Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 13, issue 1
Atmos. Chem. Phys., 13, 117–128, 2013
https://doi.org/10.5194/acp-13-117-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS)...

Atmos. Chem. Phys., 13, 117–128, 2013
https://doi.org/10.5194/acp-13-117-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Jan 2013

Research article | 07 Jan 2013

The effect of climate and climate change on ammonia emissions in Europe

C. A. Skjøth1,2 and C. Geels2 C. A. Skjøth and C. Geels
  • 1Department of Physical Geography and Ecosystems Science, Faculty of Science, Lund University, Lund, Sweden
  • 2Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Roskilde, Denmark

Abstract. We present here a dynamical method for modelling temporal and geographical variations in ammonia emissions in regional-scale chemistry transport models (CTMs) and chemistry climate models (CCMs). The method is based on the meteorology in the models and gridded inventories. We use the dynamical method to investigate the spatiotemporal variability of ammonia emissions across part of Europe and study how these emissions are related to geographical and year-to-year variations in atmospheric temperature alone. For simplicity we focus on the emission from a storage facility related to a standard Danish pig stable with 1000 animals and display how emissions from this source would vary geographically throughout central and northern Europe and from year to year. In view of future climate changes, we also evaluate the potential future changes in emission by including temperature projections from an ensemble of climate models. The results point towards four overall issues. (1) Emissions can easily vary by 20% for different geographical locations within a country due to overall variations in climate. The largest uncertainties are seen for large countries such as the UK, Germany and France. (2) Annual variations in overall climate can at specific locations cause uncertainties in the range of 20%. (3) Climate change may increase emissions by 0–40% in central to northern Europe. (4) Gradients in existing emission inventories that are seen between neighbour countries (e.g. between the UK and France) can be reduced by using a dynamical methodology for calculating emissions. Acting together these four factors can cause substantial uncertainties in emission. Emissions are generally considered among the largest uncertainties in the model calculations made with CTM and CCM models. Efforts to reduce uncertainties are therefore highly relevant. It is therefore recommended that both CCMs and CTMs implement a dynamical methodology for simulating ammonia emissions in a similar way as for biogenic volatile organic compound (BVOCs) – a method that has been used for more than a decade in CTMs. Finally, the climate penalty on ammonia emissions should be taken into account at the policy level such as the NEC and IPPC directives.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint