Articles | Volume 16, issue 12
Atmos. Chem. Phys., 16, 7709–7724, 2016
Atmos. Chem. Phys., 16, 7709–7724, 2016
Research article
24 Jun 2016
Research article | 24 Jun 2016

The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

Kimiko M. Sakamoto et al.

Related authors

Aged boreal biomass-burning aerosol size distributions from BORTAS 2011
K. M. Sakamoto, J. D. Allan, H. Coe, J. W. Taylor, T. J. Duck, and J. R. Pierce
Atmos. Chem. Phys., 15, 1633–1646,,, 2015
A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment
J. E. Franklin, J. R. Drummond, D. Griffin, J. R. Pierce, D. L. Waugh, P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, J. W. Taylor, J. D. Allan, H. Coe, K. A. Walker, L. Chisholm, T. J. Duck, J. T. Hopper, Y. Blanchard, M. D. Gibson, K. R. Curry, K. M. Sakamoto, G. Lesins, L. Dan, J. Kliever, and A. Saha
Atmos. Chem. Phys., 14, 8449–8460,,, 2014
Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261,,, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM2.5 pollution in the North China Plain in early winter
Xiadong An, Wen Chen, Peng Hu, Shangfeng Chen, and Lifang Sheng
Atmos. Chem. Phys., 22, 6507–6521,,, 2022
Short summary
Inverse modeling of the 2021 spring super dust storms in East Asia
Jianbing Jin, Mijie Pang, Arjo Segers, Wei Han, Li Fang, Baojie Li, Haochuan Feng, Hai Xiang Lin, and Hong Liao
Atmos. Chem. Phys., 22, 6393–6410,,, 2022
Short summary
Causal influences of El Niño–Southern Oscillation on global dust activities
Thanh Le and Deg-Hyo Bae
Atmos. Chem. Phys., 22, 5253–5263,,, 2022
Short summary
Formation, radiative forcing, and climatic effects of severe regional haze
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967,,, 2022
Short summary
Advances in air quality research – current and emerging challenges
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703,,, 2022
Short summary

Cited articles

Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res.-Atmos., 107, 4310–4370, 2002.
Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles emitted by a chaparral fire in California, Atmos. Chem. Phys., 12, 1397–1421,, 2012.
Alonso-Blanco, E., Calvo, A. I., Pont, V., Mallet, M., Fraile, R., and Castro, A.: Impact of Biomass Burning on Aerosol Size Distribution, Aerosol Optical Properties and Associated Radiative Forcing, Aerosol Air Qual. Res., 006, 708–724,, 2014.
Ambrose, J. L., Reidmiller, D. R., and Jaffe, D. A.: Causes of High O3 in the Lower Free Troposphere over the Pacific Northwest as Observed at the Mt. Bachelor Observatory, Atmos. Environ., 45, 5302–5315, 2011.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966,, 2001.
Short summary
We determine how various meteorological and fire factors contribute to shaping the aged biomass-burning particle size distribution through coagulation. The mass emissions flux, fire area, and wind speed are dominant factors controlling the aged size distribution. We parameterize the aged size distribution for global/regional aerosol models. We estimate that the aged biomass-burning particle size distribution may be more sensitive to variability in coagulation than SOA formation.
Final-revised paper