Articles | Volume 20, issue 2
Atmos. Chem. Phys., 20, 699–720, 2020
Atmos. Chem. Phys., 20, 699–720, 2020

Research article 21 Jan 2020

Research article | 21 Jan 2020

Atmospheric fate of a series of saturated alcohols: kinetic and mechanistic study

Inmaculada Colmenar et al.

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A comparative and experimental study of the reactivity with nitrate radical of two terpenes: α-terpinene and γ-terpinene
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 20, 15167–15189,,, 2020
Photooxidation of pinonaldehyde at ambient conditions investigated in the atmospheric simulation chamber SAPHIR
Michael Rolletter, Marion Blocquet, Martin Kaminski, Birger Bohn, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Xin Li, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 13701–13719,,, 2020
Short summary
Reaction between CH3C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
Matias Berasategui, Damien Amedro, Luc Vereecken, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 13541–13555,,, 2020
Short summary
Snow heterogeneous reactivity of bromide with ozone lost during snow metamorphism
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454,,, 2020
Short summary
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519,,, 2020
Short summary

Cited articles

Allert, M., Rizk, S. S., Looger, L. L., Hellinga, H. W., and Wells, J.: A Computational Design of Receptors for an Organophosphate Surrogate of the Nerve Agent Soman, P. Natl. Acad. Sci. USA, 101, 7907–7912,, 2004. 
Altshuller, A. P.: PANs in the Atmosphere, Air & Waste, 43, 1221–1230,, 1993. 
Andersen, V. F., Wallington, T. J., and Nielsen, O. J.: Atmospheric Chemistry of i-Butanol, J. Phys. Chem. A, 114, 12462–12469,, 2010. 
AOPWIN: v1.92, ©2000, U.S. Environmental Protection Agency, 2000. 
Aschmann, S. M. Arey, J., and Atkinson, R.: Kinetics and Products of the Reactions of OH Radicals with 4,4-Dimethyl-1-pentene and 3,3-Dimethylbutanal at 296±2 K, J. Phys. Chem. A, 114, 5810–5816,, 2010. 
Short summary
Saturated alcohols (SAs), such as (E)-4-methylcyclohexanol, 3,3-dimethyl-1-butanol, and 3,3-dimethyl-2-butanol, could be used as biofuels. The atmospheric reactivity of these compounds must be established in order to understand the consequences of the presence of these compounds in the atmosphere. The experimental results obtained in this work reveal that uncontrolled emissions of these saturated alcohols could have important atmospheric implications.
Final-revised paper