Articles | Volume 17, issue 19
https://doi.org/10.5194/acp-17-11899-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-11899-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition
Key Laboratory of Tibetan Environment Changes and Land
Surface Processes, Institute of Tibetan Plateau Research, Chinese
Academy of Sciences, Beijing 100101, China
Laboratory of Green Chemistry, Lappeenranta University of
Technology, Sammonkatu 12, 50130 Mikkeli, Finland
CAS Center for Excellence in Tibetan Plateau Earth Sciences,
Beijing 100101, China
Fangping Yan
Laboratory of Green Chemistry, Lappeenranta University of
Technology, Sammonkatu 12, 50130 Mikkeli, Finland
Shichang Kang
State Key Laboratory of Cryospheric Sciences, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of
Sciences, Lanzhou 730000, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences,
Beijing 100101, China
Pengfei Chen
State Key Laboratory of Cryospheric Sciences, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of
Sciences, Lanzhou 730000, China
Xiaowen Han
Key Laboratory of Tibetan Environment Changes and Land
Surface Processes, Institute of Tibetan Plateau Research, Chinese
Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049,
China
Zhaofu Hu
State Key Laboratory of Cryospheric Sciences, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of
Sciences, Lanzhou 730000, China
University of Chinese Academy of Sciences, Beijing 100049,
China
Guoshuai Zhang
Key Laboratory of Tibetan Environment Changes and Land
Surface Processes, Institute of Tibetan Plateau Research, Chinese
Academy of Sciences, Beijing 100101, China
Ye Hong
Institute of Atmospheric Environment, China Meteorological
Administration, Shenyang 110166, China
Shaopeng Gao
Key Laboratory of Tibetan Environment Changes and Land
Surface Processes, Institute of Tibetan Plateau Research, Chinese
Academy of Sciences, Beijing 100101, China
Bin Qu
Laboratory of Green Chemistry, Lappeenranta University of
Technology, Sammonkatu 12, 50130 Mikkeli, Finland
Zhejing Zhu
Environmental Research Institute, Shandong University, Jinan
250100, China
Jiwei Li
Environmental Research Institute, Shandong University, Jinan
250100, China
Bing Chen
Environmental Research Institute, Shandong University, Jinan
250100, China
Mika Sillanpää
Laboratory of Green Chemistry, Lappeenranta University of
Technology, Sammonkatu 12, 50130 Mikkeli, Finland
Department of Civil and Environmental Engineering, Florida
International University, Miami, FL 33174, USA
Related authors
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Fangping Yan, Shichang Kang, Chaoliu Li, Yulan Zhang, Xiang Qin, Yang Li, Xiaopeng Zhang, Zhaofu Hu, Pengfei Chen, Xiaofei Li, Bin Qu, and Mika Sillanpää
The Cryosphere, 10, 2611–2621, https://doi.org/10.5194/tc-10-2611-2016, https://doi.org/10.5194/tc-10-2611-2016, 2016
Short summary
Short summary
DOC release of Laohugou Glacier No. 12 was 192 kg km−2 yr−1, of which 43.2 % could be decomposed and return to atmosphere as CO2 within 28 days, producing positive feedback in the warming process and influencing downstream ecosystems. Radiative forcing of snow pit DOC was calculated to be 0.43 W m−2, accounting for about 10 % of the radiative forcing caused by BC. Therefore, DOC is also a light-absorbing agent in glacierized regions, influencing the albedo of glacier surface and glacier melting.
Chaman Gul, Shichang Kang, Yuanjian Yang, Xinlei Ge, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1144, https://doi.org/10.5194/egusphere-2024-1144, 2024
Preprint archived
Short summary
Short summary
Long-term variations in upper atmospheric temperature and water vapor in the selected domains of time and space are presented. The temperature during the past two decades showed a cooling trend and water vapor showed an increasing trend and had an inverse relation with temperature in selected domains of space and time. Seasonal temperature variations are distinct, with a summer minimum and a winter maximum. Our results can be an early warning indication for future climate change.
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024, https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) and its surroundings in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple intensive field observations. The release of this dataset can provide basic and systematic data for related research in the atmospheric, cryospheric, and environmental sciences in this unique region.
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024, https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP) saw a record-breaking aerosol pollution event from April 20 to May 10, 2016. We studied the impact of aerosol–meteorology feedback on the transboundary transport flux of black carbon (BC) during this severe pollution event. It was found that the aerosol–meteorology feedback decreases the transboundary transport flux of BC from the central and western Himalayas towards the TP. This study is of great significance for the protection of the ecological environment of the TP.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Huiming Lin, Yindong Tong, Long Chen, Chenghao Yu, Zhaohan Chu, Qianru Zhang, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Junfeng Liu, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 23, 3937–3953, https://doi.org/10.5194/acp-23-3937-2023, https://doi.org/10.5194/acp-23-3937-2023, 2023
Short summary
Short summary
Lhasa is the largest city in the Tibetan Plateau, and its atmospheric mercury concentrations represent the highest level of pollution in this region. Unexpectedly high concentrations of atmospheric mercury species were found. Combined with the trajectory analysis, the high atmospheric mercury concentrations may have originated from external long-range transport. Local sources, especially special mercury-related sources, are important factors influencing the variability of atmospheric mercury.
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022, https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.
Jizu Chen, Wentao Du, Shichang Kang, Xiang Qin, Weijun Sun, Yang Li, Yushuo Liu, Lihui Luo, and Youyan Jiang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-179, https://doi.org/10.5194/tc-2022-179, 2022
Preprint withdrawn
Short summary
Short summary
This study developed a dynamic deposition model of light absorbing particles (LAPs), which coupled with a surface energy and mass balance model. Based on the coupled model, we assessed atmospheric deposited BC effect on glacier melting, and quantified global warming and increment of emitted black carbon respective contributions to current accelerated glacier melting.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, Shichang Kang, and Jianzhong Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-211, https://doi.org/10.5194/essd-2022-211, 2022
Manuscript not accepted for further review
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple short-term intensive field observations. The real-time online high-time-resolution (hourly) data of aerosol properties in the different TP region are integrated in a new dataset and can provide supporting for related studies in in the TP.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Mukesh Rai, Shichang Kang, Junhua Yang, Maheswar Rupakheti, Dipesh Rupakheti, Lekhendra Tripathee, Yuling Hu, and Xintong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-199, https://doi.org/10.5194/acp-2022-199, 2022
Revised manuscript not accepted
Short summary
Short summary
Our study revealed distinctive seasonality with the maximum and minimum aerosol concentrations during the winter and summer seasons respectively. However, interestingly summer high (AOD > 0.8) was observed over South Asia. The highest aerosols are laden over South Asia and East China within 1–2 km, however, aerosol overshooting found up to 10 km due to the deep convection process. Whereas, integrated aerosol transport for OC during spring was found to be 5 times higher than the annual mean.
Huiming Lin, Yindong Tong, Chenghao Yu, Long Chen, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Lun Luo, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 22, 2651–2668, https://doi.org/10.5194/acp-22-2651-2022, https://doi.org/10.5194/acp-22-2651-2022, 2022
Short summary
Short summary
The Tibetan Plateau is known as
The Third Poleand is generally considered to be a clean area owing to its high altitude. However, it may receive be impacted by air pollutants transported from the Indian subcontinent. Pollutants generally enter the Tibetan Plateau in several ways. Among them is the Yarlung Zangbu–Brahmaputra Grand Canyon. In this study, we identified the influence of the Indian summer monsoon on the origin, transport, and behavior of mercury in this area.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482, https://doi.org/10.5194/tc-15-5473-2021, https://doi.org/10.5194/tc-15-5473-2021, 2021
Short summary
Short summary
Sea ice is retreating with rapid warming in the Arctic. It will continue and approach the worst predicted pathway released by the IPCC. The irreversible tipping point might show around 2060 when the oldest ice will have completely disappeared. It has a huge impact on human production. Ordinary merchant ships will be able to pass the Northeast Passage and Northwest Passage by the midcentury, and the opening time will advance to the next 10 years for icebreakers with moderate ice strengthening.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021, https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary
Short summary
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and decipher the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by conditions of high cloud water pH.
Shuang Yi, Chunqiao Song, Kosuke Heki, Shichang Kang, Qiuyu Wang, and Le Chang
The Cryosphere, 14, 2267–2281, https://doi.org/10.5194/tc-14-2267-2020, https://doi.org/10.5194/tc-14-2267-2020, 2020
Short summary
Short summary
High-Asia glaciers have been observed to be retreating the fastest in the southeastern Tibeten Plateau, where vast amounts of glacier and snow feed the streamflow of the Brahmaputra. Here, we provide the first monthly glacier and snow mass balance during 2002–2017 based on satellite gravimetry. The results confirm previous long-term decreases but reveal strong seasonal variations. This work helps resolve previous divergent model estimates and underlines the importance of meltwater.
Meixin Zhang, Chun Zhao, Zhiyuan Cong, Qiuyan Du, Mingyue Xu, Yu Chen, Ming Chen, Rui Li, Yunfei Fu, Lei Zhong, Shichang Kang, Delong Zhao, and Yan Yang
Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, https://doi.org/10.5194/acp-20-5923-2020, 2020
Short summary
Short summary
Analysis of multiple numerical experiments over the Himalayas and Tibetan Plateau (TP) shows that the complex topography results in 50 % stronger overall cross-Himalayan transport during the pre-monsoon season primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed in some valleys and deeper valley channels associated with larger transported BC mass volume, which leads to 30–50 % stronger BC radiative heating over the TP.
Xinghua Zhang, Jianzhong Xu, Shichang Kang, Qi Zhang, and Junying Sun
Atmos. Chem. Phys., 19, 7897–7911, https://doi.org/10.5194/acp-19-7897-2019, https://doi.org/10.5194/acp-19-7897-2019, 2019
Short summary
Short summary
Highly time resolved chemistry and sources of PM1 were measured by an Aerodyne HR-ToF-AMS at Waliguan Baseline Observatory, a high-altitude background station at the northeastern edge of Qinghai–Tibet Plateau (QTP), during summer 2017. Relatively higher mass concentration of PM1 and dominant sulfate contribution were observed in this site compared to those at other high-elevation sites in the southern or central QTP, indicating the different aerosol sources between them.
Xin Wan, Shichang Kang, Maheswar Rupakheti, Qianggong Zhang, Lekhendra Tripathee, Junming Guo, Pengfei Chen, Dipesh Rupakheti, Arnico K. Panday, Mark G. Lawrence, Kimitaka Kawamura, and Zhiyuan Cong
Atmos. Chem. Phys., 19, 2725–2747, https://doi.org/10.5194/acp-19-2725-2019, https://doi.org/10.5194/acp-19-2725-2019, 2019
Short summary
Short summary
The sources of primary and secondary aerosols in the Hindu Kush–Himalayan–Tibetan Plateau region are not well known. Organic molecular tracers are useful for aerosol source apportionment. The characterization of molecular tracers were first systemically investigated and the contribution from primary and secondary sources to carbonaceous aerosols was estimated in the Kathmandu Valley. Our results demonstrate that biomass burning contributed a significant fraction to OC in the Kathmandu Valley.
Yanqing An, Jianzhong Xu, Lin Feng, Xinghua Zhang, Yanmei Liu, Shichang Kang, Bin Jiang, and Yuhong Liao
Atmos. Chem. Phys., 19, 1115–1128, https://doi.org/10.5194/acp-19-1115-2019, https://doi.org/10.5194/acp-19-1115-2019, 2019
Short summary
Short summary
Detailed molecular chemical composition of water-soluble organic matter in the Himalayas was characterized by positive electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the first time. Many products formed from biogenic volatile organic compounds and biomass-burning-emitted compounds were found in the organic compounds, suggesting the important contribution of these two sources in the Himalayas.
Zhiwen Dong, Shichang Kang, Dahe Qin, Yaping Shao, Sven Ulbrich, and Xiang Qin
The Cryosphere, 12, 3877–3890, https://doi.org/10.5194/tc-12-3877-2018, https://doi.org/10.5194/tc-12-3877-2018, 2018
Short summary
Short summary
This study aimed to provide a first and unique record of physicochemical properties and mixing states of LAPs at the glacier and atmosphere interface over the northeastern Tibetan Plateau to determine the individual LAPs' structure aging and mixing state changes through the atmospheric deposition process from atmosphere to glacier–snowpack surface, thereby helping to characterize the LAPs' radiative forcing and climate effects in the cryosphere region.
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018, https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Short summary
Cryoconites from glaciers on the Tibetan Plateau and surrounding area were studied for iron oxides. We found that goethite is the predominant iron oxide form. Using the abundance, speciation and optical properties of iron oxides, the total light absorption was quantitatively attributed to goethite, hematite, black carbon and organic matter. Such findings are essential to understand the relative significance of anthropogenic and natural impacts.
Xintong Chen, Shichang Kang, Zhiyuan Cong, Junhua Yang, and Yaoming Ma
Atmos. Chem. Phys., 18, 12859–12875, https://doi.org/10.5194/acp-18-12859-2018, https://doi.org/10.5194/acp-18-12859-2018, 2018
Short summary
Short summary
To understand the impact of transboundary atmospheric black carbon on the Mt. Everest region and depict the transport pathways in different spatiotemporal scales, we first investigated the concentration level, temporal variation, and sources of black carbon based on high-resolution (2-year) measurements at Qomolangma (Mt. Everest) Station (4276 m a.s.l.). Next, the WRF-Chem simulations were used to reveal the transport mechanisms of black carbon from southern Asia to the Mt. Everest region.
Cenlin He, Mark G. Flanner, Fei Chen, Michael Barlage, Kuo-Nan Liou, Shichang Kang, Jing Ming, and Yun Qian
Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, https://doi.org/10.5194/acp-18-11507-2018, 2018
Short summary
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Xiufeng Yin, Shichang Kang, Benjamin de Foy, Yaoming Ma, Yindong Tong, Wei Zhang, Xuejun Wang, Guoshuai Zhang, and Qianggong Zhang
Atmos. Chem. Phys., 18, 10557–10574, https://doi.org/10.5194/acp-18-10557-2018, https://doi.org/10.5194/acp-18-10557-2018, 2018
Short summary
Short summary
Total gaseous mercury concentrations were measured at Nam Co Station on the inland Tibetan Plateau for ~ 3 years. The mean concentration of TGM during the entire monitoring period was 1.33 ± 0.24 ngm-3, ranking it the lowest in China and indicating the pristine atmospheric environment of the inland Tibetan Plateau. Variation of TGM at Nam Co was affected by regional surface reemission, vertical mixing and long-range transported atmospheric mercury, which was associated with the Indian monsoon.
Hewen Niu, Shichang Kang, Hailong Wang, Rudong Zhang, Xixi Lu, Yun Qian, Rukumesh Paudyal, Shijin Wang, Xiaofei Shi, and Xingguo Yan
Atmos. Chem. Phys., 18, 6441–6460, https://doi.org/10.5194/acp-18-6441-2018, https://doi.org/10.5194/acp-18-6441-2018, 2018
Short summary
Short summary
Deposition of light-absorbing carbonaceous aerosol on the surface of glaciers can greatly alter the energy fluxes of glaciers. Two years of continuous observations of carbonaceous aerosols in a glacierized region are analyzed. We mainly studied the light absorption properties of carbonaceous aerosol and have employed a global aerosol–climate model to estimate source attributions of atmospheric black carbon.
D. Rupakheti, S. Kang, Z. Cong, M. Rupakheti, L. Tripathee, A. K. Panday, and B. Holben
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1493–1497, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, 2018
Chaman Gul, Siva Praveen Puppala, Shichang Kang, Bhupesh Adhikary, Yulan Zhang, Shaukat Ali, Yang Li, and Xiaofei Li
Atmos. Chem. Phys., 18, 4981–5000, https://doi.org/10.5194/acp-18-4981-2018, https://doi.org/10.5194/acp-18-4981-2018, 2018
Short summary
Short summary
Snow and ice samples were collected from six glaciers and multiple mountain valleys from northern Pakistan. Samples were analyzed for black carbon and water-insoluble organic carbon. Relatively high concentrations of black carbon, organic carbon, and dust were reported. Snow albedo and radiative forcing were estimated for the snow samples. Possible source regions of pollutants were identified through various techniques.
Xinghua Zhang, Jianzhong Xu, Shichang Kang, Yanmei Liu, and Qi Zhang
Atmos. Chem. Phys., 18, 4617–4638, https://doi.org/10.5194/acp-18-4617-2018, https://doi.org/10.5194/acp-18-4617-2018, 2018
Short summary
Short summary
Highly time and chemically resolved submicron aerosol properties were characterized online for the first time in a high-altitude site (Qomolangma station, 4276 m a.s.l.) in the northern Himalayas by using the Aerodyne HR-ToF-AMS. Biomass burning plumes were frequently observed and the dynamic processes (emissions, transport, and chemical processing) were characterized. The source and chemical composition of organic aerosol were further elucidated using positive matrix factorization analysis.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Balram Pokhrel, Ping Gong, Xiaoping Wang, Sanjay Nath Khanal, Jiao Ren, Chuanfei Wang, Shaopeng Gao, and Tandong Yao
Atmos. Chem. Phys., 18, 1325–1336, https://doi.org/10.5194/acp-18-1325-2018, https://doi.org/10.5194/acp-18-1325-2018, 2018
Short summary
Short summary
As Nepal is a tropical country close to the Himalayas, it is essential to investigate concentration levels and long-range transport potential of persistent organic pollutants (POPs) in its cities to assess whether these pollutants can contaminate the high Himalaya. We found high concentration and long travel distance (> 1000 km) of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in the atmosphere of Nepalese cities, suggesting Nepal can be an important regional source region for POPs.
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, https://doi.org/10.5194/tc-12-227-2018, 2018
Jianzhong Xu, Qi Zhang, Jinsen Shi, Xinlei Ge, Conghui Xie, Junfeng Wang, Shichang Kang, Ruixiong Zhang, and Yuhang Wang
Atmos. Chem. Phys., 18, 427–443, https://doi.org/10.5194/acp-18-427-2018, https://doi.org/10.5194/acp-18-427-2018, 2018
Short summary
Short summary
This manuscript presents results from a comprehensive field study using an HR-AMS coupled with a suite of other instruments in central Tibetan Plateau. The study discusses the chemical composition, sources, and processes of submicron aerosol during the transition from pre-monsoon to monsoon. Organic aerosol was overall highly oxidized during the entire study with higher O / C ratios during the pre-monsoon period. Sensitivity of air pollution transport with synoptic process was also evaluated.
Lin Feng, Yanqing An, Jianzhong Xu, Shichang Kang, Xiaofei Li, Yongqiang Zhou, Yunlin Zhang, Bin Jiang, and Yuhong Liao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-507, https://doi.org/10.5194/bg-2017-507, 2017
Revised manuscript not accepted
Xiufeng Yin, Shichang Kang, Benjamin de Foy, Zhiyuan Cong, Jiali Luo, Lang Zhang, Yaoming Ma, Guoshuai Zhang, Dipesh Rupakheti, and Qianggong Zhang
Atmos. Chem. Phys., 17, 11293–11311, https://doi.org/10.5194/acp-17-11293-2017, https://doi.org/10.5194/acp-17-11293-2017, 2017
Short summary
Short summary
We presented 5-year surface ozone measurements at Nam Co in the inland Tibetan Plateau and made a synthesis comparison of diurnal and seasonal patterns on regional and hemispheric scales. Surface ozone at Nam Co is mainly dominated by natural processes and is less influenced by stratospheric intrusions and human activities than on the rim of the Tibetan Plateau. Ozone at Nam Co is representative of background that is valuable for studying ozone-related effects on large scales.
Caihong Xu, Min Wei, Jianmin Chen, Chao Zhu, Jiarong Li, Ganglin Lv, Xianmang Xu, Lulu Zheng, Guodong Sui, Weijun Li, Bing Chen, Wenxing Wang, Qingzhu Zhang, Aijun Ding, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 11247–11260, https://doi.org/10.5194/acp-17-11247-2017, https://doi.org/10.5194/acp-17-11247-2017, 2017
Short summary
Short summary
Fungi are ubiquitous throughout the near-surface atmosphere, where they represent an important component of primary biological aerosol particles. The diversity and composition of the fungal communities varied over the different seasons between the fine (PM2.5) and submicron (PM1) particles at the summit of Mt. Tai located in the North China Plain, China. This work may serve as an important reference for the fungal contribution to primary biological aerosol particles.
Dipesh Rupakheti, Bhupesh Adhikary, Puppala Siva Praveen, Maheswar Rupakheti, Shichang Kang, Khadak Singh Mahata, Manish Naja, Qianggong Zhang, Arnico Kumar Panday, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 11041–11063, https://doi.org/10.5194/acp-17-11041-2017, https://doi.org/10.5194/acp-17-11041-2017, 2017
Short summary
Short summary
For the first time, atmospheric composition was monitored during pre-monsoon season of 2013 at Lumbini (UNESCO world heritage site as birthplace of the Buddha). PM and O3 frequently exceeded WHO guidelines. Pollution concentration, diurnal characteristics and influence of open burning on air quality in Lumbini were investigated. Potential source regions were also identified. Results show that air pollution at this site is of a great concern, requiring prompt attention for mitigation.
Tanguang Gao, Jie Liu, Tingjun Zhang, Yuantao Hu, Jianguo Shang, Shufa Wang, Xiongxin Xiao, Chuankun Liu, Shichang Kang, Mika Sillanpää, and Yulan Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-176, https://doi.org/10.5194/tc-2017-176, 2017
Preprint retracted
Short summary
Short summary
Understanding the interactions between groundwater and surface water in permafrost regions is essential to the understanding of flood frequencies and river water quality of high latitude/altitude basins. Thus, we analyzed the interaction between surface water and groundwater in a permafrost region in the northern Tibetan Plateau by using heat tracing methods.
Xin Wan, Shichang Kang, Quanlian Li, Dipesh Rupakheti, Qianggong Zhang, Junming Guo, Pengfei Chen, Lekhendra Tripathee, Maheswar Rupakheti, Arnico K. Panday, Wu Wang, Kimitaka Kawamura, Shaopeng Gao, Guangming Wu, and Zhiyuan Cong
Atmos. Chem. Phys., 17, 8867–8885, https://doi.org/10.5194/acp-17-8867-2017, https://doi.org/10.5194/acp-17-8867-2017, 2017
Short summary
Short summary
Biomass burning (BB) tracers in the aerosols in Lumbini, northern IGP, were studied for the first time. The levoglucosan was the predominant tracer and BB significantly contributed to the air quality in Lumbini. Mixed crop residues and hardwood were main burning materials. BB emissions constituted large fraction of OC, especially during the post-monsoon season. The sources of BB aerosols in Lumbini varies seasonally due to the influence of local emissions and long-range transport.
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Bin Liu, Zhiyuan Cong, Yuesi Wang, Jinyuan Xin, Xin Wan, Yuepeng Pan, Zirui Liu, Yonghong Wang, Guoshuai Zhang, Zhongyan Wang, Yongjie Wang, and Shichang Kang
Atmos. Chem. Phys., 17, 449–463, https://doi.org/10.5194/acp-17-449-2017, https://doi.org/10.5194/acp-17-449-2017, 2017
Short summary
Short summary
The first observation net of background atmospheric aerosols of the Himalayas and Tibetan Plateau were conducted in 2011–2013, and the aerosol mass loadings were especially illustrated in this paper. Consequently, these terrestrial aerosol masses were strongly ecosystem-dependent, with various seasonality and diurnal cycles at these sites. These findings implicate that regional characteristics and fine-particle emissions need to be treated sensitively when assessing their climatic effects.
Jianzhong Xu, Jinsen Shi, Qi Zhang, Xinlei Ge, Francesco Canonaco, André S. H. Prévôt, Matthias Vonwiller, Sönke Szidat, Jinming Ge, Jianmin Ma, Yanqing An, Shichang Kang, and Dahe Qin
Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, https://doi.org/10.5194/acp-16-14937-2016, 2016
Short summary
Short summary
This study deployed an AMS field study in Lanzhou, a city in northwestern China, evaluating the chemical composition, sources, and processes of urban aerosols during wintertime. In comparison with the results during summer in Lanzhou, the air pollution during winter was more severe and the sources were more complex. In addition, this paper estimates the contributions of fossil and non-fossil sources of organic carbon to primary and secondary organic carbon using the carbon isotopic method.
Fangping Yan, Shichang Kang, Chaoliu Li, Yulan Zhang, Xiang Qin, Yang Li, Xiaopeng Zhang, Zhaofu Hu, Pengfei Chen, Xiaofei Li, Bin Qu, and Mika Sillanpää
The Cryosphere, 10, 2611–2621, https://doi.org/10.5194/tc-10-2611-2016, https://doi.org/10.5194/tc-10-2611-2016, 2016
Short summary
Short summary
DOC release of Laohugou Glacier No. 12 was 192 kg km−2 yr−1, of which 43.2 % could be decomposed and return to atmosphere as CO2 within 28 days, producing positive feedback in the warming process and influencing downstream ecosystems. Radiative forcing of snow pit DOC was calculated to be 0.43 W m−2, accounting for about 10 % of the radiative forcing caused by BC. Therefore, DOC is also a light-absorbing agent in glacierized regions, influencing the albedo of glacier surface and glacier melting.
Shengyun Chen, Wenjie Liu, Qian Zhao, Lin Zhao, Qingbai Wu, Xingjie Lu, Shichang Kang, Xiang Qin, Shilong Chen, Jiawen Ren, and Dahe Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-80, https://doi.org/10.5194/tc-2016-80, 2016
Revised manuscript not accepted
Short summary
Short summary
Experimental warming was manipulated using open top chambers in alpine grassland ecosystem in the permafrost regions of the Qinghai-Tibet Plateau. The results revealed variations of earlier thawing, later freezing and longer freezing-thawing periods in shallow soil. Further, the estimated permafrost table declined under the warming scenarios. The work will be helpful to evaluate the stability of Qinghai-Tibet Railway/Highway and estimate the release of carbon under the future climate warming.
Yang Li, Jizu Chen, Shichang Kang, Chaoliu Li, Bin Qu, Lekhendra Tripathee, Fangping Yan, Yulan Zhang, Junmin Guo, Chaman Gul, and Xiang Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-32, https://doi.org/10.5194/tc-2016-32, 2016
Preprint withdrawn
Short summary
Short summary
To our knowledge, this study constitutes the first quantitative dataset of the impacts of light absorbing particles (LAPs) on glacier ablation estimated directly from the northeastern edge of the Tibetan Plateau (TP).The average concentrations of black carbon (BC) and mineral dust (MD) in surface snow and ice at Laohugou Glacier No. 12 (LHG) were much higher than those detected in snow pits and ice cores in TP and Tien Shan mountains.
Peng Fei Chen, Chao Liu Li, Shi Chang Kang, Maheswar Rupakheti, Arnico K. Panday, Fang Ping Yan, Quan Lian Li, Qiang Gong Zhang, Jun Ming Guo, Dipesh Rupakheti, and Wei Luo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-71, https://doi.org/10.5194/acp-2016-71, 2016
Revised manuscript not accepted
Short summary
Short summary
PAHs were measured at six sites along two south-north transects across the central Himalayas. The annual average PAHs and their dry deposition fluxes decreased noticeably from the south to north sides, however, a similar compostion pattern was found at three remote sites, suggesting the northern slope of the Himalayas may be affected by anthropogenic emissions form Indo-Gangetic Plain. PAHs showed a clear seasonal variation at Nepal and they were mainly form biomass and fossil combustion .
S. Song, N. E. Selin, A. L. Soerensen, H. Angot, R. Artz, S. Brooks, E.-G. Brunke, G. Conley, A. Dommergue, R. Ebinghaus, T. M. Holsen, D. A. Jaffe, S. Kang, P. Kelley, W. T. Luke, O. Magand, K. Marumoto, K. A. Pfaffhuber, X. Ren, G.-R. Sheu, F. Slemr, T. Warneke, A. Weigelt, P. Weiss-Penzias, D. C. Wip, and Q. Zhang
Atmos. Chem. Phys., 15, 7103–7125, https://doi.org/10.5194/acp-15-7103-2015, https://doi.org/10.5194/acp-15-7103-2015, 2015
Short summary
Short summary
A better knowledge of mercury (Hg) emission fluxes into the global atmosphere is important for assessing its human health impacts and evaluating the effectiveness of corresponding policy actions. We for the first time apply a top-down approach at a global scale to quantitatively estimate present-day mercury emission sources as well as key parameters in a chemical transport model, in order to better constrain the global biogeochemical cycle of mercury.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Viscosity of aqueous ammonium nitrate–organic particles: equilibrium partitioning may be a reasonable assumption for most tropospheric conditions
Role of sea spray aerosol at the air–sea interface in transporting aromatic acids to the atmosphere
Modeling the influence of carbon branching structure on secondary organic aerosol formation via multiphase reactions of alkanes
Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances
Measurement report: Water diffusion in single suspended phase-separated aerosols
Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles
Jet aircraft lubrication oil droplets as contrail ice-forming particles
A study on the influence of inorganic ions, organic carbon and microstructure on the hygroscopic property of soot
Measurement report: The ice-nucleating activity of lichen sampled in a northern European boreal forest
Is transport of microplastics different from mineral particles? Idealized wind tunnel studies on polyethylene microspheres
Insights into secondary organic aerosol formation from the day- and nighttime oxidation of polycyclic aromatic hydrocarbons and furans in an oxidation flow reactor
Analysis of insoluble particles in hailstones in China
Influence of acidity on liquid–liquid phase transitions of mixed secondary organic aerosol (SOA) proxy–inorganic aerosol droplets
Deposition freezing, pore condensation freezing and adsorption: three processes, one description?
Measurements and calculations of enhanced side- and back-scattering of visible radiation by black carbon aggregates
Direct observation for relative-humidity-dependent mixing states of submicron particles containing organic surfactants and inorganic salts
Complex refractive index and single scattering albedo of Icelandic dust in the shortwave part of the spectrum
Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors
Saturation vapor pressure characterization of selected low-volatility organic compounds using a residence time chamber
Influence of the previous North Atlantic Oscillation (NAO) on the spring dust aerosols over North China
HUB: a method to model and extract the distribution of ice nucleation temperatures from drop-freezing experiments
Size-dependent hygroscopicity of levoglucosan and D-glucose aerosol nanoparticles
Technical note: Sublimation of frozen CsCl solutions in an environmental scanning electron microscope (ESEM) – determining the number and size of salt particles relevant to sea salt aerosols
Microphysics of liquid water in sub-10 nm ultrafine aerosol particles
Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite
Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions
Reconsideration of surface tension and phase state effects on cloud condensation nuclei activity based on the atomic force microscopy measurement
Hygroscopicity and CCN potential of DMS-derived aerosol particles
Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
Experimental development of a lake spray source function and its model implementation for Great Lakes surface emissions
The effectiveness of the coagulation sink of 3–10 nm atmospheric particles
What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia?
Measurement report: An exploratory study of fluorescence and cloud condensation nuclei activity of urban aerosols in San Juan, Puerto Rico
Viscosity and physical state of sucrose mixed with ammonium sulfate droplets
Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols
Time dependence of heterogeneous ice nucleation by ambient aerosols: laboratory observations and a formulation for models
Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles
Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification
Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC
On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors
Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight, and oxidation level
Particle emissions from a modern heavy-duty diesel engine as ice nuclei in immersion freezing mode: a laboratory study on fossil and renewable fuels
Comparison of saturation vapor pressures of α-pinene + O3 oxidation products derived from COSMO-RS computations and thermal desorption experiments
Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification
Technical note: Pyrolysis principles explain time-resolved organic aerosol release from biomass burning
The effect of (NH4)2SO4 on the freezing properties of non-mineral dust ice-nucleating substances of atmospheric relevance
Heterogeneous ice nucleation ability of aerosol particles generated from Arctic sea surface microlayer and surface seawater samples at cirrus temperatures
Aerosol formation and growth rates from chamber experiments using Kalman smoothing
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
Atmos. Chem. Phys., 24, 13341–13359, https://doi.org/10.5194/acp-24-13341-2024, https://doi.org/10.5194/acp-24-13341-2024, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remained below 1 h for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Azad Madhu, Myoseon Jang, and Yujin Jo
Atmos. Chem. Phys., 24, 5585–5602, https://doi.org/10.5194/acp-24-5585-2024, https://doi.org/10.5194/acp-24-5585-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) formation from branched alkanes (BAs) was simulated using the UNIPAR model, which predicted SOA growth via multiphase reactions of hydrocarbons, and compared with chamber data. Product distributions (PDs) of BAs were created by extrapolating PDs of linear alkanes (LAs). To account for methyl branching, an autoxidation reduction factor was applied to PDs. BAs in diesel fuel were shown to produce a higher proportion of SOA compared with LAs.
Xiangyu Pei, Yikan Meng, Yueling Chen, Huichao Liu, Yao Song, Zhengning Xu, Fei Zhang, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 24, 5235–5246, https://doi.org/10.5194/acp-24-5235-2024, https://doi.org/10.5194/acp-24-5235-2024, 2024
Short summary
Short summary
An aerosol optical tweezer (AOT) Raman spectroscopy system is developed to capture a single aerosol droplet for phase transition monitoring and morphology studies. Rapid droplet capture is achieved and accurate droplet size and refractive index are retrieved. Results indicate that mixed inorganic/organic droplets are more inclined to form core–shell morphology when RH decreases. The phase transitions of secondary mixed organic aerosol/inorganic droplets vary with their precursors.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, and Olli Sippula
Atmos. Chem. Phys., 24, 3197–3215, https://doi.org/10.5194/acp-24-3197-2024, https://doi.org/10.5194/acp-24-3197-2024, 2024
Short summary
Short summary
Brown carbon (BrC) emissions were estimated, for residential wood combustion (RWC) from various northern European appliances, utilizing an extensive seven-wavelength aethalometer dataset and thermal–optical carbon analysis. The contribution of BrC370–950 to the absorption of visible light varied between 1 % and 21 %, and was linked with fuel moisture content and combustion efficiency. This study provides important information required for assessing the climate effects of RWC emissions.
Yu-Kai Tong, Zhijun Wu, Min Hu, and Anpei Ye
Atmos. Chem. Phys., 24, 2937–2950, https://doi.org/10.5194/acp-24-2937-2024, https://doi.org/10.5194/acp-24-2937-2024, 2024
Short summary
Short summary
The interplay between aerosols and moisture is one of the most crucial atmospheric processes. However, to date, literature results on the influence of phase separation on water diffusion in aerosols are divergent. This work directly unveiled the water diffusion process in single suspended phase-separated microdroplets and quantitatively analyzed the diffusion rate and extent. The results show that diffusion limitations and certain molecule clusters existed in the phase-separated aerosols.
Eugene F. Mikhailov, Sergey S. Vlasenko, and Alexei A. Kiselev
Atmos. Chem. Phys., 24, 2971–2984, https://doi.org/10.5194/acp-24-2971-2024, https://doi.org/10.5194/acp-24-2971-2024, 2024
Short summary
Short summary
Surface tension and water activity are key thermodynamic parameters determining the impact of atmospheric aerosols on human health and climate. However, these parameters are not well constrained for nanoparticles composed of organic and inorganic compounds. In this study, we determined for the first time the water activity and surface tension of mixed organic/inorganic nanodroplets by applying a differential Köhler analysis (DKA) to hygroscopic growth measurements.
Joel Ponsonby, Leon King, Benjamin J. Murray, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 2045–2058, https://doi.org/10.5194/acp-24-2045-2024, https://doi.org/10.5194/acp-24-2045-2024, 2024
Short summary
Short summary
Aerosol emissions from aircraft engines contribute to the formation of contrails, which have a climate impact as important as that of aviation’s CO2 emissions. For the first time, we experimentally investigate the freezing behaviour of water droplets formed on jet lubrication oil aerosol. We show that they can activate to form water droplets and discuss their potential impact on contrail formation. Our study has implications for contrails produced by future aircraft engine and fuel technologies.
Zhanyu Su, Lanxiadi Chen, Yuan Liu, Peng Zhang, Tianzeng Chen, Biwu Chu, Mingjin Tang, Qingxin Ma, and Hong He
Atmos. Chem. Phys., 24, 993–1003, https://doi.org/10.5194/acp-24-993-2024, https://doi.org/10.5194/acp-24-993-2024, 2024
Short summary
Short summary
In this study, different soot particles were analyzed to better understand their behavior. It was discovered that water-soluble substances in soot facilitate water adsorption at low humidity while increasing the number of water layers at high humidity. Soot from organic fuels exhibits hygroscopicity influenced by organic carbon and microstructure. Additionally, the presence of sulfate ions due to the oxidation of SO2 enhances soot's hygroscopicity.
Ulrike Proske, Michael P. Adams, Grace C. E. Porter, Mark Holden, Jaana Bäck, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2023-2780, https://doi.org/10.5194/egusphere-2023-2780, 2024
Short summary
Short summary
Ice nucleating particles aid freezing of water droplets in clouds and thus modify clouds' properties. During a campaign in the boreal forest in Finland, substantial concentrations of biological ice nucleating particles were observed, despite many of their potential biological sources being snow covered. We sampled lichen in this location and tested its ice nculeation ability in the laboratory. We find that indeed the lichen harbours INPs, which may be important in such snow covered environments.
Eike Maximilian Esders, Sebastian Sittl, Inka Krammel, Wolfgang Babel, Georg Papastavrou, and Christoph Karl Thomas
Atmos. Chem. Phys., 23, 15835–15851, https://doi.org/10.5194/acp-23-15835-2023, https://doi.org/10.5194/acp-23-15835-2023, 2023
Short summary
Short summary
Do microplastics behave differently from mineral particles when they are exposed to wind? We observed plastic and mineral particles in a wind tunnel and measured at what wind speeds the particles start to move. The results indicate that microplastics start to move at smaller wind speeds as they weigh less and are less sticky. Hence, we think that microplastics also move more easily in the environment.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Haifan Zhang, Xiangyu Lin, Qinghong Zhang, Kai Bi, Chan-Pang Ng, Yangze Ren, Huiwen Xue, Li Chen, and Zhuolin Chang
Atmos. Chem. Phys., 23, 13957–13971, https://doi.org/10.5194/acp-23-13957-2023, https://doi.org/10.5194/acp-23-13957-2023, 2023
Short summary
Short summary
This work is the first study to simultaneously analyze the number concentrations and species of insoluble particles in hailstones. The size distribution of insoluble particles for each species vary greatly in different hailstorms but little in shells. Two classic size distribution modes of organics and dust were fitted for the description of insoluble particles in deep convection. Combining this study with future experiments will lead to refinement of weather and climate models.
Yueling Chen, Xiangyu Pei, Huichao Liu, Yikan Meng, Zhengning Xu, Fei Zhang, Chun Xiong, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 23, 10255–10265, https://doi.org/10.5194/acp-23-10255-2023, https://doi.org/10.5194/acp-23-10255-2023, 2023
Short summary
Short summary
The impact of acidity on the phase transition behavior of levitated aerosol particles was examined. Our results revealed that lower acidity decreases the separation relative humidity of aerosol droplets mixed with ammonium sulfate and secondary organic aerosol proxy. Our research suggests that in real atmospheric conditions, with the high acidity found in many ambient aerosol particles, droplets encounter heightened impediments to phase separation and tend to display a homogeneous structure.
Mária Lbadaoui-Darvas, Ari Laaksonen, and Athanasios Nenes
Atmos. Chem. Phys., 23, 10057–10074, https://doi.org/10.5194/acp-23-10057-2023, https://doi.org/10.5194/acp-23-10057-2023, 2023
Short summary
Short summary
Heterogeneous ice nucleation is the main ice formation mechanism in clouds. The mechanism of different freezing modes is to date unknown, which results in large model biases. Experiments do not allow for direct observation of ice nucleation at its native resolution. This work uses first principles molecular simulations to determine the mechanism of the least-understood ice nucleation mode and link it to adsorption through a novel modeling framework that unites ice and droplet formation.
Carynelisa Haspel, Cuiqi Zhang, Martin J. Wolf, Daniel J. Cziczo, and Maor Sela
Atmos. Chem. Phys., 23, 10091–10115, https://doi.org/10.5194/acp-23-10091-2023, https://doi.org/10.5194/acp-23-10091-2023, 2023
Short summary
Short summary
Small particles, commonly termed aerosols, can be found throughout the atmosphere and come from both natural and anthropogenic sources. One important type of aerosol is black carbon (BC). In this study, we conducted laboratory measurements of light scattering by particles meant to mimic atmospheric BC and compared them to calculations of scattering. We find that it is likely that calculations underpredict the scattering by BC particles of certain polarizations of light in certain directions.
Chun Xiong, Binyu Kuang, Fei Zhang, Xiangyu Pei, Zhengning Xu, and Zhibin Wang
Atmos. Chem. Phys., 23, 8979–8991, https://doi.org/10.5194/acp-23-8979-2023, https://doi.org/10.5194/acp-23-8979-2023, 2023
Short summary
Short summary
In hydration, an apparent water diffusion hindrance by an organic surfactant shell was confirmed, raising the inorganic deliquescence relative humidity (RH) to a nearly saturated condition. In dehydration, phase separations were observed for inorganic surfactant systems, showing a strong dependence on the organic molecular
oxygen-to-carbon ratio. Our results could improve fundamental knowledge about aerosol mixing states and decrease uncertainty in model estimations of global radiative effects.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Emelie L. Graham, Cheng Wu, David M. Bell, Amelie Bertrand, Sophie L. Haslett, Urs Baltensperger, Imad El Haddad, Radovan Krejci, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 23, 7347–7362, https://doi.org/10.5194/acp-23-7347-2023, https://doi.org/10.5194/acp-23-7347-2023, 2023
Short summary
Short summary
The volatility of an aerosol particle is an important parameter for describing its atmospheric lifetime. We studied the volatility of secondary organic aerosols from nitrate-initiated oxidation of three biogenic precursors with experimental methods and model simulations. We saw higher volatility than for the corresponding ozone system, and our simulations produced variable results with different parameterizations which warrant a re-evaluation of the treatment of the nitrate functional group.
Zijun Li, Noora Hyttinen, Miika Vainikka, Olli-Pekka Tikkasalo, Siegfried Schobesberger, and Taina Yli-Juuti
Atmos. Chem. Phys., 23, 6863–6877, https://doi.org/10.5194/acp-23-6863-2023, https://doi.org/10.5194/acp-23-6863-2023, 2023
Short summary
Short summary
The saturation vapor pressure (psat) of low-volatility organic compounds (LVOCs) governs their partitioning between the gas and particle phases. To estimate the psat of selected LVOCs, we performed particle evaporation measurements in a residence time chamber at a temperature setting relevant to atmospheric aerosol formation and conducted state-of-the-art computational calculations. We found good agreement between the experimentally measured and model-estimated psat values for most LVOCs.
Yan Li, Falei Xu, Juan Feng, Mengying Du, Wenjun Song, Chao Li, and Wenjing Zhao
Atmos. Chem. Phys., 23, 6021–6042, https://doi.org/10.5194/acp-23-6021-2023, https://doi.org/10.5194/acp-23-6021-2023, 2023
Short summary
Short summary
There is a significantly negative relationship between boreal winter North Atlantic Oscillation (NAO) and dust aerosols (DAs) in the eastern part of China (30–40°N, 105–120°E), which is not a DA source area but is severely affected by the dust events (DEs). Under the effect of the NAO negative phase, main atmospheric circulation during the DEs is characterized by variation of the transient eddy flux. The work is of reference value to the prediction of DEs and the understanding of their causes.
Ingrid de Almeida Ribeiro, Konrad Meister, and Valeria Molinero
Atmos. Chem. Phys., 23, 5623–5639, https://doi.org/10.5194/acp-23-5623-2023, https://doi.org/10.5194/acp-23-5623-2023, 2023
Short summary
Short summary
Ice formation is a key atmospheric process facilitated by a wide range of aerosols. We present a method to model and interpret ice nucleation experiments and extract the distribution of the potency of nucleation sites. We use the method to optimize the conditions of laboratory sampling and extract distributions of ice nucleation temperatures from bacteria, fungi, and pollen. These reveal unforeseen subpopulations of nuclei in these systems and how they respond to changes in their environment.
Ting Lei, Hang Su, Nan Ma, Ulrich Pöschl, Alfred Wiedensohler, and Yafang Cheng
Atmos. Chem. Phys., 23, 4763–4774, https://doi.org/10.5194/acp-23-4763-2023, https://doi.org/10.5194/acp-23-4763-2023, 2023
Short summary
Short summary
We investigate the hygroscopic behavior of levoglucosan and D-glucose nanoparticles using a nano-HTDMA. There is a weak size dependence of the hygroscopic growth factor of levoglucosan and D-glucose with diameters down to 20 nm, while a strong size dependence of the hygroscopic growth factor of D-glucose has been clearly observed in the size range 6 to 20 nm. The use of the DKA method leads to good agreement with the hygroscopic growth factor of glucose nanoparticles with diameters down to 6 nm.
Lubica Vetráková, Vilém Neděla, Kamila Závacká, Xin Yang, and Dominik Heger
Atmos. Chem. Phys., 23, 4463–4488, https://doi.org/10.5194/acp-23-4463-2023, https://doi.org/10.5194/acp-23-4463-2023, 2023
Short summary
Short summary
Salt aerosols are important to polar atmospheric chemistry and global climate. Therefore, we utilized a unique electron microscope to identify the most suitable conditions for formation of the small salt (CsCl) particles, proxies of the aerosols, from sublimating salty snow. Very low sublimation temperature and low salt concentration are needed for formation of such particles. These observations may help us to better understand polar spring ozone depletion and bromine explosion events.
Xiaohan Li and Ian C. Bourg
Atmos. Chem. Phys., 23, 2525–2556, https://doi.org/10.5194/acp-23-2525-2023, https://doi.org/10.5194/acp-23-2525-2023, 2023
Short summary
Short summary
Aerosol particles with sizes smaller than 50 nm impact cloud formation and precipitation. Representation of this effect is hindered by limited understanding of the properties of liquid water in these particles. Our simulations of aerosol particles containing salt or organic compounds reveal that water enters a less cohesive phase at droplet sizes below 4 nm. This effect causes important deviations from theoretical predictions of aerosol properties, including phase state and hygroscopic growth.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Fabian Mahrt, Carolin Rösch, Kunfeng Gao, Christopher H. Dreimol, Maria A. Zawadowicz, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 1285–1308, https://doi.org/10.5194/acp-23-1285-2023, https://doi.org/10.5194/acp-23-1285-2023, 2023
Short summary
Short summary
Major aerosol types emitted by biomass burning include soot, ash, and charcoal particles. Here, we investigated the ice nucleation activity of 400 nm size-selected particles of two different pyrolyis-derived charcoal types in the mixed phase and cirrus cloud regime. We find that ice nucleation is constrained to cirrus cloud conditions, takes place via pore condensation and freezing, and is largely governed by the particle porosity and mineral content.
Chun Xiong, Xueyan Chen, Xiaolei Ding, Binyu Kuang, Xiangyu Pei, Zhengning Xu, Shikuan Yang, Huan Hu, and Zhibin Wang
Atmos. Chem. Phys., 22, 16123–16135, https://doi.org/10.5194/acp-22-16123-2022, https://doi.org/10.5194/acp-22-16123-2022, 2022
Short summary
Short summary
Water surface tension is applied widely in current aerosol–cloud models but could be inappropriate in the presence of atmospheric surfactants. With cloud condensation nuclei (CCN) activity and atomic force microscopy (AFM) measurement results of mixed inorganic salt and dicarboxylic acid particles, we concluded that surface tension reduction and phase state should be carefully considered in aerosol–cloud interactions. Our results could help to decease uncertainties in climate models.
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Charbel Harb and Hosein Foroutan
Atmos. Chem. Phys., 22, 11759–11779, https://doi.org/10.5194/acp-22-11759-2022, https://doi.org/10.5194/acp-22-11759-2022, 2022
Short summary
Short summary
A model representation of lake spray aerosol (LSA) ejection from freshwater breaking waves is crucial for understanding their climatic and public health impacts. We develop an LSA emission parameterization and implement it in an atmospheric model to investigate Great Lakes surface emissions. We find that the same breaking wave is likely to produce fewer aerosols in freshwater than in saltwater and that Great Lakes emissions influence the regional aerosol burden and can reach the cloud layer.
Runlong Cai, Ella Häkkinen, Chao Yan, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 11529–11541, https://doi.org/10.5194/acp-22-11529-2022, https://doi.org/10.5194/acp-22-11529-2022, 2022
Short summary
Short summary
The influences of new particle formation on the climate and air quality are governed by particle survival, which has been under debate due to uncertainties in the coagulation sink. Here we measure the coagulation coefficient of sub-10 nm particles and demonstrate that collisions between the freshly nucleated and background particles can effectively lead to coagulation. We further show that the effective coagulation sink is consistent with the new particle formation measured in urban Beijing.
Lamei Shi, Jiahua Zhang, Da Zhang, Jingwen Wang, Xianglei Meng, Yuqin Liu, and Fengmei Yao
Atmos. Chem. Phys., 22, 11255–11274, https://doi.org/10.5194/acp-22-11255-2022, https://doi.org/10.5194/acp-22-11255-2022, 2022
Short summary
Short summary
Dust impacts climate and human life. Analyzing the interdecadal change in dust activity and its influence factors is crucial for disaster mitigation. Based on a linear regression method, this study revealed the interdecadal variability of relationships between ENSO and dust over northwestern South Asia from 1982 to 2014 and analyzed the effects of atmospheric factors on this interdecadal variability. The result sheds new light on numerical simulation involving the interdecadal variation of dust.
Bighnaraj Sarangi, Darrel Baumgardner, Benjamin Bolaños-Rosero, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 22, 9647–9661, https://doi.org/10.5194/acp-22-9647-2022, https://doi.org/10.5194/acp-22-9647-2022, 2022
Short summary
Short summary
Here, the fluorescent characteristics and cloud-forming efficiency of aerosols at an urban site in Puerto Rico are discussed. The results from this pilot study highlight the capabilities of ultraviolet-induced fluorescence (UV-IF) measurements for characterizing the properties of fluorescing aerosol particles, as they relate to the daily evolution of primary biological aerosol particles. This work has established a database of measurements on which future, longer-term studies will be initiated.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Kunfeng Gao, Chong-Wen Zhou, Eszter J. Barthazy Meier, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, https://doi.org/10.5194/acp-22-5331-2022, 2022
Short summary
Short summary
Incomplete combustion of fossil fuel produces carbonaceous particles called soot. These particles can affect cloud formation by acting as centres for droplet or ice formation. The atmospheric residence time of soot particles is of the order of days to weeks, which can result in them becoming coated by various trace species in the atmosphere such as acids. In this study, we quantify the cirrus cloud-forming ability of soot particles coated with the atmospherically ubiquitous sulfuric acid.
Kunfeng Gao, Franz Friebel, Chong-Wen Zhou, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 4985–5016, https://doi.org/10.5194/acp-22-4985-2022, https://doi.org/10.5194/acp-22-4985-2022, 2022
Short summary
Short summary
Soot particles impact cloud formation and radiative properties in the upper atmosphere where aircraft emit carbonaceous particles. We use cloud chambers to mimic the upper atmosphere temperature and humidity to test the influence of the morphology of the soot particles on ice cloud formation. For particles larger than 200 nm, the compacted (densified) samples have a higher affinity for ice crystal formation in the cirrus regime than the fluffy (un-compacted) soot particles of the same sample.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Shuang Han, Juan Hong, Qingwei Luo, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Long Peng, Yao He, Jingnan Shi, Nan Ma, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3985–4004, https://doi.org/10.5194/acp-22-3985-2022, https://doi.org/10.5194/acp-22-3985-2022, 2022
Short summary
Short summary
We present the hygroscopicity of 23 organic species with different physicochemical properties using a hygroscopicity tandem differential mobility analyzer (HTDMA) and compare the results with previous studies. Based on the hygroscopicity parameter κ, the influence of different physicochemical properties that potentially drive hygroscopicity, such as the functionality, water solubility, molar volume, and O : C ratio of organics, are examined separately.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 1195–1208, https://doi.org/10.5194/acp-22-1195-2022, https://doi.org/10.5194/acp-22-1195-2022, 2022
Short summary
Short summary
Accurate saturation vapor pressure estimates of atmospherically relevant organic compounds are critical for modeling secondary organic aerosol (SOA) formation. We investigated vapor pressures of highly oxygenated SOA constituents using state-of-the-art computational and experimental methods. We found a good agreement between low and extremely low vapor pressures estimated using the two methods, and the smallest molecules detected in our experiment were likely products of thermal decomposition.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Soleil E. Worthy, Anand Kumar, Yu Xi, Jingwei Yun, Jessie Chen, Cuishan Xu, Victoria E. Irish, Pierre Amato, and Allan K. Bertram
Atmos. Chem. Phys., 21, 14631–14648, https://doi.org/10.5194/acp-21-14631-2021, https://doi.org/10.5194/acp-21-14631-2021, 2021
Short summary
Short summary
We studied the effect of (NH4)2SO4 on the immersion freezing of non-mineral dust ice-nucleating substances (INSs) and mineral dusts. (NH4)2SO4 had no effect on the median freezing temperature of 9 of the 10 tested non-mineral dust INSs, slightly decreased that of the other, and increased that of all the mineral dusts. The difference in the response of mineral dust and non-mineral dust INSs to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms.
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
Short summary
Sea spray aerosol particles are a mixture of inorganic salts and organic matter from phytoplankton organisms. At low temperatures in the upper troposphere, both inorganic and organic constituents can induce the formation of ice crystals and thereby impact cloud properties and climate. In this study, we performed experiments in a cloud simulation chamber with particles produced from Arctic seawater samples to quantify the relative contribution of inorganic and organic species in ice formation.
Matthew Ozon, Dominik Stolzenburg, Lubna Dada, Aku Seppänen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 21, 12595–12611, https://doi.org/10.5194/acp-21-12595-2021, https://doi.org/10.5194/acp-21-12595-2021, 2021
Short summary
Short summary
Measuring the rate at which aerosol particles are formed is of importance for understanding climate change. We present an analysis method based on Kalman smoothing, which retrieves new particle formation and growth rates from size-distribution measurements. We apply it to atmospheric simulation chamber experiments and show that it agrees well with traditional methods. In addition, it provides reliable uncertainty estimates, and we suggest instrument design optimisation for signal processing.
Cited articles
Andreae, M. O. and Gelencser, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Bauer, S. E., Bausch, A., Nazarenko, L., Tsigaridis, K., Xu, B., Edwards, R., Bisiaux, M., and McConnell, J.: Historical and future black carbon deposition on the three ice caps: ice core measurements and model simulations from 1850 to 2100, J. Geophys. Res.-Atmos., 118, 7948–7961, 2013.
Blais, J. M. and Kalff, J.: The influence of lake morphometry on sediment focusing, Limnol. Oceanogr., 40, 582–588, 1995.
Bogdal, C., Bucheli, T. D., Agarwal, T., Anselmetti, F. S., Blum, F., Hungerbühler, K., Kohler, M., Schmid, P., Scheringer, M., and Sobek, A.: Contrasting temporal trends and relationships of total organic carbon, black carbon, and polycyclic aromatic hydrocarbons in rural low-altitude and remote high-altitude lakes, J. Environ. Monitor., 13, 1316–1326, 2011.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., and Scheel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314, 2012.
Bollasina, M., Nigam, S., and Lau, K. M.: Absorbing aerosols and summer monsoon evolution over South Asia: an observational portrayal, J. Clim., 21, 3221–3239, https://doi.org/10.1175/2007jcli2094.1, 2008.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: an investigative review, Aerosol Sci. Tech., 40, 27–67, 2006.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kaercher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S., Praveen, P., Russell, L. M., Beres, N. D., Ramanathan, V., and Gustafsson, Ö.: Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean, J. Geophys. Res.-Atmos., 119, 11743–711759, 2014.
Bucheli, T. D., Blum, F., Desaules, A., and Gustafsson, Ö.: Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland, Chemosphere, 56, 1061–1076, 2004.
Cao, J. J., Lee, S. C., Zhang, X. Y., Chow, J. C., An, Z. S., Ho, K. F., Watson, J. G., Fung, K., Wang, Y. Q., and Shen, Z. X.: Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance, J. Geophys. Res.-Atmos., 110, D03203, https://doi.org/10.1029/2004jd005244, 2005.
Cao, J.-J., Xu, B.-Q., He, J.-Q., Liu, X.-Q., Han, Y.-M., Wang, G.-H., and Zhu, C.-S.: Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China, Atmos. Environ., 43, 4444–4452, https://doi.org/10.1016/j.atmosenv.2009.06.023, 2009.
Cao, J., Tie, X., Xu, B., Zhao, Z., Zhu, C., Li, G., and Liu, S.: Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau, J. Atmos. Chem., 67, 45–60, https://doi.org/10.1007/s10874-011-9202-5, 2010.
Carrico, C. M., Bergin, M. H., Shrestha, A. B., Dibb, J. E., Gomes, L., and Harris, J. M.: The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya, Atmos. Environ., 37, 2811–2824, https://doi.org/10.1016/S1352-2310(03)00197-3, 2003.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J. P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Chen, B., Andersson, A., Lee, M., Kirillova, E. N., Xiao, Q., Krusa, M., Shi, M., Hu, K., Lu, Z., Streets, D. G., Du, K., and Gustafsson, O.: Source forensics of black carbon aerosols from China, Environ. Sci. Technol., 47, 9102–9108, https://doi.org/10.1021/es401599r, 2013.
Chen, P., Kang, S., Bai, J., Sillanpää, M., and Li, C.: Yak dung combustion aerosols in the Tibetan Plateau: chemical characteristics and influence on the local atmospheric environment, Atmos. Res., 156, 58–66, https://doi.org/10.1016/j.atmosres.2015.01.001, 2015.
Chow, J. C. and Watson, J. G.: PM2. 5 carbonate concentrations at regionally representative interagency monitoring of protected visual environment sites, J. Geophys. Res.-Atmos., 107, 8344, https://doi.org/10.1029/2001jd000574, 2002.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., and Purcell, R. G.: The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in US Air quality studies, Atmos. Environ. A.-Gen., 27, 1185–1201, https://doi.org/10.1016/0960-1686(93)90245-t, 1993.
Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., and Merrifield, T.: Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Sci. Tech., 34, 23–34, https://doi.org/10.1080/027868201300081923, 2001.
Clarke, A. D., Shinozuka, Y., Kapustin, V. N., Howell, S., Huebert, B., Doherty, S., Anderson, T., Covert, D., Anderson, J., Hua, X., Moore, K. G., McNaughton, C., Carmichael, G., and Weber, R.: Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical properties, J. Geophys. Res.-Atmos., 109, D15S09, https://doi.org/10.1029/2003jd004378, 2004.
Cohen, A. S.: Paleolimnology: The History and Evolution of Lake Systems, Oxford University Press, 2003.
Cong, Z., Kang, S., Gao, S., Zhang, Y., Li, Q., and Kawamura, K.: Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150 year lake sediment record, Environ. Sci. Technol., 47, 2579–2586, 2013.
Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao, S., and Fu, P.: Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources, Atmos. Chem. Phys., 15, 1573–1584, https://doi.org/10.5194/acp-15-1573-2015, 2015.
Cornelissen, G., Gustafsson, Ö., Bucheli, T. D., Jonker, M. T., Koelmans, A. A., and van Noort, P. C.: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environ. Sci. Technol., 39, 6881–6895, 2005.
Decesari, S., Facchini, M. C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., Fuzzi, S., Marinoni, A., Cristofanelli, P., and Duchi, R.: Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a. s. l. ), Atmos. Chem. Phys., 10, 4583–4596, https://doi.org/10.5194/acp-10-4583-2010, 2010.
Doberschütz, S., Frenzel, P., Haberzettl, T., Kasper, T., Wang, J., Zhu, L., Daut, G., Schwalb, A., and Mäusbacher, R.: Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China), J. Paleolimnol., 51, 253–266, https://doi.org/10.1007/s10933-013-9702-1, 2014.
Fang, Y., Chen, Y., Tian, C., Lin, T., Hu, L., Huang, G., Tang, J., Li, J., and Zhang, G.: Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions, Global Biogeochem. Cy., 29, 957–972, https://doi.org/10.1002/2014gb004985, 2015.
Gustafsson, Ö. and Gschwend, P. M.: The flux of black carbon to surface sediments on the New England continental shelf, Geochim. Cosmochim. Ac., 62, 465–472, 1998.
Hammes, K., Schmidt, M. W. I., Smernik, R. J., Currie, L. A., Ball, W. P., Nguyen, T. H., Louchouarn, P., Houel, S., Gustafsson, O., Elmquist, M., Cornelissen, G., Skjemstad, J. O., Masiello, C. A., Song, J., Peng, P. a., Mitra, S., Dunn, J. C., Hatcher, P. G., Hockaday, W. C., Smith, D. M., Hartkopf-Froeder, C., Boehmer, A., Lueer, B., Huebert, B. J., Amelung, W., Brodowski, S., Huang, L., Zhang, W., Gschwend, P. M., Flores-Cervantes, D. X., largeau, C., Rouzaud, J.-N., Rumpel, C., Guggenberger, G., Kaiser, K., Rodionov, A., Gonzalez-Vila, F. J., Gonzalez-Perez, J. A., de la Rosa, J. M., Manning, D. A. C., Lopez-Capel, E., and Ding, L.: Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere, Global Biogeochem. Cy., 21, GB3016, https://doi.org/10.1029/2006gb002914, 2007.
Han, Y. M., Cao, J. J., Yan, B. Z., Kenna, T. C., Jin, Z. D., Cheng, Y., Chow, J. C., and An, Z. S.: Comparison of elemental carbon in lake sediments measured by three different methods and 150 year pollution history in eastern China, Environ. Sci. Technol., 45, 5287–5293, 2011.
Han, Y., Wei, C., Bandowe, B., Wilcke, W., Cao, J., Xu, B., Gao, S., Tie, X., Li, G., and Jin, Z.: Elemental carbon and polycyclic aromatic compounds in a 150 year sediment core from Lake Qinghai, Tibetan Plateau, China: influence of regional and local sources and transport pathways, Environ. Sci. Technol., 49, 4176–4183, 2015.
Han, Y. M., Wei, C., Huang, R. J., Bandowe, B. A. M., Ho, S. S. H., Cao, J. J., Jin, Z. D., Xu, B. Q., Gao, S. P., Tie, X. X., An, Z. S., and Wilcke, W.: Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years, Sci. Rep.-UK, 6, 19151, https://doi.org/10.1038/srep19151, 2016.
Ho, K. F., Zhang, R. J., Lee, S. C., Ho, S. S. H., Liu, S. X., Fung, K., Cao, J. J., Shen, Z. X., and Xu, H. M.: Characteristics of carbonate carbon in PM2. 5 in a typical semi-arid area of Northeastern China, Atmos. Environ., 45, 1268–1274, https://doi.org/10.1016/j.atmosenv.2010.12.007, 2011.
Jankowski, N., Schmidl, C., Marr, I. L., Bauer, H., and Puxbaum, H.: Comparison of methods for the quantification of carbonate carbon in atmospheric PM10 aerosol samples, Atmos. Environ., 42, 8055–8064, https://doi.org/10.1016/j.atmosenv.2008.06.012, 2008.
Ji, Z., Kang, S., Cong, Z., Zhang, Q., and Yao, T.: Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects, Clim. Dynam., 45, 2831–2846, https://doi.org/10.1007/s00382-015-2509-1, 2015.
Jurado, E., Dachs, J., Duarte, C. M., and Simo, R.: Atmospheric deposition of organic and black carbon to the global oceans, Atmos. Environ., 42, 7931–7939, 2008.
Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., and Yao, T.: Review of climate and cryospheric change in the Tibetan Plateau, Environ. Res. Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101, 2010.
Karanasiou, A., Diapouli, E., Cavalli, F., Eleftheriadis, K., Viana, M., Alastuey, A., Querol, X., and Reche, C.: On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols, Atmos. Meas. Tech., 4, 2409–2419, https://doi.org/10.5194/amt-4-2409-2011, 2011.
Karanasiou, A., Minguillón, M. C., Viana, M., Alastuey, A., Putaud, J. P., Maenhaut, W., Panteliadis, P., Močnik, G., Favez, O., and Kuhlbusch, T. A. J.: Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review, Atmos. Meas. Tech. Discuss., 8, 9649–9712, https://doi.org/10.5194/amtd-8-9649-2015, 2015.
Kaspari, S. D., Schwikowski, M., Gysel, M., Flanner, M. G., Kang, S., Hou, S., and Mayewski, P. A.: Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD, Geophys. Res. Lett., 38, L04703, https://doi.org/10.1029/2010gl046096, 2011.
Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen, T., Kirkevag, A., Klimont, Z., Kondo, Y., Krol, M., Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, O., Stier, P., Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A., and Zhao, Y.: Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001–9026, https://doi.org/10.5194/acp-9-9001-2009, 2009.
Lau, W. K. M., Kim, M.-K., Kim, K.-M., and Lee, W.-S.: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols, Environ. Res. Lett., 5, 025204, https://doi.org/10.1088/1748-9326/5/2/025204, 2010.
Li, C., Kang, S., Wang, X., Ajmone-Marsan, F., and Zhang, Q.: Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau, Environ. Geol., 53, 1433–1440, https://doi.org/10.1007/s00254-007-0752-4, 2008.
Li, C., Kang, S., Zhang, Q., and Wang, F.: Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau, Quatern. Int., 208, 151–157, 2009.
Li, Q., Kang, S., Zhang, Q., Huang, J., guo, J., Wang, K., and Wang, J.: A 150 year climate change history reconstructed by lake sediment of Nam Co, Tibetan Plateau (in Chinese), Acta Sedimentologica Sinica, 32, 669–676, 2014.
Li, C., Bosch, C., Kang, S., Andersson, A., Chen, P., Zhang, Q., Cong, Z., Chen, B., Qin, D., and Gustafsson, Ö.: Sources of black carbon to the Himalayan–Tibetan Plateau glaciers, Nat. Commun., 7, 12574, https://doi.org/10.1038/ncomms12574, 2016a.
Li, C., Chen, P., Kang, S., Yan, F., Hu, Z., Qu, B., and Sillanpää, M.: Concentrations and light absorption characteristics of carbonaceous aerosol in PM2. 5 and PM10 of Lhasa city, the Tibetan Plateau, Atmos. Environ., 127, 340–346, https://doi.org/10.1016/j.atmosenv.2015.12.059, 2016b.
Li, C., Chen, P., Kang, S., Yan, F., Li, X., Qu, B., and Sillanpää, M.: Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau, Atmos. Environ., 141, 203–208, https://doi.org/10.1016/j.atmosenv.2016.06.064, 2016c.
Li, C., Yan, F., Kang, S., Chen, P., Hu, Z., Gao, S., Qu, B., and Sillanpää, M.: Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China, Atmos. Environ., 143, 79–85, https://doi.org/10.1016/j.atmosenv.2016.08.042, 2016d.
Li, X., Kang, S., He, X., Qu, B., Tripathee, L., Jing, Z., Paudyal, R., Li, Y., Zhang, Y., Yan, F., Li, G., and Li, C.: Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau, Sci. Total Environ., 587, 482–490, https://doi.org/10.1016/j.scitotenv.2017.02.169, 2017.
Lim, S., Faïn, X., Zanatta, M., Cozic, J., Jaffrezo, J. L., Ginot, P., and Laj, P.: Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement, Atmos. Meas. Tech., 7, 3307–3324, https://doi.org/10.5194/amt-7-3307-2014, 2014.
Liu, B., Cong, Z., Wang, Y., Xin, J., Wan, X., Pan, Y., Liu, Z., Wang, Y., Zhang, G., Wang, Z., Wang, Y., and Kang, S.: Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading, Atmos. Chem. Phys., 17, 449–463, https://doi.org/10.5194/acp-17-449-2017, 2017.
Liu, Y.-H., Dong, G.-R., Li, S., and Dong, Y.-X.: Status, causes and combating suggestions of sandy desertification in qinghai-tibet plateau, Chinese Geogr. Sci., 15, 289–296, https://doi.org/10.1007/s11769-005-0015-9, 2005.
Maenhaut, W., Schwarz, J., Cafmeyer, J., and Chi, X.: Aerosol chemical mass closure during the EUROTRAC-2 AEROSOL Intercomparison 2000, Nucl. Instrum. Meth. B, 189, 233–237, https://doi.org/10.1016/S0168-583X(01)01048-5, 2002.
Marinoni, A., Cristofanelli, P., Laj, P., Duchi, R., Calzolari, F., Decesari, S., Sellegri, K., Vuillermoz, E., Verza, G. P., Villani, P., and Bonasoni, P.: Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas), Atmos. Chem. Phys., 10, 8551–8562, https://doi.org/10.5194/acp-10-8551-2010, 2010.
Ming, J., Zhang, D., Kang, S., and Tian, W.: Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest), J. Geophys. Res., 112, D15307, https://doi.org/10.1029/2007JD008618, 2007.
Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and Xu, J.: Black carbon record based on a shallow Himalayan ice core and its climatic implications, Atmos. Chem. Phys., 8, 1343–1352, https://doi.org/10.5194/acp-8-1343-2008, 2008.
Ming, J., Xiao, C., Cachier, H., Qin, D., Qin, X., Li, Z., and Pu, J.: Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos, Atmos. Res., 92, 114–123, 2009.
Ming, J., Xiao, C., Sun, J., Kang, S., and Bonasoni, P.: Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, Central Tibet, J. Environ. Sci., 22, 1748–1756, 2010.
Ming, J., Xiao, C., Du, Z., and Yang, X.: An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance, Adv. Water Resour., 55, 80–87, https://doi.org/10.1016/j.advwatres.2012.05.015, 2013.
Perrone, M. R., Piazzalunga, A., Prato, M., and Carofalo, I.: Composition of fine and coarse particles in a coastal site of the central Mediterranean: carbonaceous species contributions, Atmos. Environ., 45, 7470–7477, 2011.
Pio, C. A., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanchez-Ochoa, A., Kasper-Giebl, A., Gelencser, A., Preunkert, S., and Schock, M.: Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west–east transect across Europe, J. Geophys. Res.-Atmos., 112, D23S02, https://doi.org/10.1029/2006jd008038, 2007.
Qu, B., Ming, J., Kang, S. C., Zhang, G. S., Li, Y. W., Li, C. D., Zhao, S. Y., Ji, Z. M., and Cao, J. J.: The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities, Atmos. Chem. Phys., 14, 11117–11128, https://doi.org/10.5194/acp-14-11117-2014, 2014.
Ram, K., Sarin, M. M., and Tripathi, S. N.: A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources, and temporal variability, J. Geophys. Res., 115, 9–12, 2010.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227, 2008.
Reisinger, P., Wonaschütz, A., Hitzenberger, R., Petzold, A., Bauer, H., Jankowski, N., Puxbaum, H., Chi, X., and Maenhaut, W.: Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime: influence of biomass combustion, Environ. Sci. Technol., 42, 884–889, https://doi.org/10.1021/es0715041, 2008.
Ruppel, M. M., Isaksson, E., Ström, J., Beaudon, E., Svensson, J., Pedersen, C. A., and Korhola, A.: Increase in elemental carbon values between 1970 and 2004 observed in a 300 year ice core from Holtedahlfonna (Svalbard), Atmos. Chem. Phys., 14, 11447–11460, https://doi.org/10.5194/acp-14-11447-2014, 2014.
Sillanpää, M., Frey, A., Hillamo, R., Pennanen, A. S., and Salonen, R. O.: Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe, Atmos. Chem. Phys., 5, 2869–2879, https://doi.org/10.5194/acp-5-2869-2005, 2005.
Tang, Y., Han, G. L., and Xu, Z. F.: Atmospheric black carbon deposit in Beijing and Zhangbei, China, in: Geochemistry of the Earth's Surface Ges-10, edited by: Gaillardet, J., Procedia Earth and Planetary Science, 383–387, 2014.
Viidanoja, J., Sillanpaa, M., Laakia, J., Kerminen, V. M., Hillamo, R., Aarnio, P., and Koskentalo, T.: Organic and black carbon in PM2. 5 and PM10: 1 year of data from an urban site in Helsinki, Finland, Atmos. Environ., 36, 3183–3193, https://doi.org/10.1016/s1352-2310(02)00205-4, 2002.
Wan, D. J., Jin, Z. D., and Wang, Y. X.: Geochemistry of eolian dust and its elemental contribution to Lake Qinghai sediment, Appl. Geochem., 27, 1546–1555, https://doi.org/10.1016/j.apgeochem.2012.03.009, 2012.
Wan, X., Kang, S., Wang, Y., Xin, J., Liu, B., Guo, Y., Wen, T., Zhang, G., and Cong, Z.: Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam Co Station, 4730 m a. s. l. ), Atmos. Res., 153, 155–164, https://doi.org/10.1016/j.atmosres.2014.08.008, 2015.
Wang, S., Wang, J., Zhou, Z., and Shang, K.: Regional characteristics of three kinds of dust storm events in China, Atmos. Environ., 39, 509–520, https://doi.org/10.1016/j.atmosenv.2004.09.033, 2005.
Wang, J., Zhu, L., Wang, Y., Gao, S., and Daut, G.: Spatial variability of recent sedimentation rate and variations in the past 60 years in Nam Co, Tibetan Palteau, China (in Chinese), Quaternary Sci. Rev., 31, 535–543, 2011.
Watson, J. G., Chow, J. C., and Chen, L. W. A.: Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons, Aerosol Air Qual. Res., 5, 65–102, 2005.
Wu, Y., Zhu, L., Ye, Q., and Wang, L.: The response of lake-glacier area change to climate variations in Namco Basin, Central Tibetan Plateau, during the last three decades (in Chinese), Acta Geographica Sinica, 62, 301–311, 2007.
Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., Wu, G., Wang, M., Zhao, H., and Yang, W.: Black soot and the survival of Tibetan glaciers, P. Natl. Acad. Sci. USA, 106, 22114–22118, 2009.
Xu, Y., Ramanathan, V., and Washington, W. M.: Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols, Atmos. Chem. Phys., 16, 1303–1315, https://doi.org/10.5194/acp-16-1303-2016, 2016.
Yan, C., Zheng, M., Sullivan, A. P., Bosch, C., Desyaterik, Y., Andersson, A., Li, X., Guo, X., Zhou, T., Gustafsson, Ö., and Collett Jr, J. L.: Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: biomass burning contributions, Atmos. Environ., 121, 4–12, https://doi.org/10.1016/j.atmosenv.2015.05.005, 2015.
Yang, H.: Lake sediments may not faithfully record decline of atmospheric pollutant deposition, Environ. Sci. Technol., 49, 12607–12608, https://doi.org/10.1021/acs.est.5b04386, 2015.
You, Q., Kang, S., Pepin, N., Fluegel, W.-A., Yan, Y., Behrawan, H., and Huang, J.: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data, Glob. Planet. Change, 71, 124–133, https://doi.org/10.1016/j.gloplacha.2010.01.020, 2010.
Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Gao, Y., O'Reilly, C. M., Shum, C. K., Yang, K., Yi, S., Lei, Y., Wang, W., He, Y., Shang, K., Yang, X., and Zhang, H.: Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades, Geophys. Res. Lett., 44, 252–260, https://doi.org/10.1002/2016gl072033, 2017a.
Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P. L., Singh, B., Huang, J., and Fu, Q.: Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 15, 6205–6223, https://doi.org/10.5194/acp-15-6205-2015, 2015.
Zhang, Y., Kang, S., Cong, Z., Schmale, J., Sprenger, M., Li, C., Yang, W., Gao, T., Sillanpää, M., and Li, X.: Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau, J. Geophys. Res.-Atmos., 122, 6915–6933, 2017b.
Zhao, S., Ming, J., Sun, J., and Xiao, C.: Observation of carbonaceous aerosols during 2006–2009 in Nyainqntanglha Mountains and the implications for glaciers, Environ. Sci. Pollut. R., 20, 5827–5838, https://doi.org/10.1007/s11356-013-1548-6, 2013a.
Zhao, Z., Cao, J., Shen, Z., Xu, B., Zhu, C., Chen, L. W. A., Su, X., Liu, S., Han, Y., Wang, G., and Ho, K.: Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: implications for pollution transport from South Asia, J. Geophys. Res.-Atmos., 118, 11360–11375, https://doi.org/10.1002/jgrd.50599, 2013b.
Zhao, Z. Z., Cao, J. J., Shen, Z. X., Huang, R. J., Hu, T. F., Wang, P., Zhang, T., and Liu, S. X.: Chemical composition of PM2. 5 at a high-altitude regional background site over Northeast of Tibet Plateau, Atmos. Pollut. Res., 6, 815–823, https://doi.org/10.5094/apr.2015.090, 2015.
Zhu, L., Xie, M., and Wu, Y.: Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau, Chinese Sci. Bull., 55, 1294–1303, 2010.
Short summary
In this study, we found, due to contribution of carbonates, previously reported BC concentration in atmosphere of the Himalayas and Tibetan Plateau (HTP) were overestimated by around 39–52 %. Meanwhile, we found BC deposition of lake cores overestimated the atmospheric deposition of BC in the HTP; BC depositions of glacier region reflected actual values of 17.9 ± 5.3 mg m−2 a−1. The above results are critical for studying atmospheric distribution and chemical transport of BC in and around the HTP.
In this study, we found, due to contribution of carbonates, previously reported BC concentration...
Altmetrics
Final-revised paper
Preprint