Articles | Volume 18, issue 22
Atmos. Chem. Phys., 18, 16499–16513, 2018
https://doi.org/10.5194/acp-18-16499-2018
Atmos. Chem. Phys., 18, 16499–16513, 2018
https://doi.org/10.5194/acp-18-16499-2018
Research article
21 Nov 2018
Research article | 21 Nov 2018

Response of Arctic ozone to sudden stratospheric warmings

Alvaro de la Cámara et al.

Related authors

Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irina Statnaia, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022,https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2
Shima Bahramvash Shams, Von P. Walden, James W. Hannigan, William J. Randel, Irina V. Petropavlovskikh, Amy H. Butler, and Alvaro de la Cámara
Atmos. Chem. Phys., 22, 5435–5458, https://doi.org/10.5194/acp-22-5435-2022,https://doi.org/10.5194/acp-22-5435-2022, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022,https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
The impact of improved spatial and temporal resolution of reanalysis data on Lagrangian studies of the tropical tropopause layer
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339, https://doi.org/10.5194/acp-22-13325-2022,https://doi.org/10.5194/acp-22-13325-2022, 2022
Short summary
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022,https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
Axel Gabriel
Atmos. Chem. Phys., 22, 10425–10441, https://doi.org/10.5194/acp-22-10425-2022,https://doi.org/10.5194/acp-22-10425-2022, 2022
Short summary
How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022,https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary

Cited articles

Abalos, M., Ploeger, F., Konopka, P., Randel, W. J., and Serrano, E.: Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes, Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, 2013. a
Albers, J. R. and Birner, T.: Vortex Preconditioning due to Planetary and Gravity Waves prior to Sudden Stratospheric Warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014. a
Allen, D. R. and Nakamura, N.: Tracer Equivalent Latitude: A Diagnostic Tool for Isentropic Transport Studies, J. Atmos. Sci., 60, 287–304, https://doi.org/10.1175/1520-0469(2003)060<0287:TELADT>2.0.CO;2, 2003. a
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, Academic Press, San Diego, California, 1987. a
Ayarzagüena, B., Langematz, U., and Serrano, E.: Tropospheric forcing of the stratosphere: A comparative study of the two different major stratospheric warmings in 2009 and 2010, J. Geophys. Res., 116, D18114, https://doi.org/10.1029/2010JD015023, 2011. a
Download
Short summary
Long chemistry–climate runs are used to investigate the changes that sudden stratospheric warmings (extreme and fast disruptions of the wintertime stratospheric polar vortex) induce on Arctic ozone. Ozone increases rapidly during the onset of the events, driven by deep changes in the stratospheric transport circulation. These anomalies decay slowly, particularly in the lower stratosphere where they can last up to 2 months. Irreversible mixing makes an important contribution to this behavior.
Altmetrics
Final-revised paper
Preprint