Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5425-2020
https://doi.org/10.5194/acp-20-5425-2020
Research article
 | 
08 May 2020
Research article |  | 08 May 2020

Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China

Yonggang Xue, Yu Huang, Steven Sai Hang Ho, Long Chen, Liqin Wang, Shuncheng Lee, and Junji Cao

Related authors

Oligomer formation from the gas-phase reactions of Criegee intermediates with hydroperoxide esters: mechanism and kinetics
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 14529–14546, https://doi.org/10.5194/acp-22-14529-2022,https://doi.org/10.5194/acp-22-14529-2022, 2022
Short summary
OH-initiated atmospheric degradation of hydroxyalkyl hydroperoxides: mechanism, kinetics, and structure–activity relationship
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 3693–3711, https://doi.org/10.5194/acp-22-3693-2022,https://doi.org/10.5194/acp-22-3693-2022, 2022
Short summary
Mechanistic and kinetics investigations of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides
Long Chen, Yu Huang, Yonggang Xue, Zhenxing Shen, Junji Cao, and Wenliang Wang
Atmos. Chem. Phys., 19, 4075–4091, https://doi.org/10.5194/acp-19-4075-2019,https://doi.org/10.5194/acp-19-4075-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024,https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024,https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024,https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024,https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024,https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary

Cited articles

Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003. 
Cadle, S. H., Mulawa, P. A., Hunsanger, E. C., Nelson, K., Ragazzi, R. A., and Barrett, R.: Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area, Environ. Sci. Technol., 33, 2328–2339, https://doi.org/10.1021/es9810843, 1999. 
Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., An, Z. S., Fung, K. K., Watson, J. G., Zhu, C. S., and Liu, S. X.: Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China, Atmos. Chem. Phys., 5, 3127–3137, https://doi.org/10.5194/acp-5-3127-2005, 2005. 
Chen, H., Nanayakkara, C. E., and Grassian, V. H.: Titanium Dioxide Photocatalysis in Atmospheric Chemistry, Chem. Rev., 112, 5919–5948, https://doi.org/10.1021/cr3002092, 2012. 
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., and Purcell, R. G.: The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies, Atmos. Environ. A Gen., 27, 1185–1201, https://doi.org/10.1016/0960-1686(93)90245-T, 1993. 
Download
Short summary
Particulate active metallic oxides in dust were proposed to influence the photochemical reactions of ambient volatile organic compounds (VOCs). A case study investigated the origin and transformation of VOCs during a windblown dust-to-haze pollution episode. In the dust event, a sharp decrease in VOC loading and aging of their components was observed. An increase in Ti and Fe and a fast decrease in trans-/cis-2-butene ratios demonstrated that dust can accelerate the oxidation of ambient VOCs.
Altmetrics
Final-revised paper
Preprint