Articles | Volume 18, issue 18
Atmos. Chem. Phys., 18, 13687–13702, 2018
Atmos. Chem. Phys., 18, 13687–13702, 2018
Research article
27 Sep 2018
Research article | 27 Sep 2018

Surface roughness during depositional growth and sublimation of ice crystals

Jens Voigtländer et al.

Related authors

Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089,,, 2022
Short summary
CAMP: a balloon-borne platform for aerosol particle studies in the lower atmosphere
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech. Discuss.,,, 2022
Revised manuscript accepted for AMT
Short summary
Understanding aerosol microphysical properties from 10 years of data collected at Cabo Verde based on an unsupervised machine learning classification
Xianda Gong, Heike Wex, Thomas Müller, Silvia Henning, Jens Voigtländer, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 22, 5175–5194,,, 2022
Short summary
Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951,,, 2020
Short summary
Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions
Dennis Niedermeier, Jens Voigtländer, Silvio Schmalfuß, Daniel Busch, Jörg Schumacher, Raymond A. Shaw, and Frank Stratmann
Atmos. Meas. Tech., 13, 2015–2033,,, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A single-parameter hygroscopicity model for functionalized insoluble aerosol surfaces
Chun-Ning Mao, Kanishk Gohil, and Akua A. Asa-Awuku
Atmos. Chem. Phys., 22, 13219–13228,,, 2022
Short summary
Mexican agricultural soil dust as a source of ice nucleating particles
Diana L. Pereira, Irma Gavilán, Consuelo Letechipía, Graciela B. Raga, Teresa Pi Puig, Violeta Mugica-Álvarez, Harry Alvarez-Ospina, Irma Rosas, Leticia Martinez, Eva Salinas, Erika T. Quintana, Daniel Rosas, and Luis A. Ladino
Atmos. Chem. Phys., 22, 6435–6447,,, 2022
Short summary
The impact of (bio-)organic substances on the ice nucleation activity of the K-feldspar microcline in aqueous solutions
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673,,, 2022
Short summary
Secondary ice production during the break-up of freezing water drops on impact with ice particles
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530,,, 2021
Short summary
High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425,,, 2021
Short summary

Cited articles

Auriol, F., Gayet, J.-F., Febvre, G., Jourdan, O., Labonnote, L., and Brogniez, G.: In situ observations of cirrus cloud scattering phase function with 22 and 46 halos: Cloud field study on 19 February 1998, J. Atmos. Sci., 58, 3376–3390,<3376:ISOOCS>2.0.CO;2, 2001. a
Bacon, N. J., Baker, M. B., and Swanson, B. D.: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation, Q. J. Roy. Meteor. Soc., 129, 1903–1927,, 2003. a, b, c
Bailey, M. and Hallett, J.: Growth rates and habits of ice crystals between −20 and −70C, J. Atmos. Sci., 61, 514–544,<0514:GRAHOI>2.0.CO;2, 2004. a, b
Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69,, 2012. a
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Kraemer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud ice properties: in situ measurement challenges, Meteor. Monographs, 58, 9.1–9.23,, 2017. a
Short summary
Surface roughness of ice crystals has recently been acknowledged to strongly influence the radiative properties of cold clouds such as cirrus, but it is unclear how this roughness arises. The study investigates the origins of ice surface roughness under a variety of atmospherically relevant conditions, using a novel method to measure roughness quantitatively. It is found that faster growth leads to stronger roughness. Roughness also increases following repeated growth–sublimation cycles.
Final-revised paper