Articles | Volume 18, issue 8
https://doi.org/10.5194/acp-18-5235-2018
https://doi.org/10.5194/acp-18-5235-2018
Research article
 | 
18 Apr 2018
Research article |  | 18 Apr 2018

Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

Rosalie H. Shepherd, Martin D. King, Amelia A. Marks, Neil Brough, and Andrew D. Ward

Related authors

Experimental observation of the impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 24, 13571–13586, https://doi.org/10.5194/acp-24-13571-2024,https://doi.org/10.5194/acp-24-13571-2024, 2024
Short summary
The lifetimes and potential change in planetary albedo owing to the oxidation of organic films extracted from atmospheric aerosol by hydroyxl (OH) radical oxidation at the air-water interface of aerosol particles
Rosalie Shepherd, Martin King, Andrew Ward, Edward Stuckey, Rebecca Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2367,https://doi.org/10.5194/egusphere-2024-2367, 2024
Short summary
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023,https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary
Quantifying the effects of background concentrations of crude oil pollution on sea ice albedo
Benjamin Heikki Redmond Roche and Martin D. King
The Cryosphere, 16, 3949–3970, https://doi.org/10.5194/tc-16-3949-2022,https://doi.org/10.5194/tc-16-3949-2022, 2022
Short summary
The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022,https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Viscosity of aqueous ammonium nitrate–organic particles: equilibrium partitioning may be a reasonable assumption for most tropospheric conditions
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
Atmos. Chem. Phys., 24, 13341–13359, https://doi.org/10.5194/acp-24-13341-2024,https://doi.org/10.5194/acp-24-13341-2024, 2024
Short summary
Role of sea spray aerosol at the air–sea interface in transporting aromatic acids to the atmosphere
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024,https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Modeling the influence of carbon branching structure on secondary organic aerosol formation via multiphase reactions of alkanes
Azad Madhu, Myoseon Jang, and Yujin Jo
Atmos. Chem. Phys., 24, 5585–5602, https://doi.org/10.5194/acp-24-5585-2024,https://doi.org/10.5194/acp-24-5585-2024, 2024
Short summary
Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies
Xiangyu Pei, Yikan Meng, Yueling Chen, Huichao Liu, Yao Song, Zhengning Xu, Fei Zhang, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 24, 5235–5246, https://doi.org/10.5194/acp-24-5235-2024,https://doi.org/10.5194/acp-24-5235-2024, 2024
Short summary
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024,https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary

Cited articles

Adler, G., Flores, J. M., Abo Riziq, A., Borrmann, S., and Rudich, Y.: Chemical, physical, and optical evolution of biomass burning aerosols: a case study, Atmos. Chem. Phys., 11, 1491–1503, https://doi.org/10.5194/acp-11-1491-2011, 2011. 
Ajtai, T., Filep, A., Utry, N., Schnaiter, M., Linke, C., Bozoki, Z., Szabo, G., and Leisner, T.: Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an Aethalometer under sub-urban wintry conditions, J. Aerosol Sci., 42, 859–866, https://doi.org/10.1016/j.jaerosci.2011.07.008, 2011. 
Andreaea, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 
Arnold, A., Spock, D. E., and Folan, L. M.: Electric-field-modulated light scattering near a morphological resonance of a trapped aerosol particle, Opt. Lett., 15, 1111–1113, https://doi.org/10.1364/OL.15.001111, 1990. 
Barkey, B., Paulson, S. E., and Chung, A.: Genetic Algorithm Inversion of Dual Polarization Polar Nephelometer Data to Determine Aerosol Refractive Index, Aerosol Sci. Tech., 41, 751–760, https://doi.org/10.1080/02786820701432640, 2007. 
Download
Short summary
The refractive index of atmospheric extracts sourced from urban (London), remote (Antarctica), and woodsmoke aerosol was determined by applying optical trapping simultaneously with Mie spectroscopy. In addition, owing to the absorbing nature of woodsmoke and an aqueous humic acid aerosol extract, the absorption Ångström exponent could be determined.The refractive index and absorption Ångström exponent were then applied in a top-of-the-atmosphere albedo radiation transfer model.
Altmetrics
Final-revised paper
Preprint