Articles | Volume 16, issue 7
https://doi.org/10.5194/acp-16-4675-2016
https://doi.org/10.5194/acp-16-4675-2016
Research article
 | 
14 Apr 2016
Research article |  | 14 Apr 2016

Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements

Fernando Chouza, Oliver Reitebuch, Michael Jähn, Stephan Rahm, and Bernadett Weinzierl

Related authors

The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022,https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
The impact of Los Angeles Basin pollution and stratospheric intrusions on the surrounding San Gabriel Mountains as seen by surface measurements, lidar, and numerical models
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021,https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Evaluation of a method for converting Stratospheric Aerosol and Gas Experiment (SAGE) extinction coefficients to backscatter coefficients for intercomparison with lidar observations
Travis N. Knepp, Larry Thomason, Marilee Roell, Robert Damadeo, Kevin Leavor, Thierry Leblanc, Fernando Chouza, Sergey Khaykin, Sophie Godin-Beekmann, and David Flittner
Atmos. Meas. Tech., 13, 4261–4276, https://doi.org/10.5194/amt-13-4261-2020,https://doi.org/10.5194/amt-13-4261-2020, 2020
Short summary
Long-term (1999–2019) variability of stratospheric aerosol over Mauna Loa, Hawaii, as seen by two co-located lidars and satellite measurements
Fernando Chouza, Thierry Leblanc, John Barnes, Mark Brewer, Patrick Wang, and Darryl Koon
Atmos. Chem. Phys., 20, 6821–6839, https://doi.org/10.5194/acp-20-6821-2020,https://doi.org/10.5194/acp-20-6821-2020, 2020
Upgrade and automation of the JPL Table Mountain Facility tropospheric ozone lidar (TMTOL) for near-ground ozone profiling and satellite validation
Fernando Chouza, Thierry Leblanc, Mark Brewer, and Patrick Wang
Atmos. Meas. Tech., 12, 569–583, https://doi.org/10.5194/amt-12-569-2019,https://doi.org/10.5194/amt-12-569-2019, 2019

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023,https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer
Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli
Atmos. Chem. Phys., 23, 4045–4058, https://doi.org/10.5194/acp-23-4045-2023,https://doi.org/10.5194/acp-23-4045-2023, 2023
Short summary
Triggering effects of large topography and boundary layer turbulence on convection over the Tibetan Plateau
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023,https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023,https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022,https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary

Cited articles

Alexander, M. J. and Grimsdell, A. W.: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation, J. Geophys. Res.-Atmos., 118, 11589–11599, https://doi.org/10.1002/2013JD020526, 2013.
Amirault, C. and DiMarzio C.: Precision pointing using a dual-wedge scanner, Appl. Opt., 24, 1302–1308, 1985.
Baik, J.: Response of a Stably Stratified Atmosphere to Low-Level Heating – An Application to the Heat Island Problem, J. Appl. Meteorol., 31, 291–303, https://doi.org/10.1175/1520-0450(1992)031<0291:ROASSA>2.0.CO;2, 1992.
Baines, J. and Hoinka, K. P.: Stratified Flow over Two-Dimensional Topography in Fluid of Infinite Depth: A Laboratory Simulation, J. Atmos. Sci., 42, 1614–1630, https://doi.org/10.1175/1520-0469(1985)042<1614:SFOTDT>2.0.CO;2, 1985.
Bluman, W. and Hart, J. E.: Airborne Doppler Lidar Wind Field Measurements of Waves in the Lee of Mount Shasta, J. Atmos. Sci., 45, 1571–1583, https://doi.org/10.1175/1520-0469(1988)045< 1571:ADLWFM>2.0.CO;2, 1988.
Download
Short summary
This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL). First, the instrumental corrections required for the retrieval vertical wind measurements from an airborne DWL are presented. Then, the method is applied to two case studies to determine, in combination with numerical models and in situ measurements, the main characteristics of the observed waves.
Altmetrics
Final-revised paper
Preprint