Articles | Volume 20, issue 2
https://doi.org/10.5194/acp-20-699-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-699-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric fate of a series of saturated alcohols: kinetic and mechanistic study
Inmaculada Colmenar
CORRESPONDING AUTHOR
Universidad de Castilla La Mancha, Departamento de Química
Física, Facultad de Ciencias y Tecnologías Químicas, Avda.
Camilo José Cela S/N, 13071 Ciudad Real, Spain
Universidad de Castilla La Mancha, Instituto de Combustión y
Contaminación Atmosférica (ICCA), Camino Moledores S/N, 13071 Ciudad
Real, Spain
Pilar Martin
Universidad de Castilla La Mancha, Departamento de Química
Física, Facultad de Ciencias y Tecnologías Químicas, Avda.
Camilo José Cela S/N, 13071 Ciudad Real, Spain
Universidad de Castilla La Mancha, Instituto de Combustión y
Contaminación Atmosférica (ICCA), Camino Moledores S/N, 13071 Ciudad
Real, Spain
Beatriz Cabañas
Universidad de Castilla La Mancha, Departamento de Química
Física, Facultad de Ciencias y Tecnologías Químicas, Avda.
Camilo José Cela S/N, 13071 Ciudad Real, Spain
Universidad de Castilla La Mancha, Instituto de Combustión y
Contaminación Atmosférica (ICCA), Camino Moledores S/N, 13071 Ciudad
Real, Spain
Sagrario Salgado
Universidad de Castilla La Mancha, Departamento de Química
Física, Facultad de Ciencias y Tecnologías Químicas, Avda.
Camilo José Cela S/N, 13071 Ciudad Real, Spain
Universidad de Castilla La Mancha, Instituto de Combustión y
Contaminación Atmosférica (ICCA), Camino Moledores S/N, 13071 Ciudad
Real, Spain
Araceli Tapia
Universidad de Castilla La Mancha, Departamento de Química
Física, Facultad de Ciencias y Tecnologías Químicas, Avda.
Camilo José Cela S/N, 13071 Ciudad Real, Spain
Universidad de Castilla La Mancha, Instituto de Combustión y
Contaminación Atmosférica (ICCA), Camino Moledores S/N, 13071 Ciudad
Real, Spain
Inmaculada Aranda
Universidad de Castilla La Mancha, Departamento de Química
Física, Facultad de Ciencias y Tecnologías Químicas, Avda.
Camilo José Cela S/N, 13071 Ciudad Real, Spain
Universidad de Castilla La Mancha, Instituto de Combustión y
Contaminación Atmosférica (ICCA), Camino Moledores S/N, 13071 Ciudad
Real, Spain
Related authors
No articles found.
Inmaculada Aranda, Sagrario Salgado, Beatriz Cabañas, Florentina Villanueva, and Pilar Martin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3241, https://doi.org/10.5194/egusphere-2024-3241, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
3,3-dimethylbutanal and 3,3-dimethylbutanone are compounds that might play a big role in the chemistry of the atmosphere. To better understand their effects, the rate at which these reactions happens was measured and the reaction products were identified. The results of this study show that these compounds degrade near their sources, so they don’t have direct impact on climate. However, they can contribute to the formation of tropospheric O3 and secondary organic aerosols affecting our health.
Related subject area
Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation of reactive nitrogen species promoted by iron ions through the photochemistry of a neonicotinoid insecticide
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes determined by the relative-rate technique
Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
Mechanistic insight into the kinetic fragmentation of norpinonic acid in the gas phase: an experimental and density functional theory (DFT) study
Temperature-dependent rate coefficients for the reaction of OH radicals with selected alkanes, aromatic compounds and monoterpenes
Exploring HONO production from particulate nitrate photolysis in Chinese representative regions: characteristics, influencing factors and environmental implications
Secondary reactions of aromatics-derived oxygenated organic molecules lead to plentiful highly oxygenated organic molecules within an intraday OH exposure
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Negligible temperature dependence of the ozone–iodide reaction and implications for oceanic emissions of iodine
Extension, development, and evaluation of the representation of the OH-initiated dimethyl sulfide (DMS) oxidation mechanism in the Master Chemical Mechanism (MCM) v3.3.1 framework
On the potential use of highly oxygenated organic molecules (HOMs) as indicators for ozone formation sensitivity
Oxygenated organic molecules produced by low-NOx photooxidation of aromatic compounds: contributions to secondary organic aerosol and steric hindrance
Impact of temperature on the role of Criegee intermediates and peroxy radicals in dimer formation from β-pinene ozonolysis
Atmospheric impact of 2-methylpentanal emissions: kinetics, photochemistry, and formation of secondary pollutants
Quantifying primary oxidation products in the OH-initiated reaction of benzyl alcohol
Technical note: Gas-phase nitrate radical generation via irradiation of aerated ceric ammonium nitrate mixtures
Direct probing of acylperoxy radicals during ozonolysis of α-pinene: constraints on radical chemistry and production of highly oxygenated organic molecules
Atmospheric photooxidation and ozonolysis of sabinene: reaction rate coefficients, product yields, and chemical budget of radicals
Compilation of Henry's law constants (version 5.0.0) for water as solvent
Measurement report: Carbonyl sulfide production during dimethyl sulfide oxidation in the atmospheric simulation chamber SAPHIR
An aldehyde as a rapid source of secondary aerosol precursors: theoretical and experimental study of hexanal autoxidation
Measuring and modeling investigation of the net photochemical ozone production rate via an improved dual-channel reaction chamber technique
Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions
Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone
On the formation of highly oxidized pollutants by autoxidation of terpenes under low-temperature-combustion conditions: the case of limonene and α-pinene
Selective deuteration as a tool for resolving autoxidation mechanisms in α-pinene ozonolysis
Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
Measurement of Henry's law and liquid-phase loss rate constants of peroxypropionic nitric anhydride (PPN) in deionized water and in n-octanol
Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes
Atmospheric breakdown chemistry of the new “green” solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals
Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking
Observations of gas-phase products from the nitrate-radical-initiated oxidation of four monoterpenes
Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical
Oxidation product characterization from ozonolysis of the diterpene ent-kaurene
Kinetics of OH + SO2 + M: temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour
Formation of organic sulfur compounds through SO2-initiated photochemistry of PAHs and dimethylsulfoxide at the air-water interface
Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants
Evaluation of the daytime tropospheric loss of 2-methylbutanal
Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour
Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility
N2O5 uptake onto saline mineral dust: a potential missing source of tropospheric ClNO2 in inland China
NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical
Marine gas-phase sulfur emissions during an induced phytoplankton bloom
Biomass burning plume chemistry: OH-radical-initiated oxidation of 3-penten-2-one and its main oxidation product 2-hydroxypropanal
Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets
Characterization of ambient volatile organic compounds, source apportionment, and the ozone–NOx–VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions
Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction
Reactions of NO3 with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction
Zhu Ran, Yanan Hu, Yuanzhe Li, Xiaoya Gao, Can Ye, Shuai Li, Xiao Lu, Yongming Luo, Sasho Gligorovski, and Jiangping Liu
Atmos. Chem. Phys., 24, 11943–11954, https://doi.org/10.5194/acp-24-11943-2024, https://doi.org/10.5194/acp-24-11943-2024, 2024
Short summary
Short summary
We report enhanced formation of nitrous acid (HONO) and NOx (NO + NO2) triggered by iron ions during photolysis of neonicotinoid insecticides at the air–water interface. This novel previously overlooked source of atmospheric HONO and NOx may be an important contribution to the global nitrogen cycle and affects atmospheric oxidizing capacity and climate change.
Yanyan Xin, Chengtang Liu, Xiaoxiu Lun, Shuyang Xie, Junfeng Liu, and Yujing Mu
Atmos. Chem. Phys., 24, 11409–11429, https://doi.org/10.5194/acp-24-11409-2024, https://doi.org/10.5194/acp-24-11409-2024, 2024
Short summary
Short summary
Rate coefficients for the reactions of OH radicals with C3–C11 alkanes were determined using the multivariate relative-rate technique. A total of 25 relative-rate coefficients at room temperature and 24 Arrhenius expressions in the temperature range of 273–323 K were obtained, which expanded the data available.
Yuanyuan Luo, Ditte Thomsen, Emil Mark Iversen, Pontus Roldin, Jane Tygesen Skønager, Linjie Li, Michael Priestley, Henrik B. Pedersen, Mattias Hallquist, Merete Bilde, Marianne Glasius, and Mikael Ehn
Atmos. Chem. Phys., 24, 9459–9473, https://doi.org/10.5194/acp-24-9459-2024, https://doi.org/10.5194/acp-24-9459-2024, 2024
Short summary
Short summary
∆3-carene is abundantly emitted from vegetation, but its atmospheric oxidation chemistry has received limited attention. We explored highly oxygenated organic molecule (HOM) formation from ∆3-carene ozonolysis in chambers and investigated the impact of temperature and relative humidity on HOM formation. Our findings provide new insights into ∆3-carene oxidation pathways and their potential to impact atmospheric aerosols.
Izabela Kurzydym, Agata Błaziak, Kinga Podgórniak, Karol Kułacz, and Kacper Błaziak
Atmos. Chem. Phys., 24, 9309–9322, https://doi.org/10.5194/acp-24-9309-2024, https://doi.org/10.5194/acp-24-9309-2024, 2024
Short summary
Short summary
This paper outlines a unique scientific strategy for studying the reactivity of atmospherically relevant norpinonic acid (NA). The publication offers a new toolbox, illustrating NA's fragmentation and pattern of kinetic degradation leading to the formation of new small molecules. Furthermore, the research strategy presented here demonstrates how a mass spectrometer can function as a gas-phase reactor and the quantum chemistry method can serve as a reaction model builder.
Florian Berg, Anna Novelli, René Dubus, Andreas Hofzumahaus, Frank Holland, Andreas Wahner, and Hendrik Fuchs
EGUsphere, https://doi.org/10.5194/egusphere-2024-2614, https://doi.org/10.5194/egusphere-2024-2614, 2024
Short summary
Short summary
This study reports temperature dependent reaction rate constants of the reaction of atmospherically relevant hydrocarbons from biogenic sources (MVK, monoterpenes) and anthropogenic sources (alkanes, aromatics). Measurements were done at atmospheric conditions (ambient pressure, temperature range) in air.
Bowen Li, Jian Gao, Chun Chen, Liang Wen, Yuechong Zhang, Junling Li, Yuzhe Zhang, Xiaohui Du, Kai Zhang, and Jiaqi Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2141, https://doi.org/10.5194/egusphere-2024-2141, 2024
Short summary
Short summary
The photolysis rate constants of particulate nitrate for HONO production (JHONO) with PM2.5 samples collected from five representative sites in China varied over a wide range. The parameterization equation between JHONO and OC/NO3− has been established and can be used to estimate JHONO in different environments. Our work provided an important reference for the research in other areas in the world with high proportion of organic components in aerosol samples, such as United States and Europe.
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024, https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary
Short summary
The formation and evolution mechanisms of aromatics-derived highly oxygenated organic molecules (HOMs) are essential to understand the formation of secondary organic aerosol pollution. Our conclusion highlights an underappreciated formation pathway of aromatics-derived HOMs and elucidates detailed formation mechanisms of certain HOMs, which advances our understanding of HOMs and potentially explains the existing gap between model prediction and ambient measurement of the HOMs' concentrations.
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024, https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules are important contributors to secondary organic aerosol. Their yield depends on detailed atmospheric chemical composition. One important parameter is the ratio of hydroperoxy radicals to organic peroxy radicals (HO2/RO2), and we show that higher HO2/RO2 ratios lower the secondary organic aerosol yield. This is of importance as laboratory studies are often biased towards organic peroxy radicals.
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024, https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
Lorrie Simone Denise Jacob, Chiara Giorio, and Alexander Thomas Archibald
Atmos. Chem. Phys., 24, 3329–3347, https://doi.org/10.5194/acp-24-3329-2024, https://doi.org/10.5194/acp-24-3329-2024, 2024
Short summary
Short summary
Recent studies on DMS have provided new challenges to our mechanistic understanding. Here we synthesise a number of recent studies to further develop and extend a state-of-the-art mechanism. Our new mechanism is shown to outperform all existing mechanisms when compared over a wide set of conditions. The development of an improved DMS mechanism will help lead the way to better the understanding the climate impacts of DMS emissions in past, present, and future atmospheric conditions.
Jiangyi Zhang, Jian Zhao, Yuanyuan Luo, Valter Mickwitz, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 24, 2885–2911, https://doi.org/10.5194/acp-24-2885-2024, https://doi.org/10.5194/acp-24-2885-2024, 2024
Short summary
Short summary
Due to the intrinsic connection between the formation pathways of O3 and HOMs, the ratio of HOM dimers or non-nitrate monomers to HOM organic nitrates could be used to determine O3 formation regimes. Owing to the fast formation and short lifetimes of HOMs, HOM-based indicating ratios can describe O3 formation in real time. Despite the success of our approach in this simple laboratory system, applicability to the much more complex atmosphere remains to be determined.
Xi Cheng, Yong Jie Li, Yan Zheng, Keren Liao, Theodore K. Koenig, Yanli Ge, Tong Zhu, Chunxiang Ye, Xinghua Qiu, and Qi Chen
Atmos. Chem. Phys., 24, 2099–2112, https://doi.org/10.5194/acp-24-2099-2024, https://doi.org/10.5194/acp-24-2099-2024, 2024
Short summary
Short summary
In this study we conducted laboratory measurements to investigate the formation of gas-phase oxygenated organic molecules (OOMs) from six aromatic volatile organic compounds (VOCs). We provide a thorough analysis on the effects of precursor structure (substituents and ring numbers) on product distribution and highlight from a laboratory perspective that heavy (e.g., double-ring) aromatic VOCs are important in initial particle growth during secondary organic aerosol formation.
Yiwei Gong, Feng Jiang, Yanxia Li, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 167–184, https://doi.org/10.5194/acp-24-167-2024, https://doi.org/10.5194/acp-24-167-2024, 2024
Short summary
Short summary
This study investigates the role of the important atmospheric reactive intermediates in the formation of dimers and aerosol in monoterpene ozonolysis at different temperatures. Through conducting a series of chamber experiments and utilizing chemical kinetic and aerosol dynamic models, the SOA formation processes are better described, especially for colder regions. The results can be used to improve the chemical mechanism modeling of monoterpenes and SOA parameterization in transport models.
María Asensio, Sergio Blázquez, María Antiñolo, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 23, 14115–14126, https://doi.org/10.5194/acp-23-14115-2023, https://doi.org/10.5194/acp-23-14115-2023, 2023
Short summary
Short summary
In this work, we focus on the atmospheric chemistry and consequences for air quality of 2-methylpentanal (2MP), which is widely used as a flavoring ingredient and as an intermediate in the synthesis of dyes, resins, and pharmaceuticals. Measurements are presented on how fast 2MP is degraded by sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms and what products are generated. We conclude that 2MP will be degraded in a few hours, affecting local air quality.
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-2483, https://doi.org/10.5194/egusphere-2023-2483, 2023
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
Andrew T. Lambe, Bin Bai, Masayuki Takeuchi, Nicole Orwat, Paul M. Zimmerman, Mitchell W. Alton, Nga L. Ng, Andrew Freedman, Megan S. Claflin, Drew R. Gentner, Douglas R. Worsnop, and Pengfei Liu
Atmos. Chem. Phys., 23, 13869–13882, https://doi.org/10.5194/acp-23-13869-2023, https://doi.org/10.5194/acp-23-13869-2023, 2023
Short summary
Short summary
We developed a new method to generate nitrate radicals (NO3) for atmospheric chemistry applications that works by irradiating mixtures containing ceric ammonium nitrate with a UV light at room temperature. It has several advantages over traditional NO3 sources. We characterized its performance over a range of mixture and reactor conditions as well as other irradiation products. Proof of concept was demonstrated by generating and characterizing oxidation products of the β-pinene + NO3 reaction.
Han Zang, Dandan Huang, Jiali Zhong, Ziyue Li, Chenxi Li, Huayun Xiao, and Yue Zhao
Atmos. Chem. Phys., 23, 12691–12705, https://doi.org/10.5194/acp-23-12691-2023, https://doi.org/10.5194/acp-23-12691-2023, 2023
Short summary
Short summary
Acylperoxy radicals (RO2) are key intermediates in the atmospheric oxidation of organic compounds, yet our knowledge of their identities and chemistry remains poor. Using direct measurements and kinetic modeling, we identify the composition and formation pathways of acyl RO2 and quantify their contribution to highly oxygenated organic molecules during α-pinene ozonolysis, which will help to understand oxidation chemistry of monoterpenes and sources of low-volatility organics in the atmosphere.
Jacky Y. S. Pang, Florian Berg, Anna Novelli, Birger Bohn, Michelle Färber, Philip T. M. Carlsson, René Dubus, Georgios I. Gkatzelis, Franz Rohrer, Sergej Wedel, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 12631–12649, https://doi.org/10.5194/acp-23-12631-2023, https://doi.org/10.5194/acp-23-12631-2023, 2023
Short summary
Short summary
In this study, the oxidations of sabinene by OH radicals and ozone were investigated with an atmospheric simulation chamber. Reaction rate coefficients of the OH-oxidation reaction at temperatures between 284 to 340 K were determined for the first time in the laboratory by measuring the OH reactivity. Product yields determined in chamber experiments had good agreement with literature values, but discrepancies were found between experimental yields and expected yields from oxidation mechanisms.
Rolf Sander
Atmos. Chem. Phys., 23, 10901–12440, https://doi.org/10.5194/acp-23-10901-2023, https://doi.org/10.5194/acp-23-10901-2023, 2023
Short summary
Short summary
According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry’s law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 46 434 values of Henry's law constants for 10 173 species, collected from 995 references. It is also available on the internet at https://www.henrys-law.org.
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623, https://doi.org/10.5194/acp-23-10609-2023, https://doi.org/10.5194/acp-23-10609-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (OCS) transports sulfur from the troposphere to the stratosphere, where sulfate aerosols are formed that influence climate and stratospheric chemistry. An uncertain OCS source in the troposphere is chemical production form dimethyl sulfide (DMS), a gas released in large quantities from the oceans. We carried out experiments in a large atmospheric simulation chamber to further elucidate the chemical mechanism of OCS production from DMS.
Shawon Barua, Siddharth Iyer, Avinash Kumar, Prasenjit Seal, and Matti Rissanen
Atmos. Chem. Phys., 23, 10517–10532, https://doi.org/10.5194/acp-23-10517-2023, https://doi.org/10.5194/acp-23-10517-2023, 2023
Short summary
Short summary
This work illustrates how a common volatile hydrocarbon, hexanal, has the potential to undergo atmospheric autoxidation that leads to prompt formation of condensable material that subsequently contributes to aerosol formation, deteriorating the air quality of urban atmospheres. We used the combined state-of-the-art quantum chemical modeling and experimental flow reactor experiments under atmospheric conditions to resolve the autoxidation mechanism of hexanal initiated by a common oxidant.
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910, https://doi.org/10.5194/acp-23-9891-2023, https://doi.org/10.5194/acp-23-9891-2023, 2023
Short summary
Short summary
By employing an improved net photochemical ozone production rate (NPOPR) detection system based on the dual-channel reaction chamber technique, we measured the net photochemical ozone production rate in the Pearl River Delta in China. The photochemical ozone formation mechanisms in the reaction and reference chambers were investigated using the observation-data-constrained box model, which helped us to validate the NPOPR detection system and understand photochemical ozone formation mechanism.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023, https://doi.org/10.5194/acp-23-7767-2023, 2023
Short summary
Short summary
Solvents are chemical compounds with countless uses in the chemical industry, and they also represent one of the main sources of pollution in the chemical sector. Scientists are trying to develop new
greensafer solvents which present favourable advantages when compared to traditional solvents. Since the assessment of these green solvents often lacks air quality considerations, this study aims to understand the behaviour of these compounds, investigating their reactivity in the troposphere.
Roland Benoit, Nesrine Belhadj, Zahraa Dbouk, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys., 23, 5715–5733, https://doi.org/10.5194/acp-23-5715-2023, https://doi.org/10.5194/acp-23-5715-2023, 2023
Short summary
Short summary
We observed a surprisingly similar set of oxidation product chemical formulas from limonene and α-pinene, including oligomers, formed under cool-flame (present experiments) and simulated atmospheric oxidation (literature). Data analysis indicated that a subset of chemical formulas is common to all experiments independently of experimental conditions. Also, this study indicates that many detected chemical formulas can be ascribed to an autooxidation reaction.
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Kevin D. Easterbrook, Mitchell A. Vona, Kiana Nayebi-Astaneh, Amanda M. Miller, and Hans D. Osthoff
Atmos. Chem. Phys., 23, 311–322, https://doi.org/10.5194/acp-23-311-2023, https://doi.org/10.5194/acp-23-311-2023, 2023
Short summary
Short summary
The trace gas peroxypropionyl nitrate (PPN) is generated in photochemical smog, phytotoxic, a strong eye irritant, and possibly mutagenic. Here, its solubility and reactivity in water and in octanol were investigated using a bubble flow apparatus, yielding its Henry's law constant and octanol–water partition coefficient (Kow). The results allow the fate of PPN to be more accurately constrained in atmospheric chemical transport models, including its uptake on clouds, organic aerosol, and leaves.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
Michelia Dam, Danielle C. Draper, Andrey Marsavin, Juliane L. Fry, and James N. Smith
Atmos. Chem. Phys., 22, 9017–9031, https://doi.org/10.5194/acp-22-9017-2022, https://doi.org/10.5194/acp-22-9017-2022, 2022
Short summary
Short summary
We performed chamber experiments to measure the composition of the gas-phase reaction products of nitrate-radical-initiated oxidation of four monoterpenes. The total organic yield, effective oxygen-to-carbon ratio, and dimer-to-monomer ratio were correlated with the observed particle formation for the monoterpene systems with some exceptions. The Δ-carene system produced the most particles, followed by β-pinene, with the α-pinene and α-thujene systems producing no particles.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022, https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 22, 6411–6434, https://doi.org/10.5194/acp-22-6411-2022, https://doi.org/10.5194/acp-22-6411-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with the nitrate radical during the nighttime to form functionalized products. The purpose of this study is to furnish kinetic and mechanistic data for terpinolene and β-caryophyllene, using simulation chamber experiments. Rate constants have been measured using both relative and absolute methods, and mechanistic studies have been conducted in order to identify and quantify the main reaction products.
Yuanyuan Luo, Olga Garmash, Haiyan Li, Frans Graeffe, Arnaud P. Praplan, Anssi Liikanen, Yanjun Zhang, Melissa Meder, Otso Peräkylä, Josep Peñuelas, Ana María Yáñez-Serrano, and Mikael Ehn
Atmos. Chem. Phys., 22, 5619–5637, https://doi.org/10.5194/acp-22-5619-2022, https://doi.org/10.5194/acp-22-5619-2022, 2022
Short summary
Short summary
Diterpenes were only recently observed in the atmosphere, and little is known of their atmospheric fates. We explored the ozonolysis of the diterpene kaurene in a chamber, and we characterized the oxidation products for the first time using chemical ionization mass spectrometry. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Haoyu Jiang, Yingyao He, Yiqun Wang, Sheng Li, Bin Jiang, Luca Carena, Xue Li, Lihua Yang, Tiangang Luan, Davide Vione, and Sasho Gligorovski
Atmos. Chem. Phys., 22, 4237–4252, https://doi.org/10.5194/acp-22-4237-2022, https://doi.org/10.5194/acp-22-4237-2022, 2022
Short summary
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
Roland Vernooij, Ulrike Dusek, Maria Elena Popa, Peng Yao, Anupam Shaikat, Chenxi Qiu, Patrik Winiger, Carina van der Veen, Thomas Callum Eames, Natasha Ribeiro, and Guido R. van der Werf
Atmos. Chem. Phys., 22, 2871–2890, https://doi.org/10.5194/acp-22-2871-2022, https://doi.org/10.5194/acp-22-2871-2022, 2022
Short summary
Short summary
Landscape fires are a major source of greenhouse gases and aerosols, particularly in sub-tropical savannas. Stable carbon isotopes in emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to greenhouse gases and aerosols if the process is well understood. This helps us to link individual vegetation types to emissions, identify biomass burning emissions in the atmosphere, and improve the reconstruction of historic fire regimes.
María Asensio, María Antiñolo, Sergio Blázquez, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys., 22, 2689–2701, https://doi.org/10.5194/acp-22-2689-2022, https://doi.org/10.5194/acp-22-2689-2022, 2022
Short summary
Short summary
The diurnal atmospheric degradation of 2-methylbutanal, 2 MB, emitted by sources like vegetation or the poultry industry is evaluated in this work. Sunlight and oxidants like hydroxyl (OH) radicals and chlorine (Cl) atoms initiate this degradation. Measurements of how fast 2 MB is degraded and what products are generated are presented. The lifetime of 2 MB is around 1 h at noon, when the OH reaction dominates. Thus, 2 MB will not be transported far, affecting only local air quality.
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, https://doi.org/10.5194/acp-22-2203-2022, 2022
Short summary
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Zhiyuan Gao, Nicolas-Xavier Geilfus, Alfonso Saiz-Lopez, and Feiyue Wang
Atmos. Chem. Phys., 22, 1811–1824, https://doi.org/10.5194/acp-22-1811-2022, https://doi.org/10.5194/acp-22-1811-2022, 2022
Short summary
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Mike J. Newland, Yangang Ren, Max R. McGillen, Lisa Michelat, Véronique Daële, and Abdelwahid Mellouki
Atmos. Chem. Phys., 22, 1761–1772, https://doi.org/10.5194/acp-22-1761-2022, https://doi.org/10.5194/acp-22-1761-2022, 2022
Short summary
Short summary
Wildfires are increasing in extent and severity, driven by climate change. Such fires emit large amounts of volatile organic compounds (VOCs) to the atmosphere. Many of these, such as the furans studied here, are very reactive and are rapidly converted to other VOCs, which are expected to have negative health effects and to further impact the climate. Here, we establish the importance of the nitrate radical for removing these compounds both during the night and during the day.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Niklas Illmann, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 18557–18572, https://doi.org/10.5194/acp-21-18557-2021, https://doi.org/10.5194/acp-21-18557-2021, 2021
Short summary
Short summary
Understanding the chemistry of biomass burning plumes is of global interest. Within this work we investigated the OH radical reaction of 3-penten-2-one, which has been identified in biomass burning emissions. We observed the primary formation of peroxyacetyl nitrate (PAN), a key NOx reservoir species. Besides, PAN precursors were also identified as main oxidation products. 3-Penten-2-one is shown to be an example explaining rapid PAN formation within young biomass burning plumes.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Shijie Yu, Fangcheng Su, Shasha Yin, Shenbo Wang, Ruixin Xu, Bing He, Xiangge Fan, Minghao Yuan, and Ruiqin Zhang
Atmos. Chem. Phys., 21, 15239–15257, https://doi.org/10.5194/acp-21-15239-2021, https://doi.org/10.5194/acp-21-15239-2021, 2021
Short summary
Short summary
This study measured 106 VOC species using a GC-MS/FID. Meanwhile, the WRF-CMAQ model was used to investigate the nonlinearity of the O3 response to precursor reductions. This study highlights the effectiveness of stringent emission controls in relation to solvent utilization and coal combustion. However, unreasonable emission reduction may aggravate ozone pollution during control periods. It is suggested that emission-reduction ratios of the precursors (VOC : NOx) should be more than 2.
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
Cited articles
Allert, M., Rizk, S. S., Looger, L. L., Hellinga, H. W., and Wells, J.: A
Computational Design of Receptors for an Organophosphate Surrogate of the
Nerve Agent Soman, P. Natl. Acad. Sci. USA, 101, 7907–7912, https://doi.org/10.1073/pnas.0401309101, 2004.
Altshuller, A. P.: PANs in the Atmosphere, Air & Waste, 43, 1221–1230, https://doi.org/10.1080/1073161X.1993.10467199, 1993.
Andersen, V. F., Wallington, T. J., and Nielsen, O. J.: Atmospheric Chemistry of
i-Butanol, J. Phys. Chem. A, 114, 12462–12469, https://doi.org/10.1021/jp107950d, 2010.
AOPWIN: v1.92, ©2000, U.S. Environmental Protection Agency, 2000.
Aschmann, S. M. Arey, J., and Atkinson, R.: Kinetics and Products of the
Reactions of OH Radicals with 4,4-Dimethyl-1-pentene and 3,3-Dimethylbutanal
at 296±2 K, J. Phys. Chem. A, 114, 5810–5816, https://doi.org/10.1021/jp101893g, 2010.
Atkinson, R.: Atmospheric chemistry of VOCs and NO(x), Atmos. Environ., 34,
2063–2101, https://doi.org./10.1016/S1352-2310(99)00460-4,
2000.
Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, https://doi.org/10.5194/acp-3-2233-2003, 2003.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic
compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420,
2003.
Atkinson, R. and Aschmann, S. M.: Rate constants for the
gas-phase reactions of the NO3 radical with a series of organic
compounds at 296±2 K, J. Phys. Chem., 92, 3454–3457,
https://doi.org/10.1021/j100323a028, 1988.
Atkinson, R. and Aschmann, S. M. : Rate Constants for the
Gas-Phase Reactions of the OH Radical with a Series of Aromatic Hydrocarbons
at 296±2 K, Int. J. Chem. Kinet., 21, 355–365,
https://doi.org/10.1002/kin.550210506, 1989.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Atkinson, R., Plum, C. N., Carter, W. P. L., Winer, A. M., and Pitts Jr., J. N.: Rate
constants for the gas-phase reactions of nitrate radicals with a series of
organics in air at 298±1 K, J. Phys. Chem., 88, 1210–1215,
https://doi.org/10.1021/j150650a039, 1984.
Ballesteros, B., Garzón, A., Jiménez, E., Notario, A., and Albaladejo,
J.: Relative and absolute kinetic studies of 2-butanol and related alcohols
with tropospheric Cl atoms J, Phys. Chem. Chem. Phys., 9, 1210–1218,
https://doi.org/10.1039/B614531K, 2007.
Bradley, W. R., Wyatt, S. E., Wells, J. R., Henley, M. V., and Graziano, G. M.: The
Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol, Int. J. Chem. Kinet., 33,
108–117, 2001.
Brauers, T. and Finlayson-Pitts, B. J.: Analysis of relative rate measurements,
Int. J. Chem. Kinet., 29, 665–672, https://doi.org/10.1002/(SICI)1097-4601(1997)29:9<665::AID-KIN3>3.0.CO;2-S, 1997.
Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and Wallington, T. J.:
The mechanisms of atmospheric oxidation of the oxygenates, Oxford University
Press, New York, 2011.
Caravan, R. L., Shannon, R. J., Lewis, T., Blitz, M. A., and Heard, D. E.:
Measurements of Rate Coefficients for Reactions of OH with Ethanol and
Propan-2-ol at Very Low Temperatures, J. Phys. Chem. A, 119, 7130–7137,
https://doi.org/10.1021/jp505790m, 2015.
Cavalli, F., Geiger, H., Barnes, I., and Becker, K. H.: FTIR Kinetic, Product,
and Modeling Study of the OH-Initiated Oxidation of 1-Butanol in Air,
Environ. Sci. Technol., 36, 1263–1270, https://doi.org/10.1021/es010220s, 2002.
Ceacero-Vega, A. Ballesteros, B., Albaladejo, J., Bejan, I., and Barnes, I.:
Temperature dependence of the gas-phase reactions of Cl atoms with propene
and 1-butene between 285 <T <313 K, Chem. Phys. Lett., 484, 10–13,
https://doi.org/10.1016/j.cplett.2009.10.080, 2009.
Ceacero-Vega, A. A., Ballesteros, B., Bejan, I., Barnes, I., Jiménez,
E., and Albaladejo, J.: Kinetics and Mechanisms of the Tropospheric Reactions of
Menthol, Borneol, Fenchol, Camphor, and Fenchone with Hydroxyl Radicals (OH)
and Chlorine Atoms (Cl), J. Phys. Chem. A., 116, 4097–4107,
https://doi.org/10.1021/jp212076g, 2012.
Chen, L., Takenaka N., Bandow, H., and Maeda, Y.: Henry's law constants for
C2–C3 fluorinated alcohols and their wet deposition in the atmosphere, Atmos. Environ., 37, 4817–4822, https://doi.org/10.1016/j.atmosenv.2003.08.002, 2003.
Cheung, C. S. and Huang, Z.: Effect of n-pentanol addition on the combustion,
performance and emission characteristics of a direct-injection diesel
engine, Energy 70, 172–80, https://doi.org/10.1016/j.energy.2014.03.106, 2014.
D'Anna, B., Andresen, W., Gefen, Z., and Nielsen, C. J.:. Kinetic study of
OH and NO3 radical reactions with 14 aliphatic aldehydes, Phys. Chem. Chem. Phys., 3,
3057–3063, https://doi.org/10.1039/B103623H, 2001.
Dash, M. R. and Rajakumar, B.: Experimental and theoretical rate coefficients
for the gas phase reaction of β-Pinene with OH radical, Atmos. Environ., 79, 161–171,
https://doi.org/10.1016/j.atmosenv.2013.05.039, 2013.
Ezzel, M. J., Wang, W., Ezell, A. A., Soskin, G., and Finlayson-Pitts, B. J.:
Kinetics of reactions of chlorine atoms with a series of alkenes at 1
atm and 298 K: structure and reactivity, Phys. Chem. Chem. Phys., 1, 5813–5820, https://doi.org/10.1039/B207529F, 2002.
Farrugia, L. N., Bejan, I., Smith, S. C., Medeiros, D. J., and Seakins, P. W.:
Revised structure activity parameters derived from new rate coefficient
determinations for the reactions of chlorine atoms with a series of seven
ketones at 290 K and 1 atm, Chem. Phys. Lett., 640 87–93, https://doi.org/10.1016/j.cplett.2015.09.055, 2015.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the Upper and Lower
Atmosphere: Theory, Experiments, and Applications, Academic Press, San
Diego, 2000.
Gallego-Iniesta, M. P., Moreno, A., Martín, P., Tapia, A., Cabañas,
B., and Salgado, M. S.: Reactivity of 2-ethyl-1-hexanol in the atmosphere, Phys. Chem. Chem. Phys., 12,
3294–3300, https://doi.org/10.1039/B923899A, 2010.
Gallego-Iniesta, M. P., Cabañas, B., Salgado, M. S. Martinez, E., and Martin,
P.: Estimation of gas-phase rate coefficients for the reactions of a series
of α, β -unsaturated esters with OH, NO3, O3 and
Cl, Atmos. Environ., 90, 133–145, https://doi.org/10.1016/j.atmosenv.2014.03.036, 2014.
Garzón, A., Cuevas, C. A., Ceacero, A. A., Notario, A., Albaladejo, J.,
and Fernández-Gómez, M.: Atmospheric reactions Cl +CH3
–(CH2)n–OH (n=0–4): A kinetic and theoretical study, J. Chem. Phys., 125, 104305–104315,
https://doi.org/10.1063/1.2244556, 2006.
Grosjean, D.: Atmospheric chemistry of alcohols, J. Brazil. Chem. Soc., 8, 433–442, https://doi.org/10.1590/S0103-50531997000500002, 1997.
Herath, N. T., Orozco, I., Clinch, E. C., and Marshall, P.: Relative Rate Studies
of the Reactions of Atomic Chlorine with Acetone and Cyclic Ketones, Int. J. Chem. Kinet., 50,
41–46, https://doi.org/10.1002/kin.21138, 2018.
Hurley, M. D., Wallington, T. J., Laursen, L., Javadi, M. S., Nielsen, O.
J., Yamanaka, T., and Kawasaki, M.: Atmospheric Chemistry of n-Butanol: Kinetics,
Mechanisms, and Products of Cl Atom and OH Radical Initiated Oxidation in
the Presence and Absence of NOx, J. Phys. Chem. A, 113, 7011–7020, https://doi.org/10.1021/jp810585c, 2009.
Jenkin, M. E., Valorso, R., Aumont, B., Rickard, A. R., and Wallington, T. J.: Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction, Atmos. Chem. Phys., 18, 9297–9328, https://doi.org/10.5194/acp-18-9297-2018, 2018.
Jiménez, E., Lanza, B., Garzón, A., Ballesteros, B., and Albaladejo, J.:
Atmospheric Degradation of 2-Butanol, 2-Methyl-2-butanol, and
2,3-Dimethyl-2-butanol: OH Kinetics and UV Absorption Cross Sections, J. Phys. Chem. A., 109,
10903–10909, https://doi.org/10.1021/jp054094g, 2005.
Karabektas, M. and Hosoz, M.: Performance and emission characteristics of a
diesel engine using isobutanol–diesel fuel blends, Renew Energy, 34, 1554–1559,
https://doi.org/10.1016/j.renene.2008.11.003, 2009.
Kerdouci, J., Picquet-Varrault, B., and Doussin, J. F.: Prediction of Rate
Constants for Gas-Phase Reactions of Nitrate Radical with Organic Compounds:
A New Structure–Activity Relationship, Chem. Phys. Chem., 11, 3909–3920, https://doi.org/10.1002/cphc.201000673, 2010.
Kerdouci, J., Picquet-Varrault, B., and Doussin, J. F.: Structure–activity
relationship for the gas-phase reactions of NO3 radical with organic
compounds: Update and extension to aldehydes, Atmos. Environ. 84, 363–372, https://doi.org/10.1016/j.atmosenv.2013.11.024, 2014.
Kumar, B. R. and Saravanan, S.: Use of higher alcohol biofuels in diesel
engines: A review, Renew. Sust. Energ. Rev., 60, 84–115, https://doi.org/10.1016/j.rser.2016.01.085, 2016.
Kwok, E. S. C. and Atkinson, R.: Estimation of Hydroxyl Radical Reaction Rate
Constants For Gas-Phase Organic Compounds Using A Structure-Reactivity
Relationship: An Update, Atmos. Environ., 29, 1685–1695,
https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
Lapuerta, M., García-Contreras, R., Campos-Fernández, J., and
Dorado, P.: Stability, lubricity, viscosity, and cold-flow properties of
alcohol−diesel blends, Energy Fuels, 24, 4497–4502,
https://doi.org/10.1021/ef100498u, 2010.
Li, F., Yi, B., Song, L., Fu, W., Liu, T., Hu, H., and Lin, Q.: Macroscopic
spray characteristics of long-chain alcohol-biodiesel fuels in a constant
volume chamber, P. I. Mech. Eng. A-J. POW., 232, 195–207,
https://doi.org/10.1177/0957650917721336, 2017.
Lopes, M., Serrano, L., Ribeiro, I., Cascao, P., and Pires, N.: Emissions
characterization from EURO 5 diesel/biodiesel passenger car operating under
the new European driving cycle, Atmos. Environ., 84, 339–348, https://doi.org/10.1016/j.atmosenv.2013.11.071, 2014.
Martin, P., Cabañas, B., Colmenar, I., Salgado, M. S., Villanueva, F.,
and Tapia, A.: Reactivity of E-butenedial with the major atmospheric oxidants,
Atmos. Environ., 70, 351–360, https://doi.org/10.1016/j.atmosenv.2013.01.041,
2013.
McGillen, M. R., Baasandorj, M., and Burkholder, J. B.: Gas-Phase Rate
Coefficients for the OH + n-, i-, s-, and t-Butanol Reactions Measured
Between 220 and 380 K: Non-Arrhenius Behavior and Site- Specific Reactivity,
J. Phys. Chem. A, 117, 4636–4656, https://doi.org/10.1021/jp402702u, 2013.
McGillen, M. R., Tyndall, G. S., Orlando, J. J., Pimentel, A. S., Medeiros,
D. J., and Burkholder, J. B.: Experimentally Determined Site-Specific Reactivity
of the Gas-Phase OH and Cl + i-Butanol Reactions Between 251 and 340 K, J. Phys. Chem. A, 120, 9968–9981, https://doi.org/10.1021/acs.jpca.6b09266,
2016.
Mellouki, A., Wallington, T. J., and Chen, J.: Atmospheric chemistry of
oxygenated volatile organic compounds: impacts on air quality and climate, Chem. Rev., 115, 3984–4014, https://doi.org/10.1021/cr500549n, 2015.
Moc, J. and Simmie, J. M.: Hydrogen Abstraction from n-Butanol by the Hydroxyl
Radical: High Level Ab Initio Study of the Relative Significance of Various
Abstraction Channels and the Role of Weakly Bound Intermediates, J. Phys. Chem. A, 114,
5558–5564, https://doi.org/10.1021/jp1009065, 2010.
Moreno, A., Salgado, S., Martin, P., Martinez, E., and Cabañas, B.:
Kinetic Study of the Gas Phase Reactions of a Series of Alcohols with the
NO3 Radical, J. Phys. Chem. A, 116, 42, 10383–10389, https://doi.org/10.1021/jp305682h, 2012.
Moreno, A., Salgado, S., Taccone, R., Martín, P., and Cabañas, B.:
Atmospheric degradation of saturated alcohols: room temperature rate
coefficients for NO3 radical reactions, Atmos. Environ., 96, 229–235, https://doi.org/10.1016/j.atmosenv.2014.07.037, 2014.
Murty, M. R. V. S, Prasada, R. N., Prabhakar, S., and Vairamani, M.:
Chemical ionization mass spectral analysis of pinacolyl alcohol and
development of derivatization method using p-tolyl isocyanate, Anal. Methods-UK,
2, 1599–1605, https://doi.org/10.1039/C0AY00346H, 2010.
Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J., and Nielsen,
O. J.: Absolute and Relative Rate Constants for the Reactions of Hydroxyl
Radicals and Chlorine Atoms with a Series of Aliphatic Alcohols and Ethers
at 298 K, Int. J. Chem. Kinet., 22, 1111–1126, https://doi.org/10.1002/kin.550221102, 1990.
Nguyen, H. T., Takenaka, N., Bandow, H., Maeda, Y., Oliva, S. T., Botelho,
M. M., and Tavares T. M.: Atmospheric alcohols and aldehydes concentrations
measured in Osaka, Japan and in Sao Paulo, Brazil, Atmos. Environ., 35, 3075–3083, https://doi.org/10.1016/S1352-2310(01)00136-4, 2001.
Ozsezen, N. A., Turkcan, A., Sayin, C., and Canakci, M.: Comparison of
performance and combustion parameters in a heavy-duty diesel engine fueled
with iso-butanol/diesel fuel blends, Energ. Explor. Exploit., 29, 525–541, https://doi.org/10.1260/0144-5987.29.5.525, 2011.
Poutsma, M. L.: Evolution of Structure−Reactivity Correlations for the
Hydrogen Abstraction Reaction by Chlorine Atom, J. Phys. Chem. A, 117, 687–703,
https://doi.org/10.1021/jp310970t, 2013.
Platt, U. and Janssen, C.: Observation and role of the free radicals
NO3, ClO, BrO and IO in the troposphere, Faraday Discuss., 100, 175–198, https://doi.org/10.1039/FD9950000175, 1995.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds,
P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J.,
Porter, L., and Miller, R. B.: Evidence for Substantial Variations of Atmospheric
Hydroxyl Radicals in the Past Two Decades, Science, 292, 1882–1888, https://doi.org/10.1126/science.1058673, 2001.
Ren, Y., Huang, Z., Miao, H., Di, Y., Jiang, D., Zeng, K., Liu, B., and Wang,
X.: Combustion and emissions of a DI diesel engine fuelled with
diesel-oxygenate blends, Fuel, 87, 2691–2697, https://doi.org/10.1016/j.fuel.2008.02.017, 2008.
Ren, Y., Wang, J., Grosselin, B., Daele, V., and Mellouki, A.: Kinetic and product
studies of Cl atoms reactions with a series of branched ketones, J. Environ. Sci., 71, 271–282,
https://doi.org/10.1016/j.jes.2018.03.036, 2018.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sarathy, M., Oßwald P., Hansen, N., and Kohse-Höinghaus, K.: Alcohol
combustion chemistry, Prog. Energ. Combust., 44, 40–102, https://doi.org/10.1016/j.pecs.2014.04.003, 2014.
Schott, G. and Davidson, N.: Shock Waves in Chemical Kinetics: The
Decomposition of N2O5 at High Temperatures, J. Am. Chem. Soc., 80, 1841–1853,
https://doi.org/10.1021/ja01541a019, 1958.
Sikarwara, V. S., Zhao, M., Fennell, P. S., Shah, N., and Anthony, E. J.: Progress in
biofuel production from gasification, Prog. Energ. Combust., 61, 189–248, https://doi.org/10.1016/j.pecs.2017.04.001, 2017.
Smith, I. W. M. and Ravishankara, A. R. J.: Role of Hydrogen-Bonded
Intermediates in the Bimolecular Reactions of the Hydroxyl Radical, Phys. Chem. A, 106,
4798–4807, https://doi.org/10.1021/jp014234w, 2002.
Spicer, C., Chapman, E. G., Finalysson-Pitts, B. J., Plastridege, R. A.,
Hybbe, J. M., Fast, J. D., and Berkowitz, C. M.: Unexpectedly high concentrations of
molecular chlorine in coastal air, Nature, 394, 353–356, https://doi.org/10.1038/28584, 1998.
Tapia, A., Villanueva, F., Salgado, M. S., Cabañas, B., Martínez, E., and Martín, P.: Atmospheric degradation of 3-methylfuran: kinetic and products study, Atmos. Chem. Phys., 11, 3227–3241, https://doi.org/10.5194/acp-11-3227-2011, 2011.
Taylor, W. D., Alston, T. D., Moscato, M. J., Fazekas, G. B., Kozlowski, R.,
and Takacs, G. A.: Atmospheric photodissociation lifetimes for nitromethane, methyl
nitrite, and methyl nitrate, Int. J. Chem. Kinet., 12, 231–240, https://doi.org/10.1002/kin.550120404, 1980.
Thevenet, R., Mellouki, A., and Bras, G. L.: Kinetics of OH and Cl Reactions
with a Series of Aldehydes, Int. J. Chem. Kinet., 32, 676–685, https://doi.org/10.1002/1097-4601(2000)32:11<676::AID-KIN3>3.0.CO;2-V, 2000.
Tuazon, E. C. and Atkinson, R. A.: Product Study of the Gas-Phase Reaction of
Isoprene with the OH Radical in the Presence of NOx, Int. J. Chem. Kinet., 22, 1221–1236,
https://doi.org/10.1002/kin.550221202, 1990.
Tuazon, E. C., Leod, H. M, Atkinson, R., and Carter, W. P. L.: α-Dicarbonyl Yields from the NOx Air Photooxidations of a Series of
Aromatic Hydrocarbons in Air, Environ. Sci. Technol., 20, 383–387, https://doi.org/10.1021/es00146a010, 1986.
Vereecken, L., Aumont, B., Barnes, I., Bozzelli, J. W., Goldman, M. J.,
Green, W. H., Madronich, S., Mcgillen, M. R., Mellouki, A., Orlando, J. J.,
Picquet-Varrault, B., Rickard, R., Stockwell, W. R., Wallington, T. J.,
and Carter, W. P. L.: Perspective on Mechanism Development and Structure-Activity
Relationships for Gas-Phase Atmospheric Chemistry, Int. J. Chem. Kinet., 50, 435–469, https://doi.org/10.1002/kin.21172, 2018.
Wallington, T. J. and Kurylo, M. J.: Flash Photolysis Resonance Fluorescence
Investigation of the Gas-Phase Reactions of OH Radicals with a Series of
Aliphatic Ketones over the Temperature Range 240-440 K, J. Phys. Chem., 91, 5050–5054,
https://doi.org/10.1021/j100303a033, 1987.
Wallington, T. J., Skwes, L. M., Siegl, W. O., Wu, C., and Japar, S. M.: Gas phase
reaction of Cl atoms with a series of oxygenated organic species at 295 K,
Int. J. Chem. Kinet., 20, 867–875, https://doi.org/10.1002/kin.550201105, 1988.
Wayne, R. P.: Chemistry of Atmospheres, Oxford University Press, New York,
2000.
Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J.,
LeBras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.:
The nitrate radical: Physics, chemistry, and the atmosphere, Atmos. Environ., 25A, 1–203,
https://doi.org/10.1016/0960-1686(91)90192-A, 1991.
Welz,O., Klippenstein, S., O., J., Harding, L. B., Taatjes, C. A.,
and Zádor, J.: Unconventional Peroxy Chemistry in Alcohol Oxidation: The
Water Elimination Pathway, J. Phys. Chem. Lett., 43, 350–354, https://doi.org/10.1021/jz302004w, 2013.
Ziemann P. and Atkinson R.: Kinetics, products, and mechanisms of secondary
organic aerosol formation, Chem. Soc. Rev., 41, 65826605, https://doi.org/10.1039/C2CS35122F, 2012.
Short summary
Saturated alcohols (SAs), such as (E)-4-methylcyclohexanol, 3,3-dimethyl-1-butanol, and 3,3-dimethyl-2-butanol, could be used as biofuels. The atmospheric reactivity of these compounds must be established in order to understand the consequences of the presence of these compounds in the atmosphere. The experimental results obtained in this work reveal that uncontrolled emissions of these saturated alcohols could have important atmospheric implications.
Saturated alcohols (SAs), such as (E)-4-methylcyclohexanol, 3,3-dimethyl-1-butanol, and...
Altmetrics
Final-revised paper
Preprint