Colarco, P. R., Nowottnick, E. P., Randles, C. A., Yi, B., Yang, P., Kim,
K.-M., Smith, J. A., and Bardeen, C. G.: Impact of radiatively interactive
dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle
shape and refractive index, J. Geophys. Res.-Atmos., 119, 753–786,
https://doi.org/10.1002/2013JD020046, 2014.
Dang, C., Fu, Q., and Warren, S.: Effect of Snow Grain Shape on Snow Albedo,
J. Atmos. Sci., 73, 3573–3583, https://doi.org/10.1175/JAS-D-15-0276.1, 2016.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present
day climate forcing and response from black carbon in snow, J. Geophys. Res.,
112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,
Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover
from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497,
https://doi.org/10.5194/acp-9-2481-2009, 2009.
Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced
solar energy absorption by internally-mixed black carbon in snow grains,
Atmos. Chem. Phys., 12, 4699–4721, https://doi.org/10.5194/acp-12-4699-2012,
2012.
Gu, Y., Xue, Y., De Sales, F., and Liou, K. N.: A GCM investigation of dust
aerosol impact on the regional climate of North Africa and South/East Asia,
Clim. Dynam., 46, 2353–2370, 2016.
Guo, J. and Yin, Y.: Mineral dust impacts on regional precipitation and
summer circulation in East Asia using a regional coupled climate system
model, J. Geophys. Res.-Atmos. 120, 10378–10398, https://doi.org/10.1002/2015JD023096,
2015.
Guo, J., Lou, M., Miao, Y., Wang, Y., Zeng, Z., Liu, H., He, J., Xu, H.,
Wang, F., Min, M., and Zhai, P.: Trans-Pacific transport of dust aerosols
from East Asia: Insights gained from multiple observations and modeling,
Environ. Pollut., 230, 1030–1039, 2017.
Han, Z. W., Li, J. W., Xia, X. G., and Zhang, R. J.:
Investigation of direct radiative effects of aerosols in dust storm season over East Asia with
an online coupled regional climate-chemistry-aerosol model,
Atmos. Environ., 54, 688–699, 2012.
Hansen, J., Sato, M. K. I., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., and Bell, N.: Efficacy of
climate forcings, J. Geophy. Res., 110, D18104, https://doi.org/10.1029/2005JD005776,
2005.
He, C., Takano, Y., and Liou, K.-N.: Close packing effects on clean and dirty
snow albedo and associated climatic implications, Geophys. Res. Lett., 44,
3719–3727,
https://doi.org/10.1002/2017GL072916, 2017a.
He, C., Takano, Y., Liou, K.-N., Yang, P., Li, Q., and Chen, F.: Impact of
snow grain shape and black carbon-snow internal mixing on snow optical
properties: Parameterizations for climate models, J. Climate, 30,
10019–10036, https://doi.org/10.1175/JCLI-D-17-0300.1, 2017b.
He, C., Liou, K.-N., Takano, Y., Yang, P., Qi, L., and Chen, F.: Impact of
grain shape and multiple black carbon internal mixing on snow albedo:
Parameterization and radiative effect analysis. J. Geophys. Res.-Atmos., 123,
1253–1268, https://doi.org/10.1002/2017JD027752, 2018a.
He, C., Liou, K.-N., and Takano, Y.: Resolving size distribution of black
carbon internally mixed with snow: Impact on snow optical properties and
albedo, Geophys. Res. Lett., 45, 2697–2705, https://doi.org/10.1002/2018GL077062, 2018b.
He, C., Flanner, M. G., Chen, F., Barlage, M., Liou, K.-N., Kang, S., Ming,
J., and Qian, Y.: Black carbon-induced snow albedo reduction over the Tibetan
Plateau: uncertainties from snow grain shape and aerosol–snow mixing state
based on an updated SNICAR model, Atmos. Chem. Phys., 18, 11507–11527,
https://doi.org/10.5194/acp-18-11507-2018, 2018c.
Heinold, B., Helmert, J., Hellmuth, O., Wolke, R., Ansmann, A., Marticorena, B.,
Laurent, B., and Tegen, I.: Regional modeling of Saharan dust events using LM-MUSCAT:
Model description and case studies, J. Geophys. Res.,
112, D11204, https://doi.org/10.1029/2006JD007443, 2007.
Heinold, B., Tegen, I., Schepanski, K., and Hellmuth, O.:
Dust radiative feedback on Saharan boundary layer dynamics and dust
mobilization, Geophys. Res. Lett., 35, L20817,
https://doi.org/10.1029/2008GL035319, 2008.
Huang, J., Fu, Q., Zhang, W., Wang, X., Zhang, R., Ye, H., and Warren, S. G.:
Dust and black carbon in seasonal snow across Northern China, B. Am.
Meteorol. Soc., 92, 175–181, https://doi.org/10.1175/2010BAMS3064.1, 2011.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust
aerosols over East Asian arid and semiarid regions, J. Geophys. Res.-Atmos.,
119, 11398–11416, https://doi.org/10.1002/2014JD021796, 2014.
Hurrell, J., Hack, J., Shea, D., Caron, J., and Rosinski, J.: A new sea
surface temperature and sea ice boundary data set for the Community
Atmosphere Model, J. Climate, 21, 5145–5153, https://doi.org/10.1175/2008JCLI2292.1,
2008.
IPCC: Climate Change 2007: The Physical Science Basis. Contribution
of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt,
K. B., Tignor, M., and Miller, H. L., Cambridge University
Press, 996 pp., 2007.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker,
T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York,
NY, USA, 1535 pp., 2013.
Kang, S. C., Xu, Y. W., You, Q. L., Flugel, W., Pepin, N., and Yao, T. D.:
Review of climate and cryospheric change in the Tibetan Plateau, Environ.
Res. Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101, 2010.
Kok, J. F.: A scaling theory for the size distribution of emitted dust
aerosols suggests climate models underestimate the size of the global dust
cycle, P. Natl. Acad. Sci. USA, 108, 1016–1021,
https://doi.org/10.1073/pnas.1014798108, 2011.
Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L.,
Ward, D. S., Albani, S., and Haustein, K.: Smaller desert dust cooling effect
estimated from analysis of dust size and abundance, Nat. Geosci., 10,
274–278, https://doi.org/10.1038/ngeo2912, 2017.
Lau, K.-M., Kim, M. K., Kim, K.-M., and Lee, W. S.:
Enhanced surface warming and accelerated snow melt in the Himalayas
and Tibetan Plateau induced by absorbing aerosols,
Environ. Res. Lett., 5, 025204 https://doi.org/10.1088/1748-9326/5/2/025204, 2010.
Lee, W.-L., Liou, K. N., He, C., Liang, H.-C., Wang, T.-C., Li, Q., Liu, Z.,
and Yue, Q.: Impact of absorbing aerosol deposition on snow albedo reduction
over the southern Tibetan plateau based on satellite observations, Theor.
Appl. Climatol., 129, 1373–1382, https://doi.org/10.1007/s00704-016-1860-4, 2017.
Lee, W. S., Bhawar, R. L., Kim, M. K., and Sang, J.: Study of aerosol effect
on accelerated snow melting over the Tibetan Plateau during boreal spring,
Atmos. Environ., 75, 113–122, 2013.
Li, J., Yu, R., Yuan, W., Chen, H., Sun, W., and Zhang Y.: Precipitation over
East Asia simulated by NCAR CAM5 at different horizontal resolutions, J. Adv.
Model. Earth Sy., 7, 774–790, https://doi.org/10.1002/2014MS000414, 2015.
Li, X., Kang, S., Zhang, G., Que, B., Tripatheea, L., Paudyal, R., Jing, Z.,
Zhang, Y., Yan, F., Li, G., Cui, X., Xu, R., Hu, Z., and Li, C.:
Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations
and potential impact on snow albedo and radiative forcing, Atmos. Res., 200,
77–87, https://doi.org/10.1016/j.atmosres.2017.10.002, 2018.
Li, X. Z. and Liu, X. D.: Numerical simulation of Tibetan Plateau heating
anomaly influence on westerly jet in spring, J. Earth Syst. Sci., 124,
1599–1607, 2015.
Li, Y., Wang, T., Zeng, Z., Peng, S., Lian, X., and Piao, S.: Evaluating
biases in simulated land surface albedo from CMIP5 global climate models, J.
Geophys. Res.-Atmos., 121, 6178–6190, https://doi.org/10.1002/2016JD024774, 2016.
Liou, K. N., Takano, Y., He, C., Yang, P., Leung, R. L., Gu, Y., and Lee, W. L.:
Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models,
J. Geophys. Res.-Atmos., 119, 7616–7632, https://doi.org/10.1002/2014JD021665, 2014.
Liu, X. and Dong, B.: Influence of the Tibetan Plateau uplift on the Asian
monsoon-arid environment evolution, Chinese Sci. Bull., 58, 4277–4291,
https://doi.org/10.1007/s11434-013-5987-8, 2013.
Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P., and
Balkanski, Y.: Global connections between aeolian dust, climate and ocean
biogeochemistry at the present day and at the last glacial maximum,
Earth-Sci. Rev., 99, 61–97, https://doi.org/10.1016/j.earscirev.2009.12.001, 2010.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res., 111, D10202, https://doi.org/10.1029/2005JD006653,
2006.
Mahowald, N. M., Albani, S., Kok, J. F., Engelstaedter, S., Scanza, R., Ward,
D. S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res., 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014.
Meng, X., Lyu, S., Zhang, T., Zhao, L., Li, Z., Han, B., Li, S., Ma, D.,
Chen, H., Ao, Y., Luo, S., Shen, Y., Guo, J., and Wen, L.: Simulated cold
bias being improved by using MODIS time-varying albedo in the Tibetan Plateau
in WRF model, Environ. Res. Lett., 13, 044028, https://doi.org/10.1088/1748-9326/aab44a, 2018.
Ming, J., Wang, P., Zhao, S., and Chen, P.: Disturbance of light-absorbing
aerosols on the albedo in a winter snowpack of Central Tibet, J. Environ.
Sci.-China, 25, 1601–1607, https://doi.org/10.1016/S1001-0742(12)60220-4, 2013.
Miller, R. L., Perlwitz, J., and Tegen, I.: Feedback upon dust emission by dust radiative forcing through the planetary boundary layer, J. Geophys. Res., 109, D24209, https://doi.org/10.1029/2004JD004912, 2004.
Neale R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A., Collins, W. D., Zhang, M., and Lin, S.-J.: Description of the
NCAR Community Atmosphere Model (CAM 4.0), NCAR Tech. Note, TN–485, 212 pp.,
Natl. Cent. for Atmos. Res., Boulder, Colo, 2010.
Perez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., and Ozsoy, E.:
Interactive dust-radiation modeling: A step to improve weather forecasts,
J. Geophys. Res., 111, D16206, https://doi.org/10.1029/2005JD006717, 2006.
Perlwitz, J. P., Tegen, I., and Miller, R. L.:
Interactive soil dust aerosol model in the GISS GCM: 1.
Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols,
J. Geophys. Res., 106, 18167–18192, https://doi.org/10.1029/2000JD900668, 2001.
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on
the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological
cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948,
https://doi.org/10.5194/acp-11-1929-2011, 2011.
Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K.
M., Jing, M., Wang, H., Wang, M., Warren, S. G., and Zhang, R.:
Light-absorbing Particles in Snow and Ice: Measurement and
Modeling of Climatic and Hydrological impact, Adv. Atmos. Sci.,
32, 64–91, https://doi.org/10.1007/s00376-014-0010-0, 2015.
Qu, B., Ming, J., Kang, S.-C., Zhang, G.-S., Li, Y.-W., Li, C.-D., Zhao,
S.-Y., Ji, Z.-M., and Cao, J.-J.: The decreasing albedo of the Zhadang
glacier on western Nyainqentanglha and the role of light-absorbing
impurities, Atmos. Chem. Phys., 14, 11117–11128,
https://doi.org/10.5194/acp-14-11117-2014, 2014.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols,
climate, and the hydrological cycle, Science, 294, 2119–2124, 2001.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670,
2003.
Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., and Fahey, D.
W.: Black carbon aerosol size in snow, Sci. Rep.-UK, 3, 1356,
https://doi.org/10.1038/srep01356,
2013.
Sha, Y., Shi, Z., Liu, X., and An, Z.: Distinct impacts of the Mongolian and
Tibetan Plateaus on the evolution of the East Asian monsoon, J. Geophys.
Res.-Atmos., 120, 4764–4782, https://doi.org/10.1002/2014JD022880, 2015.
Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh,
G. H., Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.:
Dust cycle: an emerging core theme in Earth System Science,
Aeolian Res., 2, 181–204, 2011.
Shi, Z., Liu, X., Liu, Y., Sha, Y., and Xu, T.:
Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean,
Clim. Dynam., 42, 1–10, https://doi.org/10.1007/s00382-014-2217-2, 2014.
Sun, H., Pan, Z., and Liu, X.: Numerical simulation of spatial-temporal distribution
of dust aerosol and its direct radiative effects on East Asian climate, J. Geophys. Res.,
117, D13206, https://doi.org/10.1029/2011JD017219, 2012.
Tegen, I. and Lacis A. A.: Modeling of particle size distribution and its
influence on the radiative properties of mineral dust aerosol, J. Geophys.
Res., 101, 19237–19244, 1996.
Tie, X., Madronich, S., Walters, S., Edwards, D. P., Ginoux, P., Mahowald,
N., Zhang, R., Lou, C., and Brasseur, G.: Assessment of the global impact of
aerosols on tropospheric oxidants, J. Geophys. Res.-Atmos., 110, D03204,
https://doi.org/10.1029/2004JD005359, 2005.
Wake, C. P., Mayewsi, P. A., Li, Z., Han, J., and Qin, D.:
Modern eolian dust deposition in central Asia, Tellus, 46B, 220–233, 1994.
Wang, M., Xu, B., Cao, J., Tie, X., Wang, H., Zhang, R., Qian, Y., Rasch, P.
J., Zhao, S., Wu, G., Zhao, H., Joswiak, D. R., Li, J., and Xie, Y.:
Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of
temporal variations and model estimates of sources and radiative forcing,
Atmos. Chem. Phys., 15, 1191–1204, https://doi.org/10.5194/acp-15-1191-2015,
2015.
Wilkening, K. E., Barrie, L. A., and Engle, M.: Trans-Pacific air pollution,
Science, 290, 65–67, https://doi.org/10.1126/science.290.5489.65, 2000.
Wu, G. X., Liu, Y. M., He, B., Bao, Q., Duan, A. M., and Jin, F. F.: Thermal
controls on the Asian summer monsoon, Sci. Rep.-UK, 2, 1–7, 2012.
Xie, X. N., Liu, X. D., Che, H. Z., Xie, X. X., Wang, H. L., Li, J. D., Shi,
Z. G., and Liu, Y.: Modeling East Asian dust and its radiative feedbacks in
CAM4-BAM, J. Geophys. Res.-Atmos., 123, 1079–1096,
https://doi.org/10.1002/2017JD027343, 2018.
Xu, B. Q., Cao, J., Hansen, J., Yao, T., Joswiak, D. R., Wang, N., Wu,
G.,Wang, M., Zhao, H., Yang, W., Liu, X., and He, J.: Black soot and the
survival of Tibetan glaciers, P. Natl. Acad. Sci. USA, 106, 22114–22118,
https://doi.org/10.1073/pnas.0910444106, 2009.
Yue, X., Wang, H., Wang, Z., and Fan, K.: Simulation of dust aerosol
radiative feedback using the Global Transport Model of Dust: 1. Dust
cycle and validation, J. Geophys. Res., 114, D10202,
https://doi.org/10.1029/2008JD010995, 2009.
Zhang, D. F., Zakey, A. S., Gao, X. J., Giorgi, F., and Solmon, F.:
Simulation of dust aerosol and its regional feedbacks over East Asia using a
regional climate model, Atmos. Chem. Phys., 9, 1095–1110,
https://doi.org/10.5194/acp-9-1095-2009, 2009.
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li,
X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin, X., and Sillanpää, M.:
Black carbon and mineral dust in snow cover on the Tibetan Plateau, The
Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, 2018.
Zhao, T. L., Gong, S. L., Zhang, X. Y., Blanchet, J. P., McKendry, I. G.,
and Zhou, Z. J.: A simulated climatology of Asian dust aerosol and its
trans-Pacific transport, Part I: Mean climate and validation, J. Climate, 19,
88–103, 2006.