Articles | Volume 19, issue 1
https://doi.org/10.5194/acp-19-275-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-275-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CCN measurements at the Princess Elisabeth Antarctica research station during three austral summers
Paul Herenz
Leibniz Institute for Tropospheric Research, Leipzig, Germany
Senate Department for the Environment, Transport and Climate Protection, Berlin, Germany
Leibniz Institute for Tropospheric Research, Leipzig, Germany
Alexander Mangold
Royal Meteorological Institute of Belgium, Brussels, Belgium
Quentin Laffineur
Royal Meteorological Institute of Belgium, Brussels, Belgium
Irina V. Gorodetskaya
Centre for Environmental and Marine Studies, Department of Physics, University of Aveiro, Aveiro, Portugal
Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Zoë L. Fleming
National Centre for Atmospheric Science, Department of Chemistry, University of Leicester, Leicester, UK
Marios Panagi
National Centre for Atmospheric Science, Department of Chemistry, University of Leicester, Leicester, UK
Frank Stratmann
Leibniz Institute for Tropospheric Research, Leipzig, Germany
Related authors
Heike Wex, Lin Huang, Wendy Zhang, Hayley Hung, Rita Traversi, Silvia Becagli, Rebecca J. Sheesley, Claire E. Moffett, Tate E. Barrett, Rossana Bossi, Henrik Skov, Anja Hünerbein, Jasmin Lubitz, Mareike Löffler, Olivia Linke, Markus Hartmann, Paul Herenz, and Frank Stratmann
Atmos. Chem. Phys., 19, 5293–5311, https://doi.org/10.5194/acp-19-5293-2019, https://doi.org/10.5194/acp-19-5293-2019, 2019
Short summary
Short summary
We found an annual cycle for ice-nucleating particles in the Arctic. These particles are important for Arctic clouds, as they can change the lifetime of clouds. We suggest that higher concentrations of these particles in summertime originate from the Arctic biosphere (both marine and terrestrial). With a warming Arctic, these concentrations may increase further, influencing aerosol–cloud interactions and therewith the observed strong warming of the Arctic.
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Short summary
The ability to measure ice nucleating particles is vital to quantifying their role in affecting clouds and precipitation. Methods for measuring droplet freezing were compared while co-sampling relevant particle types. Measurement correspondence was very good for ice nucleating particles of bacterial and natural soil origin, and somewhat more disparate for those of mineral origin. Results reflect recently improved capabilities and provide direction toward addressing remaining measurement issues.
Monika Burkert-Kohn, Heike Wex, André Welti, Susan Hartmann, Sarah Grawe, Lisa Hellner, Paul Herenz, James D. Atkinson, Frank Stratmann, and Zamin A. Kanji
Atmos. Chem. Phys., 17, 11683–11705, https://doi.org/10.5194/acp-17-11683-2017, https://doi.org/10.5194/acp-17-11683-2017, 2017
Short summary
Short summary
Several instruments can investigate properties of ice-nucleating particles (INPs), which are crucial to understanding ice cloud formation. We intercompare four online ice nucleation counters and reasonable agreement is found when the same ice nucleation mode is tested. A variable scaling factor was necessary to reconcile condensation freezing results with immersion freezing. Factors related to instrumental setup and aerosol generation are discussed to explain observed differences.
Heike Wex, Katrin Dieckmann, Greg C. Roberts, Thomas Conrath, Miguel A. Izaguirre, Susan Hartmann, Paul Herenz, Michael Schäfer, Florian Ditas, Tina Schmeissner, Silvia Henning, Birgit Wehner, Holger Siebert, and Frank Stratmann
Atmos. Chem. Phys., 16, 14107–14130, https://doi.org/10.5194/acp-16-14107-2016, https://doi.org/10.5194/acp-16-14107-2016, 2016
Short summary
Short summary
Aerosol arriving in the eastern Caribbean after passing the Atlantic is characterized, based on ground-based and airborne measurements. We describe the repetitive occurrence of three different types of air masses and relate them to their origin from either Africa or the Atlantic and also draw conclusions about the particle composition. The length of the data series is unprecedented. By a comparison with other studies, we also suggest that the organic fraction in the aerosol depends on season.
Karoliina Ignatius, Thomas B. Kristensen, Emma Järvinen, Leonid Nichman, Claudia Fuchs, Hamish Gordon, Paul Herenz, Christopher R. Hoyle, Jonathan Duplissy, Sarvesh Garimella, Antonio Dias, Carla Frege, Niko Höppel, Jasmin Tröstl, Robert Wagner, Chao Yan, Antonio Amorim, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Martin W. Gallagher, Jasper Kirkby, Markku Kulmala, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Antonio Tomé, Annele Virtanen, Douglas Worsnop, and Frank Stratmann
Atmos. Chem. Phys., 16, 6495–6509, https://doi.org/10.5194/acp-16-6495-2016, https://doi.org/10.5194/acp-16-6495-2016, 2016
Short summary
Short summary
Viscous solid or semi-solid secondary organic aerosol (SOA) may influence cloud properties through ice nucleation in the atmosphere. Here, we observed heterogeneous ice nucleation of viscous α-pinene SOA at temperatures between −39 °C and −37.2 °C with ice saturation ratios significantly below the homogeneous freezing limit. Global modelling suggests that viscous biogenic SOA are present in regions where cirrus formation takes place and could contribute to the global ice nuclei budget.
Diana Francis, Ricardo Fonseca, Narendra Nelli, Petra Heil, Jonathan Wille, Irina Gorodetskaya, and Robert Massom
EGUsphere, https://doi.org/10.5194/egusphere-2024-3535, https://doi.org/10.5194/egusphere-2024-3535, 2025
Short summary
Short summary
This study investigates the impact of atmospheric rivers and associated atmospheric dynamics on sea-ice thickness and snow depth at a coastal site in East Antarctica during July–November 2022 using in-situ measurements and numerical modelling. The passage of an atmospheric river induced a reduction of up to 0.06 m in both fields. Precipitation occurred from the convergence of katabatic winds with advected low-latitude moist air.
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
The Cryosphere, 18, 5239–5258, https://doi.org/10.5194/tc-18-5239-2024, https://doi.org/10.5194/tc-18-5239-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are long, narrow corridors of strong water vapor transport in the atmosphere. ARs play an important role in extreme weather in polar regions, including heavy rain and/or snow, heat waves, and surface melt. The standard AR scale is developed based on the midlatitude climate and is insufficient for polar regions. This paper introduces an extended version of the AR scale tuned to polar regions, aiming to quantify polar ARs objectively based on their strength and impact.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Kerstin Ebell, Irina Gorodetskaya, Bernd Heinold, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
Atmos. Chem. Phys., 24, 8007–8029, https://doi.org/10.5194/acp-24-8007-2024, https://doi.org/10.5194/acp-24-8007-2024, 2024
Short summary
Short summary
To support the interpretation of the data collected during the HALO-(AC)3 campaign, which took place in the North Atlantic sector of the Arctic from 7 March to 12 April 2022, we analyze how unusual the weather and sea ice conditions were with respect to the long-term climatology. From observations and ERA5 reanalysis, we found record-breaking warm air intrusions and a large variety of marine cold air outbreaks. Sea ice concentration was mostly within the climatological interquartile range.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Sarah Grawe, Conrad Jentzsch, Jonas Schaefer, Heike Wex, Stephan Mertes, and Frank Stratmann
Atmos. Meas. Tech., 16, 4551–4570, https://doi.org/10.5194/amt-16-4551-2023, https://doi.org/10.5194/amt-16-4551-2023, 2023
Short summary
Short summary
Measurements of ice-nucleating particle (INP) concentrations are valuable for the simulation of cloud properties. In recent years, filter sampling in combination with offline INP measurements has become increasingly popular. However, most sampling is ground-based, and the vertical transport of INPs is not well quantified. The High-volume flow aERosol particle filter sAmpler (HERA) for applications on board aircraft was developed to expand the sparse dataset of INP concentrations at cloud level.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023, https://doi.org/10.5194/acp-23-8705-2023, 2023
Short summary
Short summary
We present a new method to analyse the influence of atmospheric rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns: ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are differences between both campaign periods: in early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, while in early spring, cyclones isolated from ARs and fronts contributed most to the precipitation.
Kevin C. H. Sze, Heike Wex, Markus Hartmann, Henrik Skov, Andreas Massling, Diego Villanueva, and Frank Stratmann
Atmos. Chem. Phys., 23, 4741–4761, https://doi.org/10.5194/acp-23-4741-2023, https://doi.org/10.5194/acp-23-4741-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud formation and thus in our climate. But little is known about the abundance and properties of INPs, especially in the Arctic, where the temperature increases almost 4 times as fast as that of the rest of the globe. We observe higher INP concentrations and more biological INPs in summer than in winter, likely from local sources. We also provide three equations for estimating INP concentrations in models at different times of the year.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022, https://doi.org/10.5194/acp-22-7287-2022, 2022
Short summary
Short summary
Snowfall is an important climate indicator. However, microphysical snowfall processes are challenging for atmospheric models. In this study, the performance of a regional climate model is evaluated in modeling the spatial and temporal distribution of Arctic snowfall when compared to CloudSat satellite observations. Excellent agreement in averaged annual snowfall rates is found, and the shown methodology offers a promising diagnostic tool to investigate the shown differences further.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Xianda Gong, Heike Wex, Thomas Müller, Silvia Henning, Jens Voigtländer, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 22, 5175–5194, https://doi.org/10.5194/acp-22-5175-2022, https://doi.org/10.5194/acp-22-5175-2022, 2022
Short summary
Short summary
We conducted 10 yr measurements to characterize the atmospheric aerosol at Cabo Verde. An unsupervised machine learning algorithm, K-means, was implemented to study the aerosol types. Cloud condensation nuclei number concentrations during dust periods were 2.5 times higher than marine periods. The long-term data sets, together with the aerosol classification, can be used as a basis to improve understanding of annual cycles of aerosol, and aerosol-cloud interactions in the North Atlantic.
Carolina Viceto, Irina V. Gorodetskaya, Annette Rinke, Marion Maturilli, Alfredo Rocha, and Susanne Crewell
Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022, https://doi.org/10.5194/acp-22-441-2022, 2022
Short summary
Short summary
We focus on anomalous moisture transport events known as atmospheric rivers (ARs). During ACLOUD and PASCAL, three AR events were identified: 30 May, 6 June, and 9 June 2017. We explore their spatio-temporal evolution and precipitation patterns using measurements, reanalyses, and a model. We show the importance of the following: Atlantic and Siberian pathways during spring–summer in the Arctic, AR-associated heat/moisture increase, precipitation phase transition, and high-resolution datasets.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Roeland Van Malderen, Dirk De Muer, Hugo De Backer, Deniz Poyraz, Willem W. Verstraeten, Veerle De Bock, Andy W. Delcloo, Alexander Mangold, Quentin Laffineur, Marc Allaart, Frans Fierens, and Valérie Thouret
Atmos. Chem. Phys., 21, 12385–12411, https://doi.org/10.5194/acp-21-12385-2021, https://doi.org/10.5194/acp-21-12385-2021, 2021
Short summary
Short summary
The main aim of initiating measurements of the vertical distribution of the ozone concentration by means of ozonesondes attached to weather balloons at Uccle in 1969 was to improve weather forecasts. Since then, this measurement technique has barely changed, but the dense, long-term, and homogeneous Uccle dataset currently remains crucial for studying the temporal evolution of ozone from the surface to the stratosphere and is also the backbone of the validation of satellite ozone retrievals.
Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, https://doi.org/10.5194/acp-21-11613-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) are not well characterized in the Arctic despite their importance for the Arctic energy budget. Little is known about their nature (mineral or biological) and sources (terrestrial or marine, long-range transport or local). We find indications that, at the beginning of the melt season, a local, biogenic, probably marine source is likely, but significant enrichment of INPs has to take place from the ocean to the aerosol phase.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Iris Thurnherr, Katharina Hartmuth, Lukas Jansing, Josué Gehring, Maxi Boettcher, Irina Gorodetskaya, Martin Werner, Heini Wernli, and Franziska Aemisegger
Weather Clim. Dynam., 2, 331–357, https://doi.org/10.5194/wcd-2-331-2021, https://doi.org/10.5194/wcd-2-331-2021, 2021
Short summary
Short summary
Extratropical cyclones are important for the transport of moisture from low to high latitudes. In this study, we investigate how the isotopic composition of water vapour is affected by horizontal temperature advection associated with extratropical cyclones using measurements and modelling. It is shown that air–sea moisture fluxes induced by this horizontal temperature advection lead to the strong variability observed in the isotopic composition of water vapour in the marine boundary layer.
Nadja Triesch, Manuela van Pinxteren, Sanja Frka, Christian Stolle, Tobias Spranger, Erik Hans Hoffmann, Xianda Gong, Heike Wex, Detlef Schulz-Bull, Blaženka Gašparović, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021, https://doi.org/10.5194/acp-21-4267-2021, 2021
Short summary
Short summary
To investigate the source of lipids and their representatives in the marine atmosphere, concerted measurements of seawater and submicrometer aerosol particle sampling were carried out on the Cabo Verde islands. This field study describes the biogenic sources of lipids, their selective transfer from the ocean into the atmosphere and their enrichment as part of organic matter. A strong enrichment of the studied representatives of the lipid classes on submicrometer aerosol particles was observed.
Veerle De Bock, Alexander Mangold, L. Gijsbert Tilstra, Olaf N. E. Tuinder, and Andy Delcloo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-425, https://doi.org/10.5194/amt-2020-425, 2020
Revised manuscript not accepted
Short summary
Short summary
The Absorbing Aerosol Height (AAH) is a new GOME-2 product representing the height of absorbing aerosol layers. In this paper the AAH is validated against the layer height detected by CALIOP. We concluded that the AAH often underestimates the height of volcanic layers, so it should be handled with care when using it for aviation safety purposes. Taking into account the uncertainties, the product can be considered as an important added value for near-real time monitoring of volcanic ash layers.
André Welti, E. Keith Bigg, Paul J. DeMott, Xianda Gong, Markus Hartmann, Mike Harvey, Silvia Henning, Paul Herenz, Thomas C. J. Hill, Blake Hornblow, Caroline Leck, Mareike Löffler, Christina S. McCluskey, Anne Marie Rauker, Julia Schmale, Christian Tatzelt, Manuela van Pinxteren, and Frank Stratmann
Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, https://doi.org/10.5194/acp-20-15191-2020, 2020
Short summary
Short summary
Ship-based measurements of maritime ice nuclei concentrations encompassing all oceans are compiled. From this overview it is found that maritime ice nuclei concentrations are typically 10–100 times lower than over continents, while concentrations are surprisingly similar in different oceanic regions. The analysis of the influence of ship emissions shows no effect on the data, making ship-based measurements an efficient strategy for the large-scale exploration of ice nuclei concentrations.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Sarah S. Steimer, Daniel J. Patton, Tuan V. Vu, Marios Panagi, Paul S. Monks, Roy M. Harrison, Zoë L. Fleming, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 20, 13303–13318, https://doi.org/10.5194/acp-20-13303-2020, https://doi.org/10.5194/acp-20-13303-2020, 2020
Short summary
Short summary
Air pollution is of growing concern due to its negative effect on public health, especially in low- and middle-income countries. This study investigates how the chemical composition of particles in Beijing changes under different measurement conditions (pollution levels, season) to get a better understanding of the sources of this form of air pollution.
Hans-Christian Clemen, Johannes Schneider, Thomas Klimach, Frank Helleis, Franziska Köllner, Andreas Hünig, Florian Rubach, Stephan Mertes, Heike Wex, Frank Stratmann, André Welti, Rebecca Kohl, Fabian Frank, and Stephan Borrmann
Atmos. Meas. Tech., 13, 5923–5953, https://doi.org/10.5194/amt-13-5923-2020, https://doi.org/10.5194/amt-13-5923-2020, 2020
Short summary
Short summary
We improved the efficiency of a single-particle mass spectrometer with a newly developed aerodynamic lens system, delayed ion extraction, and better electric shielding. The new components result in significantly improved particle analysis and sample statistics. This is particularly important for measurements of low-number-density particles, such as ice-nucleating particles, and for aircraft-based measurements at high altitudes or where high temporal and spatial resolution is required.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Elise S. Droste, Karina E. Adcock, Matthew J. Ashfold, Charles Chou, Zoë Fleming, Paul J. Fraser, Lauren J. Gooch, Andrew J. Hind, Ray L. Langenfelds, Emma C. Leedham Elvidge, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Marios Panagi, Claire E. Reeves, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 20, 4787–4807, https://doi.org/10.5194/acp-20-4787-2020, https://doi.org/10.5194/acp-20-4787-2020, 2020
Short summary
Short summary
We update the tropospheric trends and emissions of six perfluorocarbon (PFC) gases, including separate isomers. Trends for these strong greenhouse gases are still increasing, but at slower rates than previously. The lack of natural sinks results in the global accumulation of 833 million metric tonnes of CO2 equivalent for these six PFCs by 2017. Modelling results indicate potential source regions and types in East Asia, but we find that many emissions are unaccounted for in emission reports.
Xianda Gong, Heike Wex, Jens Voigtländer, Khanneh Wadinga Fomba, Kay Weinhold, Manuela van Pinxteren, Silvia Henning, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1431–1449, https://doi.org/10.5194/acp-20-1431-2020, https://doi.org/10.5194/acp-20-1431-2020, 2020
Short summary
Short summary
We characterized the aerosol particles in Cabo Verde at sea and cloud levels. We found four well-separable types of PNSDs, with the strongest differences between air masses coming from the ocean compared to from the African continent. During the strongest observed dust periods, CCN concentrations were 2.5 higher than during clean marine periods. The hygroscopicity of the particles did not vary much between different periods. Aerosol at sea level and on the mountaintop was well in agreement.
Xianda Gong, Heike Wex, Manuela van Pinxteren, Nadja Triesch, Khanneh Wadinga Fomba, Jasmin Lubitz, Christian Stolle, Tiera-Brandy Robinson, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020, https://doi.org/10.5194/acp-20-1451-2020, 2020
Short summary
Short summary
In this study, we examined number concentrations of ice nucleating particles (INPs) at Cabo Verde in the oceanic sea surface microlayer and underlying seawater, in the air close to both sea level and cloud level, and in cloud water. The results show that most INPs are supermicron in size, that INP number concentrations in air fit well to those in cloud water and that sea spray aerosols at maximum contributed a small fraction of all INPs in the air at Cabo Verde.
Roberto Sommariva, Sam Cox, Chris Martin, Kasia Borońska, Jenny Young, Peter K. Jimack, Michael J. Pilling, Vasileios N. Matthaios, Beth S. Nelson, Mike J. Newland, Marios Panagi, William J. Bloss, Paul S. Monks, and Andrew R. Rickard
Geosci. Model Dev., 13, 169–183, https://doi.org/10.5194/gmd-13-169-2020, https://doi.org/10.5194/gmd-13-169-2020, 2020
Short summary
Short summary
This paper presents the AtChem software, which can be used to build box models for atmospheric chemistry studies. The software is designed to facilitate the use of one of the most important chemical mechanisms used by atmospheric scientists, the Master Chemical Mechanism. AtChem exists in two versions: an on-line application for laboratory studies and educational or outreach activities and an offline version for more complex models and batch simulations. AtChem is open source under MIT License.
Simonas Kecorius, Teresa Vogl, Pauli Paasonen, Janne Lampilahti, Daniel Rothenberg, Heike Wex, Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Silvia Henning, Xianda Gong, Andre Welti, Markku Kulmala, Frank Stratmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019, https://doi.org/10.5194/acp-19-14339-2019, 2019
Short summary
Short summary
Arctic sea-ice retreat, atmospheric new particle formation (NPF), and aerosol–cloud interaction may all be linked via a positive feedback mechanism. Understanding the sources of cloud condensation nuclei (CCN) is an important piece in the Arctic amplification puzzle. We show that Arctic newly formed particles do not have to grow beyond the Aitken mode to act as CCN. This is important, because NPF occurrence in the Arctic is expected to increase, making it a significant contributor to CCN budget.
Xianda Gong, Heike Wex, Thomas Müller, Alfred Wiedensohler, Kristina Höhler, Konrad Kandler, Nan Ma, Barbara Dietel, Thea Schiebel, Ottmar Möhler, and Frank Stratmann
Atmos. Chem. Phys., 19, 10883–10900, https://doi.org/10.5194/acp-19-10883-2019, https://doi.org/10.5194/acp-19-10883-2019, 2019
Short summary
Short summary
For the diverse aerosol on Cyprus, we found the following: new particle formation can be a source of cloud condensation nuclei. Particle hygroscopicity showed that particles ~<100 nm contained mostly organic material, while larger ones were more hygroscopic. Two separate methods obtained similar concentrations of ice-nucleating particles (INP), with mostly no evidence of a local origin. Different parameterizations overestimated INP concentration in this rather polluted region.
Heike Wex, Lin Huang, Wendy Zhang, Hayley Hung, Rita Traversi, Silvia Becagli, Rebecca J. Sheesley, Claire E. Moffett, Tate E. Barrett, Rossana Bossi, Henrik Skov, Anja Hünerbein, Jasmin Lubitz, Mareike Löffler, Olivia Linke, Markus Hartmann, Paul Herenz, and Frank Stratmann
Atmos. Chem. Phys., 19, 5293–5311, https://doi.org/10.5194/acp-19-5293-2019, https://doi.org/10.5194/acp-19-5293-2019, 2019
Short summary
Short summary
We found an annual cycle for ice-nucleating particles in the Arctic. These particles are important for Arctic clouds, as they can change the lifetime of clouds. We suggest that higher concentrations of these particles in summertime originate from the Arctic biosphere (both marine and terrestrial). With a warming Arctic, these concentrations may increase further, influencing aerosol–cloud interactions and therewith the observed strong warming of the Arctic.
Naruki Hiranuma, Kouji Adachi, David M. Bell, Franco Belosi, Hassan Beydoun, Bhaskar Bhaduri, Heinz Bingemer, Carsten Budke, Hans-Christian Clemen, Franz Conen, Kimberly M. Cory, Joachim Curtius, Paul J. DeMott, Oliver Eppers, Sarah Grawe, Susan Hartmann, Nadine Hoffmann, Kristina Höhler, Evelyn Jantsch, Alexei Kiselev, Thomas Koop, Gourihar Kulkarni, Amelie Mayer, Masataka Murakami, Benjamin J. Murray, Alessia Nicosia, Markus D. Petters, Matteo Piazza, Michael Polen, Naama Reicher, Yinon Rudich, Atsushi Saito, Gianni Santachiara, Thea Schiebel, Gregg P. Schill, Johannes Schneider, Lior Segev, Emiliano Stopelli, Ryan C. Sullivan, Kaitlyn Suski, Miklós Szakáll, Takuya Tajiri, Hans Taylor, Yutaka Tobo, Romy Ullrich, Daniel Weber, Heike Wex, Thomas F. Whale, Craig L. Whiteside, Katsuya Yamashita, Alla Zelenyuk, and Ottmar Möhler
Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, https://doi.org/10.5194/acp-19-4823-2019, 2019
Short summary
Short summary
A total of 20 ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of cellulose particles – natural polymers. Our data showed several types of cellulose are able to nucleate ice as efficiently as some mineral dust samples and cellulose has the potential to be an important atmospheric ice-nucleating particle. Continued investigation/collaboration is necessary to obtain further insight into consistency or diversity of ice nucleation measurements.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Alexandra Gossart, Stephen P. Palm, Niels Souverijns, Jan T. M. Lenaerts, Irina V. Gorodetskaya, Stef Lhermitte, and Nicole P. M. van Lipzig
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-25, https://doi.org/10.5194/tc-2019-25, 2019
Manuscript not accepted for further review
Short summary
Short summary
Blowing snow measurements are scarce, both in time and space over the Antarctic ice sheet. We compare here CALIPSO satellite blowing snow measurements, to ground-base remote sensing ceilometer retrievals at two coastal stations in East Antarctica. Results indicate that 95 % of the blowing snow occurs under cloudy conditions, and are missed by the satellite. In addition, difficulties arise if comparing point locations to satellite overpasses.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Irina V. Gorodetskaya, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Carolina Viceto, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 18, 17995–18022, https://doi.org/10.5194/acp-18-17995-2018, https://doi.org/10.5194/acp-18-17995-2018, 2018
Short summary
Short summary
The paper describes the synoptic development during the ACLOUD/PASCAL airborne and ship-based field campaign near Svalbard in spring 2017. This development is presented using near-surface and upperair meteorological observations, satellite, and model data. We first present time series of these data, from which we identify and characterize three key periods. Finally, we put our observations in historical and regional contexts and compare our findings to other Arctic field campaigns.
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018, https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Short summary
Snowfall observations over Antarctica are scarce and currently limited to information from the CloudSat satellite. Here, a first evaluation of the CloudSat snowfall record is performed using observations of ground-based precipitation radars. Results indicate an accurate representation of the snowfall climatology over Antarctica, despite the low overpass frequency of the satellite, outperforming state-of-the-art model estimates. Individual snowfall events are however not well represented.
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Short summary
The ability to measure ice nucleating particles is vital to quantifying their role in affecting clouds and precipitation. Methods for measuring droplet freezing were compared while co-sampling relevant particle types. Measurement correspondence was very good for ice nucleating particles of bacterial and natural soil origin, and somewhat more disparate for those of mineral origin. Results reflect recently improved capabilities and provide direction toward addressing remaining measurement issues.
Sarah Grawe, Stefanie Augustin-Bauditz, Hans-Christian Clemen, Martin Ebert, Stine Eriksen Hammer, Jasmin Lubitz, Naama Reicher, Yinon Rudich, Johannes Schneider, Robert Staacke, Frank Stratmann, André Welti, and Heike Wex
Atmos. Chem. Phys., 18, 13903–13923, https://doi.org/10.5194/acp-18-13903-2018, https://doi.org/10.5194/acp-18-13903-2018, 2018
Short summary
Short summary
In this study, coal fly ash particles immersed in supercooled cloud droplets were analyzed concerning their freezing behavior. Additionally, physico-chemical particle properties (morphology, chemical composition, crystallography) were investigated. In combining both aspects, components that potentially contribute to the observed freezing behavior of the ash could be identified. Interactions at the particle-water interface, that depend on suspension time and influence freezing, are discussed.
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary
Short summary
ARTMIP (Atmospheric River Tracking Method Intercomparison Project) is a community effort with the explicit goal of understanding the uncertainties, and the implications of those uncertainties, in atmospheric river science solely due to detection algorithm. ARTMIP strives to quantify these differences and provide guidance on appropriate algorithmic choices for the science question posed. Project goals, experimental design, and preliminary results are provided.
Niels Souverijns, Alexandra Gossart, Irina V. Gorodetskaya, Stef Lhermitte, Alexander Mangold, Quentin Laffineur, Andy Delcloo, and Nicole P. M. van Lipzig
The Cryosphere, 12, 1987–2003, https://doi.org/10.5194/tc-12-1987-2018, https://doi.org/10.5194/tc-12-1987-2018, 2018
Short summary
Short summary
This work is the first to gain insight into the local surface mass balance over Antarctica using accurate long-term snowfall observations. A non-linear relationship between accumulation and snowfall is discovered, indicating that total surface mass balance measurements are not a good proxy for snowfall over Antarctica. Furthermore, the meteorological drivers causing changes in the local SMB are identified.
André Welti, Konrad Müller, Zoë L. Fleming, and Frank Stratmann
Atmos. Chem. Phys., 18, 5307–5320, https://doi.org/10.5194/acp-18-5307-2018, https://doi.org/10.5194/acp-18-5307-2018, 2018
Short summary
Short summary
We report on ambient concentrations of ice nuclei, measured on the Cabo Verde islands. Concentrations are found to exponentially increase by 7 orders of magnitude from −5 to −38 °C. At each temperature, the frequency distribution of observed concentrations can be described by a lognormal distribution, typical for random dilution of substances during transport. Random dilution is found to account for larger fluctuations in IN concentration than seasonal changes and changes in air mass origin.
Paul Herenz, Heike Wex, Silvia Henning, Thomas Bjerring Kristensen, Florian Rubach, Anja Roth, Stephan Borrmann, Heiko Bozem, Hannes Schulz, and Frank Stratmann
Atmos. Chem. Phys., 18, 4477–4496, https://doi.org/10.5194/acp-18-4477-2018, https://doi.org/10.5194/acp-18-4477-2018, 2018
Short summary
Short summary
The Arctic climate is changing much faster than other regions on Earth. Hence, it is necessary to investigate the processes that are liable for this phenomena and to document the current situation in the Arctic. Therefore, we measured the number and also the size of aerosol particles. It turned out that we captured the transition from the Arctic spring to the Arctic summer and that the according air masses show differences in particle properties. Also, the particles have a low water receptivity.
Jie Chen, Zhijun Wu, Stefanie Augustin-Bauditz, Sarah Grawe, Markus Hartmann, Xiangyu Pei, Zirui Liu, Dongsheng Ji, and Heike Wex
Atmos. Chem. Phys., 18, 3523–3539, https://doi.org/10.5194/acp-18-3523-2018, https://doi.org/10.5194/acp-18-3523-2018, 2018
Short summary
Short summary
The ice nucleation activity of urban aerosols in the atmosphere of Beijing was detected in this study. Results showed that ice-nucleating particle (INP) concentrations were not influenced by the highly variable numbers of atmospheric particles, both in mass and particle number concentrations, implying that INP concentrations might not be influenced directly by anthropogenic activities, at least not down to roughly −25 °C and maybe even below.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Alexandra Gossart, Niels Souverijns, Irina V. Gorodetskaya, Stef Lhermitte, Jan T. M. Lenaerts, Jan H. Schween, Alexander Mangold, Quentin Laffineur, and Nicole P. M. van Lipzig
The Cryosphere, 11, 2755–2772, https://doi.org/10.5194/tc-11-2755-2017, https://doi.org/10.5194/tc-11-2755-2017, 2017
Short summary
Short summary
Blowing snow plays an important role on local surface mass balance of Antarctica. We present here the blowing snow detection algorithm, to retrieve blowing snow occurrence from the attenuated backscatter signal of ceilometers set up at two station. There is a good correspondence in detection of heavy blowing snow by the algorithm and the visual observations performed at Neumayer station. Moreover, most of the blowing snow occurs during events bringing precipitation from the coast inland.
Ian Crawford, Martin W. Gallagher, Keith N. Bower, Thomas W. Choularton, Michael J. Flynn, Simon Ruske, Constantino Listowski, Neil Brough, Thomas Lachlan-Cope, Zoë L. Fleming, Virginia E. Foot, and Warren R. Stanley
Atmos. Chem. Phys., 17, 14291–14307, https://doi.org/10.5194/acp-17-14291-2017, https://doi.org/10.5194/acp-17-14291-2017, 2017
Short summary
Short summary
We present the first real-time detection of bioparticles on the Antarctic continent using a novel UV-LIF technique. The high time resolution of the technique allowed us to examine the relationships between bioparticle concentrations and airmass history and local winds, which would not have been possible with conventional high-volume filter sampling techniques. We also show evidence of episodic long-range transport of pollen from coastal South America to the continent.
Sebastian J. O'Shea, Thomas W. Choularton, Michael Flynn, Keith N. Bower, Martin Gallagher, Jonathan Crosier, Paul Williams, Ian Crawford, Zoë L. Fleming, Constantino Listowski, Amélie Kirchgaessner, Russell S. Ladkin, and Thomas Lachlan-Cope
Atmos. Chem. Phys., 17, 13049–13070, https://doi.org/10.5194/acp-17-13049-2017, https://doi.org/10.5194/acp-17-13049-2017, 2017
Short summary
Short summary
Few direct measurements have been made of Antarctic cloud and aerosol properties. As part of the 2015 Microphysics of Antarctic Clouds (MAC) field campaign, detailed airborne and ground-based measurements were made over the Weddell Sea and Antarctic coastal continent. This paper presents the first results from this campaign and discusses the cloud properties and processes important in this region.
Anja Costa, Jessica Meyer, Armin Afchine, Anna Luebke, Gebhard Günther, James R. Dorsey, Martin W. Gallagher, Andre Ehrlich, Manfred Wendisch, Darrel Baumgardner, Heike Wex, and Martina Krämer
Atmos. Chem. Phys., 17, 12219–12238, https://doi.org/10.5194/acp-17-12219-2017, https://doi.org/10.5194/acp-17-12219-2017, 2017
Short summary
Short summary
The paper presents 38 h of in situ cloud spectrometer observations of microphysical cloud properties in the Arctic, midlatitudes and tropics. The clouds are classified via particle concentrations, size distributions, and – as a novelty – small particle aspherical fractions. Cloud-type profiles are given for different temperatures and locations. The results confine regions where different cloud transformation processes occurred and emphasise the importance of small particle shape detection.
Monika Burkert-Kohn, Heike Wex, André Welti, Susan Hartmann, Sarah Grawe, Lisa Hellner, Paul Herenz, James D. Atkinson, Frank Stratmann, and Zamin A. Kanji
Atmos. Chem. Phys., 17, 11683–11705, https://doi.org/10.5194/acp-17-11683-2017, https://doi.org/10.5194/acp-17-11683-2017, 2017
Short summary
Short summary
Several instruments can investigate properties of ice-nucleating particles (INPs), which are crucial to understanding ice cloud formation. We intercompare four online ice nucleation counters and reasonable agreement is found when the same ice nucleation mode is tested. A variable scaling factor was necessary to reconcile condensation freezing results with immersion freezing. Factors related to instrumental setup and aerosol generation are discussed to explain observed differences.
Heike Wex, Katrin Dieckmann, Greg C. Roberts, Thomas Conrath, Miguel A. Izaguirre, Susan Hartmann, Paul Herenz, Michael Schäfer, Florian Ditas, Tina Schmeissner, Silvia Henning, Birgit Wehner, Holger Siebert, and Frank Stratmann
Atmos. Chem. Phys., 16, 14107–14130, https://doi.org/10.5194/acp-16-14107-2016, https://doi.org/10.5194/acp-16-14107-2016, 2016
Short summary
Short summary
Aerosol arriving in the eastern Caribbean after passing the Atlantic is characterized, based on ground-based and airborne measurements. We describe the repetitive occurrence of three different types of air masses and relate them to their origin from either Africa or the Atlantic and also draw conclusions about the particle composition. The length of the data series is unprecedented. By a comparison with other studies, we also suggest that the organic fraction in the aerosol depends on season.
Sarah Grawe, Stefanie Augustin-Bauditz, Susan Hartmann, Lisa Hellner, Jan B. C. Pettersson, Andrea Prager, Frank Stratmann, and Heike Wex
Atmos. Chem. Phys., 16, 13911–13928, https://doi.org/10.5194/acp-16-13911-2016, https://doi.org/10.5194/acp-16-13911-2016, 2016
Short summary
Short summary
In this study the freezing behavior of ash particles immersed in supercooled cloud droplets was investigated. It was found that ash from coal burning initiates freezing well above the limit for homogeneous ice nucleation and may contribute to cloud glaciation and precipitation formation on a regional scale. Furthermore, the experimental results were influenced by a change in sample preparation and/or particle generation which must be accounted for when comparing to previous studies.
Martial Haeffelin, Quentin Laffineur, Juan-Antonio Bravo-Aranda, Marc-Antoine Drouin, Juan-Andrés Casquero-Vera, Jean-Charles Dupont, and Hugo De Backer
Atmos. Meas. Tech., 9, 5347–5365, https://doi.org/10.5194/amt-9-5347-2016, https://doi.org/10.5194/amt-9-5347-2016, 2016
Short summary
Short summary
Air traffic at busy airports can be significantly disrupted because low visibility due to fog makes it unsafe to take off, land and taxi on the ground. In this paper we show how automatic profiling lidar ceilometer measurements, available at most airports, can be used to provide pre-fog alert information, and hence help airport weather forecasters to better predict these low visibility conditions. This research was carried out in the context of a field campaign at Paris CDG airport (France).
Sarvesh Garimella, Thomas Bjerring Kristensen, Karolina Ignatius, Andre Welti, Jens Voigtländer, Gourihar R. Kulkarni, Frank Sagan, Gregory Lee Kok, James Dorsey, Leonid Nichman, Daniel Alexander Rothenberg, Michael Rösch, Amélie Catharina Ruth Kirchgäßner, Russell Ladkin, Heike Wex, Theodore W. Wilson, Luis Antonio Ladino, Jon P. D. Abbatt, Olaf Stetzer, Ulrike Lohmann, Frank Stratmann, and Daniel James Cziczo
Atmos. Meas. Tech., 9, 2781–2795, https://doi.org/10.5194/amt-9-2781-2016, https://doi.org/10.5194/amt-9-2781-2016, 2016
Short summary
Short summary
The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nuclei counter manufactured by Droplet Measurement Technologies in Boulder, CO. This study characterizes the SPIN chamber, reporting data from laboratory measurements and quantifying uncertainties. Overall, we report that the SPIN is able to reproduce previous CFDC ice nucleation measurements.
Karoliina Ignatius, Thomas B. Kristensen, Emma Järvinen, Leonid Nichman, Claudia Fuchs, Hamish Gordon, Paul Herenz, Christopher R. Hoyle, Jonathan Duplissy, Sarvesh Garimella, Antonio Dias, Carla Frege, Niko Höppel, Jasmin Tröstl, Robert Wagner, Chao Yan, Antonio Amorim, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Martin W. Gallagher, Jasper Kirkby, Markku Kulmala, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Antonio Tomé, Annele Virtanen, Douglas Worsnop, and Frank Stratmann
Atmos. Chem. Phys., 16, 6495–6509, https://doi.org/10.5194/acp-16-6495-2016, https://doi.org/10.5194/acp-16-6495-2016, 2016
Short summary
Short summary
Viscous solid or semi-solid secondary organic aerosol (SOA) may influence cloud properties through ice nucleation in the atmosphere. Here, we observed heterogeneous ice nucleation of viscous α-pinene SOA at temperatures between −39 °C and −37.2 °C with ice saturation ratios significantly below the homogeneous freezing limit. Global modelling suggests that viscous biogenic SOA are present in regions where cirrus formation takes place and could contribute to the global ice nuclei budget.
Stefanie Augustin-Bauditz, Heike Wex, Cyrielle Denjean, Susan Hartmann, Johannes Schneider, Susann Schmidt, Martin Ebert, and Frank Stratmann
Atmos. Chem. Phys., 16, 5531–5543, https://doi.org/10.5194/acp-16-5531-2016, https://doi.org/10.5194/acp-16-5531-2016, 2016
Short summary
Short summary
In this study, we mixed a pure mineral dust sample with ice active biological material and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Furthermore, we used different methods to investigate the mixing state of our generated aerosol.
We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles.
Emma Järvinen, Karoliina Ignatius, Leonid Nichman, Thomas B. Kristensen, Claudia Fuchs, Christopher R. Hoyle, Niko Höppel, Joel C. Corbin, Jill Craven, Jonathan Duplissy, Sebastian Ehrhart, Imad El Haddad, Carla Frege, Hamish Gordon, Tuija Jokinen, Peter Kallinger, Jasper Kirkby, Alexei Kiselev, Karl-Heinz Naumann, Tuukka Petäjä, Tamara Pinterich, Andre S. H. Prevot, Harald Saathoff, Thea Schiebel, Kamalika Sengupta, Mario Simon, Jay G. Slowik, Jasmin Tröstl, Annele Virtanen, Paul Vochezer, Steffen Vogt, Andrea C. Wagner, Robert Wagner, Christina Williamson, Paul M. Winkler, Chao Yan, Urs Baltensperger, Neil M. Donahue, Rick C. Flagan, Martin Gallagher, Armin Hansel, Markku Kulmala, Frank Stratmann, Douglas R. Worsnop, Ottmar Möhler, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, https://doi.org/10.5194/acp-16-4423-2016, 2016
Leonid Nichman, Claudia Fuchs, Emma Järvinen, Karoliina Ignatius, Niko Florian Höppel, Antonio Dias, Martin Heinritzi, Mario Simon, Jasmin Tröstl, Andrea Christine Wagner, Robert Wagner, Christina Williamson, Chao Yan, Paul James Connolly, James Robert Dorsey, Jonathan Duplissy, Sebastian Ehrhart, Carla Frege, Hamish Gordon, Christopher Robert Hoyle, Thomas Bjerring Kristensen, Gerhard Steiner, Neil McPherson Donahue, Richard Flagan, Martin William Gallagher, Jasper Kirkby, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Frank Stratmann, and António Tomé
Atmos. Chem. Phys., 16, 3651–3664, https://doi.org/10.5194/acp-16-3651-2016, https://doi.org/10.5194/acp-16-3651-2016, 2016
Short summary
Short summary
Processes in the atmosphere are often governed by the physical and chemical properties of small cloud particles. Ice, water, and mixed clouds, as well as viscous aerosols, were formed under controlled conditions at the CLOUD-CERN facility. The experimental results show a link between cloud particle properties and their unique optical fingerprints. The classification map presented here allows easier discrimination between various particles such as viscous organic aerosol, salt, ice, and liquid.
Thomas B. Kristensen, Thomas Müller, Konrad Kandler, Nathalie Benker, Markus Hartmann, Joseph M. Prospero, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 16, 2675–2688, https://doi.org/10.5194/acp-16-2675-2016, https://doi.org/10.5194/acp-16-2675-2016, 2016
Short summary
Short summary
We have investigated the cloud condensation nuclei (CCN) properties in the trade wind marine boundary layer of the western North Atlantic during the dust season. Little is known about the CCN influencing cloud optical properties in that region. High mass concentrations of mineral dust were observed, but the number concentrations of mineral dust and sea salt were not high enough to influence CCN properties, and the CCN were likely to be dominated by a mixture of sulfates and organic species.
C. R. Hoyle, C. Fuchs, E. Järvinen, H. Saathoff, A. Dias, I. El Haddad, M. Gysel, S. C. Coburn, J. Tröstl, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, J. C. Corbin, J. Craven, N. M. Donahue, J. Duplissy, S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman, T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer, A. C. Wagner, R. Wagner, A. S. Wexler, C. Williamson, P. M. Winkler, C. Yan, A. Amorim, J. Dommen, J. Curtius, M. W. Gallagher, R. C. Flagan, A. Hansel, J. Kirkby, M. Kulmala, O. Möhler, F. Stratmann, D. R. Worsnop, and U. Baltensperger
Atmos. Chem. Phys., 16, 1693–1712, https://doi.org/10.5194/acp-16-1693-2016, https://doi.org/10.5194/acp-16-1693-2016, 2016
Short summary
Short summary
A significant portion of sulphate, an important constituent of atmospheric aerosols, is formed via the aqueous phase oxidation of sulphur dioxide by ozone. The rate of this reaction has previously only been measured over a relatively small temperature range. Here, we use the state of the art CLOUD chamber at CERN to perform the first measurements of this reaction rate in super-cooled droplets, confirming that the existing extrapolation of the reaction rate to sub-zero temperatures is accurate.
B. G. Pummer, C. Budke, S. Augustin-Bauditz, D. Niedermeier, L. Felgitsch, C. J. Kampf, R. G. Huber, K. R. Liedl, T. Loerting, T. Moschen, M. Schauperl, M. Tollinger, C. E. Morris, H. Wex, H. Grothe, U. Pöschl, T. Koop, and J. Fröhlich-Nowoisky
Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, https://doi.org/10.5194/acp-15-4077-2015, 2015
N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, and K. Yamashita
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, https://doi.org/10.5194/acp-15-2489-2015, 2015
Short summary
Short summary
Seventeen ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of illite NX. All data showed a similar temperature trend, but the measured ice nucleation activity was on average smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples at high temperatures. A continued investigation and collaboration is necessary to obtain further insights into consistency or diversity of ice nucleation measurements.
I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig
The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, https://doi.org/10.5194/tc-9-285-2015, 2015
Short summary
Short summary
Our paper presents a new cloud-precipitation-meteorological observatory established in the escarpment zone of Dronning Maud Land, East Antarctica. The site is characterised by bimodal cloud occurrence (clear sky or overcast) with liquid-containing clouds occurring 20% of the cloudy periods. Local surface mass balance strongly depends on rare intense snowfall events. A substantial part of the accumulated snow is removed by surface and drifting snow sublimation and wind-driven snow erosion.
H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke, and F. Stratmann
Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015, https://doi.org/10.5194/acp-15-1463-2015, 2015
Short summary
Short summary
Immersion freezing measurements from seven different measurement techniques were intercompared using a biological ice nucleating material from bacteria. Although different techniques examined differently concentrated droplets, it was possible to find a uniform description, which showed that results from all experiments were generally in good agreement and were also in agreement with parameterizations published earlier in literature.
S. Henning, K. Dieckmann, K. Ignatius, M. Schäfer, P. Zedler, E. Harris, B. Sinha, D. van Pinxteren, S. Mertes, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, H. Wex, H. Herrmann, and F. Stratmann
Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, https://doi.org/10.5194/acp-14-7859-2014, 2014
H. Wex, P. J. DeMott, Y. Tobo, S. Hartmann, M. Rösch, T. Clauss, L. Tomsche, D. Niedermeier, and F. Stratmann
Atmos. Chem. Phys., 14, 5529–5546, https://doi.org/10.5194/acp-14-5529-2014, https://doi.org/10.5194/acp-14-5529-2014, 2014
K. Van Tricht, I. V. Gorodetskaya, S. Lhermitte, D. D. Turner, J. H. Schween, and N. P. M. Van Lipzig
Atmos. Meas. Tech., 7, 1153–1167, https://doi.org/10.5194/amt-7-1153-2014, https://doi.org/10.5194/amt-7-1153-2014, 2014
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
T. Clauss, A. Kiselev, S. Hartmann, S. Augustin, S. Pfeifer, D. Niedermeier, H. Wex, and F. Stratmann
Atmos. Meas. Tech., 6, 1041–1052, https://doi.org/10.5194/amt-6-1041-2013, https://doi.org/10.5194/amt-6-1041-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
External particle mixing influences hygroscopicity in a sub-urban area
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Aerosol spectral optical properties in the Paris urban area, and its peri−urban and forested surroundings during summer 2022 from ACROSS surface observations
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Contributions of the synoptic meteorology to the seasonal CCN cycle over the Southern Ocean
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Measurement Report: An investigation of the spatiotemporal variability of aerosol in the mountainous terrain of the Upper Colorado River Basin from SAIL-Net
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Measurement Report: Comparative Analysis of Fluorescing African Dust Particles in Spain and Puerto Rico
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024, https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol–cloud interactions on a global scale. This is crucial for improving climate models, since aerosol–cloud interactions are the most important source of uncertainty in climate projections.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024, https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Short summary
Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa’s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol–moisture interactions and their radiative effects in this climatically critical region.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397, https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Short summary
Our research explores how weather patterns affect cloud-forming particles (CCN) over the Southern Ocean, crucial for more accurately simulate the Earth's climate. We discovered that winter and summer weather systems significantly influence CCN levels. By analysing air mass trajectories and precipitation, we identified a seasonal cycle in CCN driven by synoptic meteorology. This work enhances climate predictions by improving our understanding of cloud-aerosol interactions in this remote region.
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-798, https://doi.org/10.5194/egusphere-2024-798, 2024
Short summary
Short summary
AOD at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine mode particles, while summer and autumn increases are linked to particle growth. Duirnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectory shows aerosols on high (low) AOD days primarily originate from the ocean (interior Antarctica).
Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1780, https://doi.org/10.5194/egusphere-2024-1780, 2024
Short summary
Short summary
From Fall 2021 to Summer 2023, SAIL-Net, a network of six aerosol measurement nodes, was stationed in the East River Watershed in CO, USA to study the variability of aerosol in mountainous terrain. We found that aerosol variability was related to elevation differences and the variability changed seasonally. This suggests that model accuracy could be inconsistent over different seasons in complex terrain. This work provides a blueprint for future studies in other mountainous regions.
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol Bracero
EGUsphere, https://doi.org/10.5194/egusphere-2024-446, https://doi.org/10.5194/egusphere-2024-446, 2024
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain The measurements were with two Wideband Integrated Bioaerosol Spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Cited articles
Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, Science,
245, 1227–1230, 1989. a
Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z.: A residence time probability
analysis of sulfur concentrations at grand Canyon National Park, Atmos. Environ.,
19, 1263–1270, https://doi.org/10.1016/0004-6981(85)90256-2, 1985. a
Asmi, E., Frey, A., Virkkula, A., Ehn, M., Manninen, H. E., Timonen, H.,
Tolonen-Kivimäki, O., Aurela, M., Hillamo, R., and Kulmala, M.: Hygroscopicity
and chemical composition of Antarctic sub-micrometre aerosol particles and
observations of new particle formation, Atmos. Chem. Phys., 10, 4253–4271,
https://doi.org/10.5194/acp-10-4253-2010, 2010. a, b, c, d, e, f, g, h, i
Carslaw, K., Lee, L., Reddington, C., Pringle, K., Rap, A., Forster, P., Mann,
G., Spracklen, D., Woodhouse, M., Regayre, L., et al.: Large contribution of
natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71, 2013. a
Dall'Osto, M., Ovadnevaite, J., Paglione, M., Beddows, D. C., Ceburnis, D., Cree,
C., Cortés, P., Zamanillo, M., Nunes, S. O., Pérez, G. L., Ortega-Retuerta,
E., Emelianov, M., Vaque, D., Marrase, C., Estrada, M., Sala, M. M., Vidal, M.,
Fitzsimons, M. F., Beale, R., Airs, R., Rinaldi, M., Decesari, S., Facchini, M.
C., Harrison, R. M., O'Dowd, C., and Simo, R.: Antarctic sea ice region as a
source of biogenic organic nitrogen in aerosols, Sci. Rep., 7, 6047, https://doi.org/10.1038/s41598-017-06188-x, 2017. a, b, c, d, e, f
DeFelice, T.: Variations in cloud condensation nuclei at palmer station Antarctica
during February 1994, Atmos. Res., 41, 229–248, 1996. a
DeFelice, T., Saxena, V., and Yu, S.: On the measurements of cloud condensation
nuclei at Palmer Station, Antarctica, Atmos. Environ., 31, 4039–4044, 1997. a
Ervens, B., Sorooshian, A., Aldhaif, M., Shingler, T., Crosbie, E., Ziemba, L.,
Campuzano-Jost, P., Jimenez, J. L., and Wisthaler, A.: Is there an aerosol
signature of cloud processing?, Atmos. Chem. Phys., 18, 16099–16119,
https://doi.org/10.5194/acp-18-16099-2018, 2018. a
Fiebig, M., Hirdman, D., Lunder, C. R., Ogren, J. A., Solberg, S., Stohl, A.,
and Thompson, R. L.: Annual cycle of Antarctic baseline aerosol: controlled by
photooxidation-limited aerosol formation, Atmos. Chem. Phys., 14, 3083–3093,
https://doi.org/10.5194/acp-14-3083-2014, 2014. a, b, c, d, e, f, g, h
Fleming, Z. L., Monks, P. S., and Manning, A. J.: Review: Untangling the
influence of air-mass history in interpreting observed atmospheric composition,
Atmos. Res., 104–105, 1–39, https://doi.org/10.1016/j.atmosres.2011.09.009, 2012. a, b
Gorodetskaya, I. V., Van Lipzig, N. P. M., Van den Broeke, M. R., Mangold, A.,
Boot, W., and Reijmer, C. H.: Meteorological regimes and accumulation patterns
at Utsteinen, Dronning Maud Land, East Antarctica: Analysis of two contrasting
years, J. Geophys. Res.-Atmos., 118, 1700–1715, https://doi.org/10.1002/jgrd.50177, 2013. a, b, c, d, e, f
Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., and
Van Lipzig, N. P. M.: The role of atmospheric rivers in anomalous snow
accumulation in East Antarctica, Geophys. Res. Lett., 41, 6199–6206,
https://doi.org/10.1002/2014gl060881, 2014. a
Gorodetskaya, I. V., Kneifel, S., Maahn, M., Van Tricht, K., Thiery, W.,
Schween, J. H., Mangold, A., Crewell, S., and Van Lipzig, N. P. M.: Cloud and
precipitation properties from ground-based remote-sensing instruments in East
Antarctica, The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, 2015. a, b
Gossart, A., Souverijns, N., Gorodetskaya, I. V., Lhermitte, S., Lenaerts, J.
T. M., Schween, J. H., Mangold, A., Laffineur, Q., and van Lipzig, N. P. M.:
Blowing snow detection from ground-based ceilometers: application to East
Antarctica, The Cryosphere, 11, 2755–2772, https://doi.org/10.5194/tc-11-2755-2017, 2017. a
Greene, C. A., Gwyther, D. E., and Blankenship, D. D.: Antarctic Mapping Tools
for Matlab, Comput. Geosci., 104, 151–157, https://doi.org/10.1016/j.cageo.2016.08.003, 2017. a
Gysel, M. and Stratmann, F.: WP3 – NA3: In-situ chemical, physical and optical
properties of aerosols, Deliverable D3.11: Standardized protocol for CCN
measurements, Tech. rep.,http://www.actris.net/Publications/ACTRISQualityStandards/tabid/11271/language/en-GB/Default.aspx
(last access: 4 January 2019), 2013. a, b
Hamilton, D. S., Lee, L. A., Pringle, K. J., Reddington, C. L., Spracklen, D. V.,
and Carslaw, K. S.: Occurrence of pristine aerosol environments on a polluted
planet, P. Natl. Acad. Sci. USA, 111, 18466–18471, https://doi.org/10.1073/pnas.1415440111, 2014. a, b
Hara, K., Osada, K., Nishita-Hara, C., and Yamanouchi, T.: Seasonal variations
and vertical features of aerosol particles in the Antarctic troposphere,
Atmos. Chem. Phys., 11, 5471–5484, https://doi.org/10.5194/acp-11-5471-2011, 2011. a
Herenz, P., Wex, H., Henning, S., Kristensen, T. B., Rubach, F., Roth, A.,
Borrmann, S., Bozem, H., Schulz, H., and Stratmann, F.: Measurements of aerosol
and CCN properties in the Mackenzie River delta (Canadian Arctic) during
spring–summer transition in May 2014, Atmos. Chem. Phys., 18, 4477–4496,
https://doi.org/10.5194/acp-18-4477-2018, 2018. a, b
Herenz, P., Wex, H., Mangold, A., Laffineur, Q., Gorodetskaya, I. V., Flemming,
Z. L., Panagi, M., and Stratmann, F.: Meteorological observations and condensation
nuclei measurements at the Princess Elisabeth Antarctica Research Station during
three austral summers, PANGAEA, https://doi.org/10.1594/PANGAEA.894841, 2019. a
Hopke, P. K.: Review of receptor modeling methods for source apportionment, J.
Air Waste Manage. Assoc., 66, 237–259, https://doi.org/10.1080/10962247.2016.1140693, 2016. a
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY,
USA, https://doi.org/10.1017/CBO9781107415324, 2013. a, b
Järvinen, E., Virkkula, A., Nieminen, T., Aalto, P. P., Asmi, E., Lanconelli,
C., Busetto, M., Lupi, A., Schioppo, R., Vitale, V., Mazzola, M., Petäjä,
T., Kerminen, V.-M., and Kulmala, M.: Seasonal cycle and modal structure of
particle number size distribution at Dome C, Antarctica, Atmos. Chem. Phys.,
13, 7473–7487, https://doi.org/10.5194/acp-13-7473-2013, 2013. a
Jones, A., Thomson, D., Hort, M., and Devenish, B.: The U.K. Met Office's
Next-Generation Atmospheric Dispersion Model, NAME III, Springer US, Boston,
MA, 580–589, https://doi.org/10.1007/978-0-387-68854-1_62, 2007. a
Kim, J., Yoon, Y. J., Gim, Y., Kang, H. J., Choi, J. H., Park, K.-T., and Lee,
B. Y.: Seasonal variations in physical characteristics of aerosol particles at
the King Sejong Station, Antarctic Peninsula, Atmos. Chem. Phys., 17,
12985–12999, https://doi.org/10.5194/acp-17-12985-2017, 2017. a, b, c, d, e, f, g, h, i, j, k
Kravchenko, V., Evtushevsky, O., Grytsai, A., and Milinevsky, G.: Decadal
variability of winter temperatures in the Antarctic Peninsula region, Antarct.
Sci., 23, 614–622, 2011. a
Kristensen, T. B., Müller, T., Kandler, K., Benker, N., Hartmann, M.,
Prospero, J. M., Wiedensohler, A., and Stratmann, F.: Properties of cloud
condensation nuclei (CCN) in the trade wind marine boundary layer of the
western North Atlantic, Atmos. Chem. Phys., 16, 2675–2688, https://doi.org/10.5194/acp-16-2675-2016, 2016. a
Kyrö, E M., Kerminen, V. M., Virkkula, A., Dal Maso, M., Parshintsev, J.,
Ruiz-Jimenez, J., Forsstrom, L., Manninen, H. E., Riekkola, M. L., Heinonen,
P., and Kulmala, M.: Antarctic new particle formation from continental biogenic
precursors, Atmos. Chem. Phys., 13, 3527–3546, https://doi.org/10.5194/acp-13-3527-2013, 2013. a, b, c, d, e, f, g, h
Legrand, M., Ducroz, F., Wagenbach, D., Mulvaney, R., and Hall, J.: Ammonium in
coastal Antarctic aerosol and snow: Role of polar ocean and penguin emissions,
J. Geophys. Res.-Atmos., 103, 11043–11056, https://doi.org/10.1029/97JD01976, 1998. a, b, c
Maahn, M. and Kollias, P.: Improved Micro Rain Radar snow measurements using
Doppler spectra post-processing, Atmos. Meas. Tech., 5, 2661–2673, https://doi.org/10.5194/amt-5-2661-2012, 2012. a
Martin-Español, A., Bamber, J. L., and Zammit-Mangion, A.: Constraining the
mass balance of East Antarctica, Geophys. Res. Lett., 44, 4168–4175,
https://doi.org/10.1002/2017GL072937, 2017. a
Meskhidze, N. and Nenes, A.: Phytoplankton and cloudiness in the southern ocean,
Science, 314, 1419–1423, https://doi.org/10.1126/science.1131779, 2006. a
Modini, R. L., Frossard, A. A., Ahlm, L., Russell, L. M., Corrigan, C. E.,
Roberts, G. C., Hawkins, L. N., Schroder, J. C., Bertram, A. K., Zhao, R., Lee,
A. K. Y., Abbatt, J. P. D., Lin, J., Nenes, A., Wang, Z., Wonaschütz, A.,
Sorooshian, A., Noone, K. J., Jonsson, H., Seinfeld, J. H., Toom-Sauntry, D.,
Macdonald, A. M., and Leaitch, W. R.: Primary marine aerosol–cloud interactions
off the coast of California, J. Geophys. Res.-Atmos., 120, 4282–4303,
https://doi.org/10.1002/2014JD022963, 2015. a
O'Shea, S. J., Choularton, T. W., Flynn, M., Bower, K. N., Gallagher, M.,
Crosier, J., Williams, P., Crawford, I., Fleming, Z. L., Listowski, C.,
Kirchgaessner, A., Ladkin, R. S., and Lachlan-Cope, T.: In situ measurements
of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign,
Atmos. Chem. Phys., 17, 13049–13070, https://doi.org/10.5194/acp-17-13049-2017, 2017. a, b, c, d, e, f, g, h
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends,
1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012. a
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends,
1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012. a
Pattyn, F., Matsuoka, K., and Berte, J.: Glacio-meteorological conditions in
the vicinity of the Belgian Princess Elisabeth Station, Antarctica, Antarctic
Sci., 1, 79–85, https://doi.org/10.1017/S0954102009990344, 2010. a
Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.: Global
distribution of the effective aerosol hygroscopicity parameter for CCN activation,
Atmos. Chem. Phys., 10, 5241–5255, https://doi.org/10.5194/acp-10-5241-2010, 2010. a, b
Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L. M., and Bates, T. S.:
Small fraction of marine cloud condensation nuclei made up of sea spray aerosol,
Nat. Geosci., 10, 674–679, https://doi.org/10.1038/ngeo3003, 2017. a, b, c, d
Roberts, G. C. and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN
chamber for atmospheric measurements, Aerosol Sci. Tech., 39, 206–221,
https://doi.org/10.1080/027868290913988, 2005. a
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O.,
and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow
cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate
and sodium chloride aerosol particles in theory and experiment, Atmos. Chem.
Phys., 8, 1153–1179, https://doi.org/10.5194/acp-8-1153-2008, 2008. a
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S.,
Reissell, A., and Andreae, M. O.: Flood or drought: How do aerosols affect
precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606, 2008. a
Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C.,
Morlighem, M., and Steinhage, D.: A global, high-resolution data set of ice
sheet topography, cavity geometry, and ocean bathymetry, Earth Syst. Sci. Data,
8, 543–557, https://doi.org/10.5194/essd-8-543-2016, 2016. a
Schmale, J., Schneider, J., Nemitz, E., Tang, Y. S., Dragosits, U., Blackall,
T. D., Trathan, P. N., Phillips, G. J., Sutton, M., and Braban, C. F.:
Sub-Antarctic marine aerosol: dominant contributions from biogenic sources,
Atmos. Chem. Phys., 13, 8669–8694, https://doi.org/10.5194/acp-13-8669-2013, 2013. a, b, c, d, e, f
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J.,
Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath,
M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T., Li, J., Ligtenberg,
S. R., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G.,
Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H.,
Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama,
E. J., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den
Broek,e M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L.,
Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A reconciled estimate of
ice-sheet mass balance, Science, 338, 1183–1189, 2012. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna,
I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne,
T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrom, A., Babonis,
G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson,
D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A.,
Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S.,
Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S.,
McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J.,
Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I.,
Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sorensen,
L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schroder, L., Seo, K. W.,
Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L.,
van de Berg, W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese,
D., Wouters, B., and Team, I.: Mass balance of the Antarctic Ice Sheet from 1992
to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Souverijns, N., Gossart, A., Lhermitte, S., Gorodetskaya, I. V., Kneifel, S.,
Maahn, M., Bliven, F. L., and van Lipzig, N. P. M.: Estimating radar
reflectivity – Snowfall rate relationships and their uncertainties over
Antarctica by combining disdrometer and radar observations, Atmos. Res., 196,
211–223, https://doi.org/10.1016/j.atmosres.2017.06.001, 2017. a, b, c
Souverijns, N., Gossart, A., Gorodetskaya, I. V., Lhermitte, S., Mangold, A.,
Laffineur, Q., Delcloo, A., and van Lipzig, N. P. M.: How does the ice sheet
surface mass balance relate to snowfall? Insights from a ground-based
precipitation radar in East Antarctica, The Cryosphere, 12, 1987–2003,
https://doi.org/10.5194/tc-12-1987-2018, 2018. a, b, c, d
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a
Swietlicki, E., Hansson, H.-C., Hämeri, K., Svenningsson, B., Massling, A.,
McFiggans, G., McMurry, P., Petäjä, T., Tunved, P., Gysel, M., Topping,
D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and
Kulmala, M.: Hygroscopic properties of submicrometer atmospheric aerosol
particles measured with H-TDMA instruments in various environments – A review,
Tellus B, 60, 432–469, 2008. a
Teinila, K., Kerminen, V. M., and Hillamo, R.: A study of size-segregated
aerosol chemistry in the Antarctic atmosphere, J. Geophys. Res.-Atmos., 105,
3893–3904, https://doi.org/10.1029/1999jd901033, 2000. a, b, c, d
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, 1974. a
Vallina, S. M., Simó, R., and Gassó, S.: What controls CCN seasonality
in the Southern Ocean? A statistical analysis based on satellite-derived
chlorophyll and CCN and model-estimated OH radical and rainfall, Global
Biogeochem. Cy., 20, gB1014, https://doi.org/10.1029/2005GB002597, 2006. a, b
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R.,
Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent Rapid
Regional Climate Warming on the Antarctic Peninsula, Climatic Change, 60,
243–274, https://doi.org/10.1023/A:1026021217991, 2003. a
Velicogna, I. and Wahr, J.: Measurements of time-variable gravity show mass
loss in Antarctica, Science, 311, 1754–1756, 2006. a
Virkkula, A., Asmi, E., Teinilä, K., Frey, A., Aurela, M., Timonen, H.,
Mäkelä, T., Samuli, A., Hillamo, R., Aalto, P. P., Kirkwood, S., and
Kulmala, M.: Review of aerosol research at the Finnish antarctic research
station Aboa and its surroundings in Queen Maud Land, Antarctica, Geophysica,
45, 163–181, 2009. a
Wagenbach, D., Görlach, U., Moser, K., and Münnich, K. O.: Coastal
Antarctic aerosol: The seasonal pattern of its chemical composition and
radionuclide content, Tellus B, 40, 426–436, https://doi.org/10.3402/tellusb.v40i5.16010, 1988. a, b
Waked, A., Favez, O., Alleman, L. Y., Piot, C., Petit, J.-E., Delaunay, T.,
Verlinden, E., Golly, B., Besombes, J.-L., Jaffrezo, J.-L., and Leoz-Garziandia,
E.: Source apportionment of PM10 in a north-western Europe regional urban
background site (Lens, France) using positive matrix factorization and including
primary biogenic emissions, Atmos. Chem. Phys., 14, 3325–3346, https://doi.org/10.5194/acp-14-3325-2014, 2014. a, b
Wegner, A., Fischer, H., Delmonte, B., Petit, J.-R., Erhardt, T., Ruth, U.,
Svensson, A., Vinther, B., and Miller, H.: The role of seasonality of mineral
dust concentration and size on glacial/interglacial dust changes in the EPICA
Dronning Maud Land ice core, J. Geophys. Res.-Atmos., 120, 9916–9931,
https://doi.org/10.1002/2015JD023608, 2015. a
Weller, R., Minikin, A., Wagenbach, D., and Dreiling, V.: Characterization of
the inter-annual, seasonal, and diurnal variations of condensation particle
concentrations at Neumayer, Antarctica, Atmos. Chem. Phys., 11, 13243–13257,
https://doi.org/10.5194/acp-11-13243-2011, 2011. a
Wex, H., McFiggans, G., Henning, S., and Stratmann, F.: Influence of the
external mixing state of atmospheric aerosol on derived CCN number concentrations,
Geophys. Res. Lett., 37, L10805, https://doi.org/10.1029/2010GL043337, 2010. a
Wex, H., Dieckmann, K., Roberts, G. C., Conrath, T., Izaguirre, M. A., Hartmann,
S., Herenz, P., Schäfer, M., Ditas, F., Schmeissner, T., Henning, S., Wehner,
B., Siebert, H., and Stratmann, F.: Aerosol arriving on the Caribbean island of
Barbados: Physical properties and origin, Atmos. Chem. Phys., 16, 14107–14130,
https://doi.org/10.5194/acp-16-14107-2016, 2016. a
WMO: GAW report No. 227, WMO/GAW Aerosol Measurement Procedures, Guidelines and
Recommendation, WMO-No. 1177, WMO, available at: https://library.wmo.int/index.php?lvl=notice_display&id=19622
(last access: January 2019), 2016. a
Yli-Tuomi, T., Hopke, P. K., Paatero, P., Basunia, M., Landsberger, S., Viisanen,
Y., and Paatero, J.: Atmospheric aerosol over Finnish Arctic: source analysis
by the multilinear engine and the potential source contribution function, Atmos.
Environ., 37, 4381–4392, https://doi.org/10.1016/S1352-2310(03)00569-7, 2003. a
Zieger, P., Väisänen, O., Corbin, J., Partridge, D. G., Bastelberger,
S., Mousavi-Fard, M., Rosati, B., Gysel, M., Krieger, U., Leck, C., Nenes, A.
Riipinen, I., Virtanen, A., and Salter, M. E.: Revising the hygroscopicity of
inorganic sea salt particles, Nat. Commun., 8, 15883, https://doi.org/10.1038/ncomms15883, 2017. a
Short summary
Atmospheric aerosol particles were observed in Antarctica, at the Belgian Princess Elisabeth station during three austral summers. Possible source regions for the particles were examined. Air that spent more than 90 %; of the time during 10 days over Antarctica had low and stable number concentrations, while the highest (new particle formation) and lowest (scavenging and wet deposition) concentrations were observed for air masses that were more strongly influenced by the Southern Ocean.
Atmospheric aerosol particles were observed in Antarctica, at the Belgian Princess Elisabeth...
Altmetrics
Final-revised paper
Preprint