Articles | Volume 18, issue 18
https://doi.org/10.5194/acp-18-13687-2018
https://doi.org/10.5194/acp-18-13687-2018
Research article
 | 
27 Sep 2018
Research article |  | 27 Sep 2018

Surface roughness during depositional growth and sublimation of ice crystals

Jens Voigtländer, Cedric Chou, Henner Bieligk, Tina Clauss, Susan Hartmann, Paul Herenz, Dennis Niedermeier, Georg Ritter, Frank Stratmann, and Zbigniew Ulanowski

Related authors

Microphysical properties of refractory black carbon aerosols for different air masses at a central European background site
Yifan Yang, Thomas Müller, Laurent Poulain, Samira Atabakhsh, Bruna A. Holanda, Jens Voigtländer, Shubhi Arora, and Mira L. Pöhlker
Atmos. Chem. Phys., 25, 8637–8655, https://doi.org/10.5194/acp-25-8637-2025,https://doi.org/10.5194/acp-25-8637-2025, 2025
Short summary
CAMP: an instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022,https://doi.org/10.5194/amt-15-6889-2022, 2022
Short summary
Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022,https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Understanding aerosol microphysical properties from 10 years of data collected at Cabo Verde based on an unsupervised machine learning classification
Xianda Gong, Heike Wex, Thomas Müller, Silvia Henning, Jens Voigtländer, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 22, 5175–5194, https://doi.org/10.5194/acp-22-5175-2022,https://doi.org/10.5194/acp-22-5175-2022, 2022
Short summary

Cited articles

Auriol, F., Gayet, J.-F., Febvre, G., Jourdan, O., Labonnote, L., and Brogniez, G.: In situ observations of cirrus cloud scattering phase function with 22 and 46 halos: Cloud field study on 19 February 1998, J. Atmos. Sci., 58, 3376–3390, https://doi.org/10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2, 2001. a
Bacon, N. J., Baker, M. B., and Swanson, B. D.: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation, Q. J. Roy. Meteor. Soc., 129, 1903–1927, https://doi.org/10.1256/qj.02.04, 2003. a, b, c
Bailey, M. and Hallett, J.: Growth rates and habits of ice crystals between −20 and −70C, J. Atmos. Sci., 61, 514–544, https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2, 2004. a, b
Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69, https://doi.org/10.1016/j.atmosres.2012.04.010, 2012. a
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Kraemer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud ice properties: in situ measurement challenges, Meteor. Monographs, 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. a
Download
Short summary
Surface roughness of ice crystals has recently been acknowledged to strongly influence the radiative properties of cold clouds such as cirrus, but it is unclear how this roughness arises. The study investigates the origins of ice surface roughness under a variety of atmospherically relevant conditions, using a novel method to measure roughness quantitatively. It is found that faster growth leads to stronger roughness. Roughness also increases following repeated growth–sublimation cycles.
Share
Altmetrics
Final-revised paper
Preprint