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Abstract. Serious haze can cause contaminant diseases that
trigger productive labour time by raising mortality and mor-
bidity rates in cardiovascular and respiratory diseases. Health
studies rarely consider macroeconomic impacts of industrial
interlinkages while disaster studies seldom involve air pollu-
tion and its health consequences. This study adopts a supply-
driven input–output model to estimate the economic loss re-
sulted from disease-induced working-time reduction across
30 Chinese provinces in 2012 using the most updated Chi-
nese multiregional input–output table. Results show a to-
tal economic loss of CNY 398.23 billion (∼ 1 % of China’s
GDP in 2012), with the majority coming from Eastern China
and the Mid-South. The total number of affected labourers
amounts to 82.19 million. Cross-regional economic impact
analysis indicates that the Mid-South, North China, and East-
ern China entail the majority of the regional indirect loss. In-
deed, most indirect loss in North China, the Northwest and
the Southwest can be attributed to manufacturing and energy
in other regions, while loss in Eastern China, the Mid-South
and the Northeast largely originate from coal and mining in
other regions. At the subindustrial level, most inner-regional
loss in North China and the Northwest originate from coal
and mining, in Eastern China and Southwest from equipment
and energy, and in the Mid-South from metal and non-metal.
These findings highlight the potential role of geographical
distance in regional interlinkages and regional heterogeneity
in inner- and outer-regional loss due to distinctive regional
economic structures and dependences between the north and
south.

1 Introduction

Millions of people in China are currently breathing a toxic
cocktail of chemicals, which has become one of the most se-
rious environmental issues in China resulting in widespread
environmental and health problems (Meng et al., 2015,
2016a), including increasing risks for heart and respiratory
diseases, stroke, and lung cancer. As air pollution has long-
term health impacts that evolve gradually over time, under-
standing the health and socioeconomic impacts of China’s air
pollution requires continuous efforts.

Serious air pollution in China has largely inspired epi-
demic studies that examine specific health outcomes from
air pollution as well as health cost assessments that translate
health outcomes into monetary loss (Xu et al., 2000; Venners
et al., 2003; Kan and Chen, 2004). Existing epidemic stud-
ies simulate an exposure–response relationship between par-
ticulate matter (PM) concentration levels and relative risks
(RRs) for a particular disease (see Wong et al., 1999, 2002;
Xu et al., 2000; Venners et al., 2003), while health cost
assessments frequently stem from patients’ perspectives at
microeconomic level, by evaluating either their willingness-
to-pay (WTP) to avoid disease risk (see Wang and Mullahy,
2006; Wang et al., 2006; Zeng and Jiang, 2010) or the po-
tentially productive years of life loss (PPYLL) (see Wan et
al., 2005; Miraglia et al., 2005; Mcghee et al., 2006; Bradley
et al., 2007). However, when perceiving unhealthy labour-
ers as a degradation in labour input, macroeconomic implica-
tions for production supply chains lack investigation. While
traditional approaches for health cost estimates are able to
provide more information on economic loss from a stand-
point of individual patients, we suggest that they are likely
to lose sight on the cascading effects due to labour time loss
across interrelating industries. Meanwhile, as the health ef-
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fects of air pollution are slowly built up over time, implying
the lasting nature of air pollution, it has been rarely studied
in current disaster risk literature. Differing from rapid-onset
disaster analyses (flood, hurricane, earthquake, etc.) that nor-
mally rely on quantifying damages to physical capital, air
pollution affects human capital more than physical capital,
and the resulting health impacts are relatively invisible and
unmeasurable. As a result, linking PM concentrations with
health endpoints and further with macroeconomic impacts
requires an interdisciplinary approach that integrates all three
of the elements into one. Inspired by our previous work on
the socioeconomic impacts of China’s air pollution in 2007
(Xia et al., 2016), this paper applies a similar approach to
China’s air pollution in 2012 and also examines the cross-
regional economic impacts in order to underline the impor-
tant role of indirect economic loss for the year 2012. In other
words, it aims to investigate the overall economic loss re-
sulting from health-induced labour time reduction among all
Chinese labourers for year of 2012. Given that the major-
ity of economic loss originates from secondary industries,
this paper also specifically analyses the key sectors in sec-
ondary industries that account for the greatest proportions of
both direct and indirect economic loss in each great region
in China. By doing so, future policymakers and researchers
could obtain an alternative macroeconomic tool to better con-
duct cost-benefit analysis for any environmental or climate
change related policy design, and to comprehend health cost
studies in its macroeconomic side.

2 Methods

2.1 Methodological framework

Figure 1 illustrates the overall methodological framework de-
veloped by this study. It involves four main parts that are
distinguished by four colours. Detailed methods that connect
each part in the flow chart are shown near the arrows.

PM2.5 concentration levels for 30 provinces of China were
first identified from an emission inventory using an air qual-
ity simulation model. The relative risks for PM2.5-induced
mortality (ischemic heart disease (IHD), stroke, chronic ob-
structive pulmonary disease (COPD), and LC), hospital ad-
missions (cardiovascular and respiratory diseases), and out-
patient visits (all causes) were estimated using an integrated
exposure–response (IER) model based on which popula-
tion attributable fraction (PAF) can be calculated to estimate
counts of PM2.5-induced deaths, admissions, and outpatient
visits. Additionally, counts of mortality, hospital admissions,
and outpatient visits were further translated into a produc-
tive working time loss that was compared with the original
industrial working time without any PM2.5-induced health
effects (full employment and full productivity) to derive the
percentage reduction in industrial value added. Moreover, re-
ductions in industrial value added served as an input in the

supply-driven input–output (IO) model to measure the total
indirect economic loss incurred along the production supply
chain, which is measured as the total loss in output level. Fi-
nally, macroeconomic implications regarding industrial and
provincial economic loss can be obtained from our model
results while cross-regional economic impacts can be inves-
tigated through multiregional economic analyses.

The following sections present many mathematical sym-
bols, formulas, and equations. For clarity, matrices are indi-
cated by bold, upright capital letters (e.g. X); vectors by bold,
italicised lower case letters (e.g. x); and scalars by italicised
lower case letters (e.g. x). Vectors are columns by definition,
so row vectors are obtained by transposition and are indicated
by a prime (e.g. x′). A diagonal matrix with the elements of
vector x on its main diagonal and all other entries equal to
zero are indicated by a circumflex (e.g. x̂).

2.2 Provincial PM2.5 concentration levels

We referred to Chinese provincial PM2.5 concentration lev-
els estimated by Geng et al. (2015), where the authors im-
proved the method for estimating long-term surface PM2.5
concentrations by using satellite remote sensing and a chem-
ical transport model to assess the provincial PM2.5 concen-
tration levels in China during 2006–2012. The model domain
includes a map of surface PM2.5 concentrations at a resolu-
tion of 0.1◦× 0.1◦ over China using the nested-grid GEOS-
Chem model with the most updated bottom-up emission in-
ventory and satellite observations from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and Multi-angle
Imaging SpectroRadiometer (MISR) instruments (Geng et
al., 2015).

2.3 Health impacts from PM2.5 concentration levels

Epidemic studies on PM2.5-induced health outcomes have
linked PM2.5 air pollution with various health endpoints by
using exposure–response coefficients. This paper focuses on
the impacts of PM2.5 pollution on mortality, hospital ad-
missions, and outpatient visits. We referred to an integrated
exposure–response model developed by Burnett et al. (2014)
to estimate the relative risks for PM2.5-induced mortality
(IHD, stroke, COPD, LC), hospital admissions (cardiovas-
cular and respiratory diseases), and outpatient visits (all
causes).

An IER model captures concentration–response relation-
ships with a specific focus on ischemic heart disease, stroke,
chronic obstructive pulmonary disease, and lung cancer. The
relative risk for the mortality estimation function for the four
diseases were shown in Eq. (1).

For z < zcf RRIER(z)= 1 (1)

For z ≥ zcf RRIER(z)= 1+α{1− exp[−γ (z− zcf)
δ
]}

z: PM2.5 exposure in micrograms per metre cubed; zcf:
counter-factual concentration level below which no addi-

Atmos. Chem. Phys., 18, 14433–14443, 2018 www.atmos-chem-phys.net/18/14433/2018/



Y. Xia et al.: Assessment of the pollution–health–economics nexus in China 14435

Figure 1. Methodological framework.

tional health risk is assumed; δ: the strength of PM2.5; and
γ : the ratio of RR at low-to-high exposures

Then, the calculated RR was converted into an attributable
fraction (AF) in Eq. (2).

AF=
RR− 1

RR
(2)

Additionally, excess counts of PM2.5 disease-induced mor-
tality were estimated in Eq. (3).

E = AF×B ×P (3)

E: PM2.5-induced mortality counts, B: the national level in-
cidence of a given health effect, which was applied for all
provinces because of limited data; P : the size of the exposed
populations.

For morbidity, we calculated cardiovascular and respira-
tory hospital admissions and outpatient visits for all causes
using a log-linear response function. The RRs for each cate-
gory of morbidity were calculated using Eq. (4) (Jiang et al.,
2015).

RR= eβx (4)

β: the parameter that describes the depth of the curve (Ta-
ble S1 in the Supplement). They are the exposure–response

coefficients to quantify the relationship between different
levels of PM2.5 exposures and the resulting health outcomes.

Counts of PM2.5-induced hospital admissions, and outpa-
tient visits were analogously estimated using Eqs. (2) and
(3).

2.4 Industrial labour time loss

Each labourer is assumed to work 8 h every day and 250 days
during 2012. For PM2.5-induced mortality, each death will
result in a total 250 working days lost regardless different
disease types. For PM2.5-induced morbidity, each cardiovas-
cular admission will result in 11.9 working days lost while
each respiratory admission causes 8.4 working days lost (Xia
et al., 2016). Meanwhile, we provided a range for the labour
time loss estimation of outpatient visits due to data unavail-
ability, which ranges from 2 to 4 h per outpatient visit (Xia
et al., 2018). We assumed each outpatient visits the clinic
once during the year. Then, provincial mortality, hospital ad-
missions, and outpatient visit counts were scaled down to
counts among labourers according to labour–population ra-
tios across all 30 of the provinces (National Statistical Year-
book, 2013). We further distributed provincial mortality, ad-
missions, and outpatient counts into 30 industries accord-
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ing to an industrial-total provincial labour ratio. We used
industrial-total provincial output ratio instead where certain
industries’ labour data is missing. Additionally, labour time
loss for each case of mortality, admission, and outpatient visit
were multiplied by industrial counts of mortality, admission,
and outpatient visit in each province, respectively, and the
results were summed up to derive the industrial total labour
time loss due to PM2.5-induced mortality and morbidity.
Moreover, we compared the industrial total labour time loss
to the original labour time with full employment and labour
productivity under no PM2.5-induced health impacts. The re-
sults show the percentage reductions in industrial working
time, which were used as an indicator for percentage reduc-
tions in industrial value added in a supply-driven IO model,
as we considered labour as the major component for indus-
trial value added. We need to clarify that the industries can
express very different levels of dependencies on capital and
labour in reality. However, percentage reductions in labour
time were used as a direct indicator for percentage reduction
in industrial value added due to the assumption of the pro-
duction expansion path underlying the input–output model.
An input–output model assumes that proportional increase
in industrial output can only be achieved by simultaneous
increases in both capital and labour, indicating that any re-
duction in an input can directly constrain the output growth
in all industries.

2.5 Indirect economic loss on production supply chain

We employed a supply-driven IO model to evaluate the in-
direct economic loss due to PM2.5-induced mortality and
morbidity along production supply chain. A supply-driven
IO model was developed based on a traditional Leontief IO
model with the spirit of a “circular economy”. A supply-
driven IO model was derived from a traditional Leontief IO
model. Input–output analyses have been widely applied to
studies on energy usage (Guan et al., 2014), environmental
pollution (Meng et al., 2015, 2016b), climate change miti-
gation and adaptation (Feng et al., 2013; Wiedmann et al.,
2006), and economic perturbations (Steenge and Bočkarjova,
2007; Cho et al., 2001; Santos and Haimes, 2004; Crowther
and Haimes, 2005) as well as to different scales, ranging
from national to regional level. For a basic Leontief IO
model, the total output of sector i in an n-sector economy
can be illustrated in Eqs. (5) and (6).

xi = zi1+ . . ..+ zij + . . ..+ zin+ fi=
∑n
j=1Zij+fi (5)

x = Z+f (6)

xi : the total output of sector i;
∑n
j=1Zij : the monetary value

of sector i’s output in all other sectors; fi : sector i’s final
demand that includes household final consumption, govern-
ment consumption, capital formation, and exports.

The basic Leontief IO model (Meng et al., 2018) can be
therefore derived in matrix notation (Eq. 7a and 7b).

x = Ax+f (7a)

x = (I−A)−1f ,L= (I−A)−1 (7b)

A: matrix of technical coefficients, aij , where aij = zij /xj ;
L: the Leontief inverse matrix that measures the impact of
value change in the final demand of a sector on the total out-
put value on the economy (Miller and Blair, 2009).

At the same time, a supply-driven IO model takes a rotated
view of Leontief IO model that shows an opposite influenc-
ing direction between sectors. It suggests that production in
a sector can affect sectors purchasing its outputs as inputs
during their production processes and it has a supply-side fo-
cus. A supply-driven IO model is used to calculate the impact
of changes in primary inputs on sectoral gross production.
For a supply-driven IO model, the basic structure is shown in
Eq. (8a) and (8b).

x′ = v′(I−B)−1 (8a)

x′ = v′G,G= (I−B)−1 (8b)

B: the allocation coefficient (direct output coefficient), where
bij = zij/xi . It refers to the distribution of sector i’s outputs
in sector j ; v: matrix of industrial value added, including
capital and labour input; G: the Ghosh inverse matrix, which
measures the economic impacts of changes in a sector’s value
added on other sectors’ output level.

3 Results

3.1 Total number of affected labour and total economic
loss

Firstly, regarding the total number of affected labourers
and total economic loss, the total economic loss result-
ing from PM2.5-induced health outcomes in China 2012 is
CNY 398.23 billion, which corresponds to almost 1 % of na-
tional GDP in 2012. The total number of affected labourers in
China is 0.80 million for PM2.5-induced mortality, 2.22 mil-
lion for PM2.5-induced hospital admissions, and 79.17 mil-
lion for PM2.5-induced outpatient visits (Fig. 2). Figure 2
presents the provincial counts of PM2.5-induced mortality,
hospital admissions, outpatient visits, and economic loss
with least severe and most severe situations shown from
green to red. For total populations of PM2.5-induced mor-
tality and morbidity among 30 provinces, Henan and Shang-
dong province have the largest total counts of PM2.5-induced
mortality and morbidity, which is consistent with the findings
in 2007 study (Xia et al., 2016). Guangdong province has
the greatest counts of PM2.5-induced hospital admissions at
291 thousand, where a substantial increase of 175 thousand
can be observed compared with results in 2007. It almost
doubles its provincial count of outpatient visits and triples
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Figure 2. Provincial counts of PM2.5-induced mortality, hospital admissions, outpatient visits, and economic loss in the study area, 2012.
Provincial counts of PM2.5-induced mortality (a), hospital admissions (b), outpatient visits (c), and economic loss (d) are displayed in the
four panels above, with least severe and most severe situations shown from green to red. We did not consider Tibet due to the lack of data.

its mortality counts. Meanwhile, increases can be observed
in both counts for the Northwest region, which includes
Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang provinces.
Specifically, the count of hospital admissions in the Shaanxi
province in 2012, 100 thousand, also doubled that of the
50 thousand in 2007. An even sharper increase of admission
counts can be seen in the Xinjiang province, where the num-
ber is almost 7 times that from 2007.

3.2 Economic loss by provinces, regions, and industries

Secondly, concerning economic loss by province, region, and
industry at the provincial level (Fig. 2), the economic loss in
the Henan province exceeds that of the Jiangsu province in
2007 (CNY 55.90 billion), becoming the province suffering
the greatest economic loss at 56.37 billion, accounting for
14 % of the total economic loss in China. This is followed
by Jiangsu province at CNY 45.32 billion and Shangdong
province at CNY 43.23 billion. This is because all three of the
provinces have the largest counts of PM2.5-induced mortality

and morbidity, which results in substantial provincial labour
time loss. We also calculated the economic loss in China’s
six greater regions. Eastern China and the Mid-South appear
to be the two regions suffering the greatest economic loss,
amounting to CNY 153.39 and 119.21 billion, respectively,
and accounting for 39 % and 30 % of total economic loss in
China, 2012. It is in line with the findings from 2007 study
(Xia et al., 2016), where the economic loss of these two re-
gions are CNY 115.33 and 80.88 billion, respectively. There-
fore, there has been a remarkable rise in economic loss for the
Mid-South region. Primary industries, including agriculture
and fishing, entailed the economic loss of CNY 19.12 bil-
lion. Secondary industries include all of the manufacturing,
energy, and construction sectors, and they entail the greatest
proportion of economic loss at CNY 320.06 billion (80 % of
total economic loss). Tertiary industries (e.g. retail services
and entertainment) account for the remaining 15 % of total
economic loss at CNY 59.05 billion.
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Figure 3. Cross-regional economic loss analysis. The diagram demonstrates the interregional economic impacts due to their interdependen-
cies. The left-hand side shows the regional indirect economic loss while the right-hand side denotes the sources for these indirect economic
losses. The proportion of regional indirect loss among regional total economic loss is displayed next to each region’s name on the left-hand
side.

3.3 Cross-regional economic loss

Additionally, this case study also examined the cross-
regional economic losses between the six greater regions
in China. As one significant advantage of the input–output
model is to capture the industrial and regional interdepen-
dencies, it is effective to measure the propagating disaster-
induced indirect economic loss along the production sup-
ply chain. We traced the cross-regional economic loss due
to their interlinkages, such as interregional trade, as shown
in Fig. 3. The diagram demonstrates the interregional eco-
nomic impacts due to their interdependencies. The propor-
tion of regional indirect loss among regional total economic
loss is displayed next to each region’s name on the left-hand
side. Although the majority of regional economic loss came
from the direct economic loss that occurred within the region
across almost all six of the regions, the Northeast, Eastern
China, and the Northwest still entail great indirect economic
loss from other regions, which occupies 31 %, 21 %, and
30 % of the total regional economic loss, respectively. In the
Northeast, 18 % of its total regional economic loss originated
from North China and Mid-South, including CNY 1.84 bil-
lion from North China and CNY 1.85 billion from Mid-
South. Similarly, the Mid-South is responsible for 9 % of the
economic loss in Eastern China at CNY 13.36 billion. It ac-
counts for an even larger proportion of regional economic
loss in the Northwest at 13 %. Meanwhile, Eastern China also
accounts for another 8 % of the total regional economic loss
in Northeast, which amounts to CNY 1.66 billion. Overall,
the Mid-South accounts for the largest amount of indirect
economic loss in other Chinese regions at CNY 24.65 bil-
lion, which is followed by North China and Eastern China

at CNY 16.99 and 12.17 billion, respectively. This finding
highlights the increasing significance in capturing the indus-
trial and regional interdependencies and indirect economic
loss in disaster risk analysis because such interdependencies
can largely raise the overall economic loss far beyond the di-
rect economic loss and constitute a noticeable component of
total economic loss.

3.4 Regional direct and indirect loss from secondary
sector

As secondary sectors play a vital role in the Chinese econ-
omy and entails greatest economic loss among the three in-
dustries, we specifically analysed the regional economic loss
that directly and indirectly resulting from secondary sectors
both inside and outside of a region. Focusing on the sec-
ondary sector, Fig. 4 illustrates both direct and indirect eco-
nomic loss originating from each region and outside the re-
gion. As can be seen from the diagram, despite the fact that
the majority of economic loss resulting from the secondary
sectors originated from inside the region for all six of the
greater regions in China, in the Northwest and the North-
east, economic loss attributed to secondary sectors outside
the region still constituted a considerable share due to in-
dustrial and regional interdependencies. Secondary sectors
in the Mid-South, Eastern China, and North China became
three major sources for indirect economic loss across all six
of the regions. For instance, in the Northwest, economic loss
from secondary sectors in the Mid-South, Eastern China, and
North China account for 14 %, 6 %, and 6 % of total regional
indirect loss from secondary sectors outside the region, at
CNY 2.20, 0.99, and 0.90 billion, respectively. Similarly, in
the Northeast, economic loss from secondary sectors in these
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Figure 4. Regional direct and indirect economic loss from secondary sectors. The inner ring denotes the direct economic loss originating
from secondary sectors inside the region, while the outer ring stands for the indirect economic loss from secondary sectors in other regions.
Percentage shown on the inner ring shows the proportion of direct economic loss regarding total regional economic loss and percentages
shown on the outer ring are the proportions of indirect loss from other regions relative to total regional indirect economic loss.

three regions occupy 10 %, 8 %, and 9 % of total regional
indirect loss from secondary sectors outside the region, at
CNY 1.66, 1.33, and 1.46 billion, respectively. This results
from their geographical distance to the Mid-South, Eastern
China, and North China, as well as close trade relationships
with these three regions. The significant roles of Mid-South
and Eastern China in interregional trade have been confirmed
earlier by Sun and Peng (2011), where they pointed out the
export-oriented nature for trades in Eastern China and the
Mid-South, and their close trade relations with Northwest re-
gions with respect to the import of raw materials. Likewise,
it is noticeable that indirect economic loss is more likely to
come from neighbour-regions, which highlights the possibil-
ity that short geographical distances might accelerate interre-
gional trade and strengthen regional interlinkages.

3.5 Direct, indirect loss from subindustries in
secondary sector

The secondary sector was further broken down into seven in-
dustries in order to examine the major economic loss sources

among subindustries inside and outside the region. They in-
clude coal and mining, manufacturing, fuel processing and
chemicals, metal and non-metal, equipment, energy, and con-
struction as displayed in Fig. 5. In North China, the North-
west and the Southwest, most of their indirect economic
loss from secondary sectors outside the region came from
manufacturing with 27.0 %, 26.7 %, and 22.2 %, respectively.
The second largest source in these three regions that ac-
counts for economic loss from secondary sectors in other re-
gions is energy, with the greatest amount occurring in North
China at CNY 2.32 billion, followed by the Northwest at
CNY 1.29 billion, and the Southwest at CNY 1.26 billion.
In contrast, coal and mining accounts for the majority of
indirect loss from secondary sectors outside the region for
Eastern China, the Mid-South and the Northeast at 37.4 %
(CNY 10.83 billion), 33.4 % (CNY 3.65 billion), and 24.4 %
(CNY 1.30 billion), respectively. One possible underlying
reason is that economies in the Northwest, North China,
and the Southwest are mainly dominated by coal and min-
ing but rely on the import of manufacturing products from
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Figure 5. Economic loss from seven industries in secondary sector inside and outside the region. The inner circle shows the economic loss
from secondary sector inside the region. The size of circle stands for the different proportions of inner-regional economic loss relative to total
regional economic loss. Colours demonstrate economic loss from seven sectors in secondary sector inside the region. Meanwhile, the outer
circle indicates the economic loss from secondary sectors outside the region. Economic loss resulting from seven sectors are shown in black
and white. Percentages shown on the outer circle are the proportions of indirect loss from other regions relative to total regional indirect
economic loss.

other regions, whereas Eastern China, the Mid-South, and
the Northeast have more prosperous manufacturing indus-
tries but tend to heavily depend on imports of raw materi-
als from coal and mining industries in the Northwest, North
China, or the Southwest. With regards to the economic loss
from secondary sectors inside each region, it shows diver-
sified patterns across the six greater regions. Coal and min-
ing account for the largest part of inner-regional economic
loss in North China and the Northwest at 42.4 % and 43.8 %,
respectively. Equipment and energy appear to be two major
sources for inner-regional economic loss Eastern China and
the Southwest, while metal and non-metal and manufactur-
ing constitute considerable proportions in inner-regional eco-
nomic loss from secondary sectors in the Mid-South, which
reach CNY 21.86 and 21.61 billion, occupying 27.4 % and
27.1 %, respectively.

4 Discussions

PM2.5 has seriously undermined human health by inducing
contaminant diseases, including IHD, Stroke, COPD and LC.
These diseases have resulted in substantial numbers of mor-
tality and morbidity that further cause labour degradation in
terms of productive working time loss along production sup-
ply chain. Therefore, there is a growing need to explore the
macroeconomic implications of PM2.5-induced health effects
that can also capture industrial and regional interdependen-
cies. However, existing health cost studies assess the health
costs at the microeconomic level without an investigation
over these linkages on the production supply side. Mean-
while, disaster risk studies rarely involve PM2.5 pollution as a
disaster that harms human capital more than physical capital.
Thus, methods to quantify the direct damages to infrastruc-
ture seem to be inefficacious when measuring the “damages”
to human health. Inspired by the previous study on China’s
air pollution in 2007 (Xia et al., 2016), the current study ap-
plies an interdisciplinary approach to assess the macroeco-
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nomic impacts of PM2.5-induced health effects in China 2012
by perceiving reduced labour time as an indicator for reduced
value added so that it can be fed back into a supply-driven
IO model, and health studies can be integrated into impact
evaluation and interdependency analysis. The current case
study applies an interdisciplinary approach by combining en-
vironmental, epidemiological, and macroeconomic studies to
assess the macroeconomic impacts of PM2.5-induced health
effects in China during 2012. In the model, environmental
phenomenon was related with health endpoints using an in-
tegrated exposure–response model, reduction in labour time
was estimated based on the pollution-induced mortality and
morbidity counts, and industrial reduced labour time was per-
ceived as an indicator for industrial reduced value added,
which was further fed back into a supply-driven input–output
model. By doing so, health studies can be integrated into im-
pact evaluation and interdependency analyses.

The results are threefold. Firstly, the total economic
loss from China’s air pollution during 2012 amounts to
CNY 398.23 billion with the majority coming from Eastern
China (39 %) and the Mid-South (30 %). The total economic
loss is equivalent with 1.0 % of China’s GDP in 2012, and
the total number of affected labourers rises to 82.19 mil-
lion. Compared with the study in 2007 (Xia et al., 2016),
although secondary industries remain as the industries which
encountered the most economic loss (80 %), changes can be
noticed for economic loss at the provincial level. Henan and
Jiangsu became two provinces that suffered the greatest eco-
nomic loss at CNY 56.37 and 45.32 billion, respectively, fol-
lowed by Shangdong province with a total economic loss
of CNY 43.23 billion. Henan and Shangdong provinces also
have the largest numbers of PM2.5-induced mortality, hos-
pital admissions, and outpatient visits. Secondly, the study
highlights the cascading indirect economic loss triggered
by industrial and regional interdependencies in health cost
assessments. In 2012, indirect economic loss constituted a
significant part of the total regional economic loss in the
Northeast, Eastern China and the Northwest, which occu-
pied 31 %, 21 % and 30 % of the total regional economic
loss, respectively. Overall, the Mid-South accounts for the
largest amount of indirect economic loss in other Chinese
regions at CNY 24.65 billion, which is followed by North
China and Eastern China at CNY 16.99 and 12.17 billion,
respectively. Additionally, the study specifically focuses on
seven sectors in the secondary industries and differentiates
economic loss from these sectors inside the region from those
outside the region. In Northwest and Northeast, economic
loss attributed to secondary industries outside the region still
constitute a considerable share due to industrial and regional
interdependencies at 31 % and 34 % of total regional eco-
nomic loss, respectively. Secondary industries in the Mid-
South, Eastern China, and North China became three major
sources for indirect economic loss across all the six regions.
Indeed, we also suggest that indirect economic loss is more
likely to come from neighbour-regions, which highlights the

possibility that short geographical distance might accelerate
interregional trade and strengthen regional interlinkages. In
North China, Northwest, and Southwest, most of their indi-
rect economic losses originated from manufacturing indus-
tries outside the region with 27.0 %, 26.7 %, and 22.2 %, re-
spectively. The second largest source in these three regions
that accounts for economic loss from secondary industries in
other regions is energy, with the greatest amount occurring
in North China at CNY 2.32 billion. In contrast, coal and
mining accounts for the majority of indirect loss from sec-
ondary industries outside the region for Eastern China, the
Mid-South, and the Northeast at 37.4 % (CNY 10.83 billion),
33.4 % (CNY 3.65 billion) and 24.4 % (CNY 1.30 billion),
respectively. Such distinctive compositions of outer-regional
economic loss might be due to the different economic struc-
tures and dependences between North China, the Northwest,
and the Southwest, and Eastern China, the Mid-South, the
Northeast. Turning to the economic loss from secondary in-
dustries inside the region, regions show heterogeneity. Coal
and mining account for the largest part of inner-regional eco-
nomic loss in North China and the Northwest at 42.4 % and
43.8 %, respectively, equipment and energy are two major
sources for inner-regional economic loss Eastern China and
the Southwest, while metal and non-metal and manufactur-
ing constitute considerable proportions in inner-regional eco-
nomic loss from secondary industries in the Mid-South.

There are some final remarks for policymakers and re-
searchers here from this typical air pollution issue. On the
one hand, given the prosperous interregional trade, pol-
icymakers are required to conscientiously consider these
increasingly strengthened industrial and regional linkages
in climate change mitigation and adaptation policy design
based on a better understanding of implications resulting
from any climate change-induced health issues at both micro
and macroeconomic levels. Meanwhile, sufficient adaptation
measures are required to be implemented along with the cli-
mate change mitigation strategies in operation. The purpose
of this is to expand the economy beyond the regional geog-
raphy and natural endowment and to release the current re-
liance on the economy on labour-intensive sectors (Mauricio
Mesquita, 2007). On the other hand, researchers of epidemic
studies should actively integrate these interdependencies into
future health cost evaluations, while researchers of disaster
risk analyses should not lose sight on “persistent” disasters
as described in this study, which affect more human capital
and may imply degradation in production factor inputs.
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