Articles | Volume 18, issue 14
Atmos. Chem. Phys., 18, 10521–10555, 2018

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Atmos. Chem. Phys., 18, 10521–10555, 2018
Research article
24 Jul 2018
Research article | 24 Jul 2018

How important are future marine and shipping aerosol emissions in a warming Arctic summer and autumn?

Anina Gilgen et al.

Related authors

Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911,,, 2019
Short summary
Implementing microscopic charcoal particles into a global aerosol–climate model
Anina Gilgen, Carole Adolf, Sandra O. Brugger, Luisa Ickes, Margit Schwikowski, Jacqueline F. N. van Leeuwen, Willy Tinner, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 11813–11829,,, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160,,, 2022
Short summary
Examination of aerosol impacts on convective clouds and precipitation in two metropolitan areas in East Asia; how varying depths of convective clouds between the areas diversify those aerosol effects?
Seoung Soo Lee, Jinho Choi, Goun Kim, Kyung-Ja Ha, Kyong-Hwan Seo, Chang Hoon Jung, Junshik Um, Youtong Zheng, Jianping Guo, Sang-Keun Song, Yun Gon Lee, and Nobuyuki Utsumi
Atmos. Chem. Phys., 22, 9059–9081,,, 2022
Short summary
Influence of emission size distribution and nucleation on number concentrations over Greater Paris
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596,,, 2022
Short summary
Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective
Zhaochen Liu, Xianmei Lang, and Dabang Jiang
Atmos. Chem. Phys., 22, 7667–7680,,, 2022
Short summary
Regional impacts of black carbon morphologies on shortwave aerosol–radiation interactions: a comparative study between the US and China
Jie Luo, Zhengqiang Li, Chenchong Zhang, Qixing Zhang, Yongming Zhang, Ying Zhang, Gabriele Curci, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 7647–7666,,, 2022
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res.-Atmos., 105, 6837–6844,, 2000. a
Abe, M., Nozawa, T., Ogura, T., and Takata, K.: Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming, Atmos. Chem. Phys., 16, 14343–14356,, 2016. a, b
Albrecht, B.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230,, 1989. a, b
Alterskjær, K., Kristjánsson, J. E., and Hoose, C.: Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic?, J. Geophys. Res., 115, D22204,, 2010. a, b, c, d
AMAP Assessment: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP), Tech. rep., Oslo, Norway, available at: (last access: 19 July 2018), 2015. a, b

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Aerosol emissions in Arctic summer and autumn are expected to increase in the future because of sea ice retreat. Using a global aerosol–climate model, we quantify the impact of increased aerosol emissions from the ocean and from Arctic shipping in the year 2050. The influence on radiation of both aerosols and clouds is analysed. Mainly driven by changes in surface albedo, the cooling effect of marine aerosols and clouds will increase. Future ship emissions might have a small net cooling effect.
Final-revised paper