Weaver, A. J., Wiebe, E. C., and Zhao, M.:
The net carbon drawdown of small scale afforestation from satellite observations,
Global Planet. Change,
69, 195–204, https://doi.org/10.1016/j.gloplacha.2009.08.005, 2009.
Muñoz, I., Campra, P., and Fernández-Alba, A. R.:
Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture,
Int. J. Life Cycle Ass.,
15, 672–681, 2010.
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.:
New estimtes of raditive forcing due to well mixed greenhouse gases,
Geophys. Res. Lett.,
25, 2715–2718, 1998.
Myhre, G., Shindell, D., Bréon, F., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J., Lee, D., Mendoza, B., and Nakajima, T.:
Chapter 8: Anthropogenic and natural radiative forcing,
in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assement Report of the Integovernmental Panel on Climate Change,
edited by: Tignor, K., Allen, M., Boschung, J., Nauels, A., Xia, Y., Vex, V., and Midgley, P.,
Cambridge University Press, Cambridge, UK and New York, NY, 659–740, 2013.
Mykleby, P. M., Snyder, P. K., and Twine, T. E.:
Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests,
Geophys. Res. Lett.,
44, 2493–2501, https://doi.org/10.1002/2016GL071459, 2017.
O'Neill, B. C.:
The Jury is Still Out on Global Warming Potentials,
Climatic Change,
44, 427–443, https://doi.org/10.1023/A:1005582929198, 2000.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pendergrass, A. G., Conley, A., and Vitt, F. M.: Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5, Earth Syst. Sci. Data, 10, 317–324, https://doi.org/10.5194/essd-10-317-2018, 2018.
Pielke Sr., R. A., Avissar, R., Raupach, M. R., Dolman, A. J., Zeng, X., and Denning, A. S.:
Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate,
Glob. Change Biol.,
4, 461–475, 1998.
Pielke Sr., R. A., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., Niyogi, D. S., and Running, S. W.:
The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases,
Philos. T. R. Soc. Lond. A,
360, 1705–1719, 2002.
Pierrehumbert, R. T.:
Short-Lived Climate Pollution,
Annu. Rev. Earth Pl. Sc.,
42, 341–379, https://doi.org/10.1146/annurev-earth-060313-054843, 2014.
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.:
Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change,
Geophys. Res. Lett.,
37, L08702, https://doi.org/10.1029/2010gl043010, 2010.
Richardson, T. B., Forster, P. M., Smith, C. J., Maycock, A. C., Wood, T., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kirkevåg, A., Lamarque, J. F., Mülmenstädt, J., Myhre, G., Olivié, D., Portmann, R. W., Samset, B. H., Shawki, D., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D.:
Efficacy of Climate Forcings in PDRMIP Models,
J. Geophys. Res.-Atmos.,
124, 12824–12844, https://doi.org/10.1029/2019JD030581, 2019.
Rogers, J. D. and Stephens, R. D.:
Absolute infrared intensities for F-113 and F-114 and an assessment of their greenhouse warming potential relative to other chlorofluorocarbons,
J. Geophys. Res.-Atmos.,
93, 2423–2428, https://doi.org/10.1029/JD093iD03p02423, 1988.
Schmidt, H., Alterskjær, K., Bou Karam, D., Boucher, O., Jones, A., Kristjánsson, J. E., Niemeier, U., Schulz, M., Aaheim, A., Benduhn, F., Lawrence, M., and Timmreck, C.: Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models, Earth Syst. Dynam., 3, 63–78, https://doi.org/10.5194/esd-3-63-2012, 2012.
Sciusco, P., Chen, J., Abraha, M., Lei, C., Robertson, G. P., Lafortezza, R., Shirkey, G., Ouyang, Z., Zhang, R., and John, R.:
Spatiotemporal variations of albedo in managed agricultural landscapes: inferences to global warming impacts (GWI),
Landscape Ecol.,
35, 1385–1402, https://doi.org/10.1007/s10980-020-01022-8, 2020.
Seneviratne, S. I., Phipps, S. J., Pitman, A. J., Hirsch, A. L., Davin, E. L., Donat, M. G., Hirschi, M., Lenton, A., Wilhelm, M., and Kravitz, B.:
Land radiative management as contributor to regional-scale climate adaptation and mitigation,
Nat. Geosci.,
11, 88–96, https://doi.org/10.1038/s41561-017-0057-5, 2018.
Sherwood, S. C., Bony, S., Boucher, O., Bretherton, C., Forster, P. M., Gregory, J. M., and Stevens, B.:
Adjustments in the Forcing-Feedback Framework for Understanding Climate Change,
B. Am. Meteorol.l Soc.,
96, 217–228, https://doi.org/10.1175/bams-d-13-00167.1, 2015.
Shindell, D. T.:
Inhomogeneous forcing and transient climate sensitivity,
Nat. Clim. Change,
4, 274–277, https://doi.org/10.1038/nclimate2136, 2014.
Shindell, D. T., Faluvegi, G., Rotstayn, L., and Milly, G.:
Spatial patterns of radiative forcing and surface temperature response,
J. Geophys. Res.-Atmos.,
120, 5385–5403, https://doi.org/10.1002/2014JD022752, 2015.
Shine, K., Derwent, R. G., Wuebbles, D. J., and Morcrette, J. J.:
Radiative forcing of climate,
in: Climate Change: The IPCC Scientific Assessment,
edited by: Houghton, J. T., Jenkins, G. J., and Ephraums, J. J.,
Cambridge University Press, New York, Melbourne, 1990.
Shine, K. P., Cook, J., Highwood, E. J., and Joshi, M. M.:
An alternative to radiative forcing for estimating the relative importance of climate change mechanisms,
Geophys. Res. Lett.,
30, 2047, https://doi.org/10.1029/2003GL018141, 2003.
Sieber, P., Ericsson, N., and Hansson, P.-A.:
Climate impact of surface albedo change in Life Cycle Assessment: Implications of site and time dependence,
Environ. Impact Assess.,
77, 191–200, https://doi.org/10.1016/j.eiar.2019.04.003, 2019.
Sieber, P., Ericsson, N., Hammar, T., and Hansson, P.-A.:
Including albedo in time-dependent LCA of bioenergy,
GCB Bioenergy,
12, 410–425, https://doi.org/10.1111/gcbb.12682, 2020.
Singh, B., Guest, G., Bright, R. M., and Strømman, A. H.:
Life Cycle Assessment of Electric and Fuel Cell Vehicle Transport Based on Forest Biomass,
J. Ind. Ecol.,
18, 176–186, https://doi.org/10.1111/jiec.12098, 2014.
Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D.:
Understanding Rapid Adjustments to Diverse Forcing Agents,
Geophys. Res. Lett.,
45, 12023–12031, https://doi.org/10.1029/2018gl079826, 2018.
Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A., Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, D., Fiedler, S., Lewinschal, A., Mackallah, C., Dix, M., Pincus, R., and Forster, P. M.: Effective radiative forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, 2020.
Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and Shields, C. A.:
Quantifying Climate Feedbacks Using Radiative Kernels,
J. Climate,
21, 3504–3520, https://doi.org/10.1175/2007JCLI2110.1, 2008.
Stephens, G. L., O'Brien, D., Webster, P. J., Pilewski, P., Kato, S., and Li, J.-l.:
The albedo of Earth,
Rev Geophys.,
53, 141–163, https://doi.org/10.1002/2014RG000449, 2015.
Susca, T.:
Multiscale Approach to Life Cycle Assessment,
J. Ind. Ecol.,
16, 951–962, https://doi.org/10.1111/j.1530-9290.2012.00560.x, 2012a.
Susca, T.:
Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs,
Environ. Pollut.,
163, 48–54, https://doi.org/10.1016/j.envpol.2011.12.019, 2012b.
Thompson, M., Adams, D., and Johnson, K. N.:
The Albedo Effect and Forest Carbon Offset Design,
J. Forest.,
107, 425–431, 2009a.
Thompson, M. P., Adams, D., and Sessions, J.:
Radiative forcing and the optimal rotation age,
Ecol. Econ.,
68, 2713–2720, 2009b.
Wigley, T. M. L.:
The Kyoto Protocol: CO2 CH4 and climate implications,
Geophys. Res. Lett.,
25, 2285–2288, https://doi.org/10.1029/98GL01855, 1998.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E.:
Causes of Higher Climate Sensitivity in CMIP6 Models,
Geophys. Res. Lett.,
47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Zhao, K. and Jackson, R. B.:
Biophysical forcings of land-use changes from potential forestry activities in North America,
Ecol. Monogr.,
84, 329–353, https://doi.org/10.1890/12-1705.1, 2014.
Zickfeld, K., Eby, M., Matthews, H. D., and Weaver, A. J.:
Setting cumulative emissions targets to reduce the risk of dangerous climate change,
P. Natl. Acad. Sci. USA,
106, 16129, https://doi.org/10.1073/pnas.0805800106, 2009.
Short summary
Humans affect the reflective properties (albedo) of Earth's surface and the amount of solar energy that it absorbs, in turn affecting climate. In recent years, a variety of climate metrics have been applied to characterize albedo perturbations in terms of their
CO2-equivalenteffects, despite the lack of scientific consensus surrounding the methods behind them. We review these metrics, evaluate their (de)merits, provide guidance for future application, and suggest avenues for future research.
Humans affect the reflective properties (albedo) of Earth's surface and the amount of solar...
Altmetrics
Final-revised paper
Preprint