Articles | Volume 19, issue 12
Atmos. Chem. Phys., 19, 8101–8121, 2019
https://doi.org/10.5194/acp-19-8101-2019
Atmos. Chem. Phys., 19, 8101–8121, 2019
https://doi.org/10.5194/acp-19-8101-2019

Research article 21 Jun 2019

Research article | 21 Jun 2019

Spatial and temporal variability of snowfall over Greenland from CloudSat observations

Ralf Bennartz et al.

Related authors

Controls on surface aerosol number concentrations and aerosol-limited cloud regimes over the central Greenland Ice Sheet
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-491,https://doi.org/10.5194/acp-2021-491, 2021
Revised manuscript accepted for ACP
Short summary
Evaluating the diurnal cycle of South Atlantic stratocumulus clouds as observed by MSG SEVIRI
Chellappan Seethala, Jan Fokke Meirink, Ákos Horváth, Ralf Bennartz, and Rob Roebeling
Atmos. Chem. Phys., 18, 13283–13304, https://doi.org/10.5194/acp-18-13283-2018,https://doi.org/10.5194/acp-18-13283-2018, 2018
Short summary
Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations
Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden
Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018,https://doi.org/10.5194/acp-18-4715-2018, 2018
Short summary
Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations
Ralf Bennartz and John Rausch
Atmos. Chem. Phys., 17, 9815–9836, https://doi.org/10.5194/acp-17-9815-2017,https://doi.org/10.5194/acp-17-9815-2017, 2017
Short summary
Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans
John Rausch, Kerry Meyer, Ralf Bennartz, and Steven Platnick
Atmos. Meas. Tech., 10, 2105–2116, https://doi.org/10.5194/amt-10-2105-2017,https://doi.org/10.5194/amt-10-2105-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A new conceptual model for adiabatic fog
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021,https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021,https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021,https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Lightning occurrences and intensity over the Indian region: long-term trends and future projections
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021,https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021,https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary

Cited articles

Adhikari, A., Liu, C., and Kulie, M. S.: Global Distribution of Snow Precipitation Features and Their Properties from 3 Years of GPM Observations, J. Climate, 31, 3731–3754, https://doi.org/10.1175/jcli-d-17-0012.1, 2018. 
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G. J., Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., and Fetzer, E.: Status of high-latitude precipitation estimates from observations and reanalyses, J. Geophys. Res.-Atmos., 121, 4468–4486, https://doi.org/10.1002/2015jd024546, 2016. 
Berdahl, M., Rennermalm, A., Hammann, A., Mioduszweski, J., Hameed, S., Tedesco, M., Stroeve, J., Mote, T., Koyama, T., and McConnell, J. R.: Southeast Greenland Winter Precipitation Strongly Linked to the Icelandic Low Position, J. Climate, 31, 4483–4500, https://doi.org/10.1175/jcli-d-17-0622.1, 2018. 
Box, J. and Steffen, K.: Greenland Climate Network (GC-NET) Data Reference, available at: http://cires1.colorado.edu/steffen/gcnet/Gc-net_documentation_Nov_10_2000.pdf (last access: 9 June 2019), 2000. 
Castellani, B. B., Shupe, M. D., Hudak, D. R., and Sheppard, B. E.: The annual cycle of snowfall at Summit, Greenland, J. Geophys. Res.-Atmos., 120, 6654–6668, https://doi.org/10.1002/2015jd023072, 2015. 
Download
Short summary
The Greenland Ice Sheet (GrIS) is rapidly melting. Snowfall is the only source of ice mass over the GrIS. We use satellite observations to assess how much snow on average falls over the GrIS and what the annual cycle and spatial distribution of snowfall is. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34 ± 7.5 cm yr−1 liquid equivalent.
Altmetrics
Final-revised paper
Preprint