Articles | Volume 18, issue 19
Atmos. Chem. Phys., 18, 14433–14443, 2018
https://doi.org/10.5194/acp-18-14433-2018

Special issue: In-depth study of air pollution sources and processes within...

Atmos. Chem. Phys., 18, 14433–14443, 2018
https://doi.org/10.5194/acp-18-14433-2018

Research article 09 Oct 2018

Research article | 09 Oct 2018

Assessment of the pollution–health–economics nexus in China

Yang Xia et al.

Related authors

Evaluating China's fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020,https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
Variations of China's emission estimates: response to uncertainties in energy statistics
Chaopeng Hong, Qiang Zhang, Kebin He, Dabo Guan, Meng Li, Fei Liu, and Bo Zheng
Atmos. Chem. Phys., 17, 1227–1239, https://doi.org/10.5194/acp-17-1227-2017,https://doi.org/10.5194/acp-17-1227-2017, 2017
Short summary
CO2 emissions inventory of Chinese cities
Yuli Shan, Dabo Guan, Jianghua Liu, Zhu Liu, Jingru Liu, Heike Schroeder, Yang Chen, Shuai Shao, Zhifu Mi, and Qiang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-176,https://doi.org/10.5194/acp-2016-176, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
“Warm cover”: precursory strong signals for haze pollution hidden in the middle troposphere
Xiangde Xu, Wenyue Cai, Tianliang Zhao, Xinfa Qiu, Wenhui Zhu, Chan Sun, Peng Yan, Chunzhu Wang, and Fei Ge
Atmos. Chem. Phys., 21, 14131–14139, https://doi.org/10.5194/acp-21-14131-2021,https://doi.org/10.5194/acp-21-14131-2021, 2021
Short summary
The MAPM (Mapping Air Pollution eMissions) method for inferring particulate matter emissions maps at city scale from in situ concentration measurements: description and demonstration of capability
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021,https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
Characteristics of surface energy balance and atmospheric circulation during hot-and-polluted episodes and their synergistic relationships with urban heat islands over the Pearl River Delta region
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021,https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021,https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
Quantification of uncertainties in the assessment of an atmospheric release source applied to the autumn 2017 106Ru event
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Atmos. Chem. Phys., 21, 13247–13267, https://doi.org/10.5194/acp-21-13247-2021,https://doi.org/10.5194/acp-21-13247-2021, 2021
Short summary

Cited articles

Bradley, C. J., Neumark, D., Luo, Z., and Schenk, M.: Employment and cancer: findings from a longitudinal study of breast and prostate cancer survivors, Cancer Invest., 25, 47–54, 2007.
Cho, S., Gordon, P., Moore II, J. E., Richardson, H. W., Shinozuka, M., and Chang, S.: Integrating transportation network and regional economic models to estimate the costs of a large urban earthquake, J. Regional Sci., 41, 39–65, 2001.
Crowther K. G. and Haimes Y. Y.: Application of the inoperability input–output model (IIM) for systemic risk assessment and management of interdependent infrastructures, Syst. Eng., 8, 323–341, 2005.
Feng, K., Davis, S. J., Sun, L., Li, X., Guan, D., Liu, W., Liu, Z., and Hubacek, K.: Outsourcing CO2 within China, P. Natl. Acad. Sci. USA, 110, 11654–11659, 2013.
Download
Short summary
Economic loss from disease-induced working time loss reached CNY 398 billion in China 2012. Most is from Eastern and Mid-South China. Mid-South, North, and Eastern China showed most indirect loss. Indirect loss in North, Northwest, and Southwest China is from manufacturing and energy from other regions, while loss in Eastern, Mid-South, and Northeast China is from coal and mining, implying the role of distance in regional links and varied regional loss due to different economic dependencies.
Altmetrics
Final-revised paper
Preprint