Articles | Volume 18, issue 18
https://doi.org/10.5194/acp-18-13687-2018
https://doi.org/10.5194/acp-18-13687-2018
Research article
 | 
27 Sep 2018
Research article |  | 27 Sep 2018

Surface roughness during depositional growth and sublimation of ice crystals

Jens Voigtländer, Cedric Chou, Henner Bieligk, Tina Clauss, Susan Hartmann, Paul Herenz, Dennis Niedermeier, Georg Ritter, Frank Stratmann, and Zbigniew Ulanowski

Related authors

CAMP: an instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022,https://doi.org/10.5194/amt-15-6889-2022, 2022
Short summary
Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022,https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Understanding aerosol microphysical properties from 10 years of data collected at Cabo Verde based on an unsupervised machine learning classification
Xianda Gong, Heike Wex, Thomas Müller, Silvia Henning, Jens Voigtländer, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 22, 5175–5194, https://doi.org/10.5194/acp-22-5175-2022,https://doi.org/10.5194/acp-22-5175-2022, 2022
Short summary
Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020,https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions
Dennis Niedermeier, Jens Voigtländer, Silvio Schmalfuß, Daniel Busch, Jörg Schumacher, Raymond A. Shaw, and Frank Stratmann
Atmos. Meas. Tech., 13, 2015–2033, https://doi.org/10.5194/amt-13-2015-2020,https://doi.org/10.5194/amt-13-2015-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Secondary ice production – no evidence of efficient rime-splintering mechanism
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024,https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
EGUsphere, https://doi.org/10.5194/egusphere-2024-319,https://doi.org/10.5194/egusphere-2024-319, 2024
Short summary
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023,https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023,https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023,https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary

Cited articles

Auriol, F., Gayet, J.-F., Febvre, G., Jourdan, O., Labonnote, L., and Brogniez, G.: In situ observations of cirrus cloud scattering phase function with 22 and 46 halos: Cloud field study on 19 February 1998, J. Atmos. Sci., 58, 3376–3390, https://doi.org/10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2, 2001. a
Bacon, N. J., Baker, M. B., and Swanson, B. D.: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation, Q. J. Roy. Meteor. Soc., 129, 1903–1927, https://doi.org/10.1256/qj.02.04, 2003. a, b, c
Bailey, M. and Hallett, J.: Growth rates and habits of ice crystals between −20 and −70C, J. Atmos. Sci., 61, 514–544, https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2, 2004. a, b
Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69, https://doi.org/10.1016/j.atmosres.2012.04.010, 2012. a
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Kraemer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud ice properties: in situ measurement challenges, Meteor. Monographs, 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. a
Download
Short summary
Surface roughness of ice crystals has recently been acknowledged to strongly influence the radiative properties of cold clouds such as cirrus, but it is unclear how this roughness arises. The study investigates the origins of ice surface roughness under a variety of atmospherically relevant conditions, using a novel method to measure roughness quantitatively. It is found that faster growth leads to stronger roughness. Roughness also increases following repeated growth–sublimation cycles.
Altmetrics
Final-revised paper
Preprint