Articles | Volume 16, issue 6
https://doi.org/10.5194/acp-16-4135-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-16-4135-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe
Andreas Weigelt
CORRESPONDING AUTHOR
Helmholtz-Zentrum Geesthacht (HZG), Institute of Coastal Research,
Geesthacht, Germany
now at Federal Maritime and Hydrographic Agency (BSH), Hamburg,
Germany
Ralf Ebinghaus
CORRESPONDING AUTHOR
Helmholtz-Zentrum Geesthacht (HZG), Institute of Coastal Research,
Geesthacht, Germany
Nicola Pirrone
National Research Council (CNR), Institute of
Atmospheric Pollution Research, Rende, Italy
Johannes Bieser
Helmholtz-Zentrum Geesthacht (HZG), Institute of Coastal Research,
Geesthacht, Germany
Deutsches Zentrum
für Luft- und Raumfahrt (DLR), Institute of Atmospheric Physics,
Oberpfaffenhofen, Germany
Jan Bödewadt
Helmholtz-Zentrum Geesthacht (HZG), Institute of Coastal Research,
Geesthacht, Germany
Giulio Esposito
National Research Council (CNR), Institute of
Atmospheric Pollution Research, Rende, Italy
Franz Slemr
Max-Planck-Institute for Chemistry
(MPI-C), Department of Atmospheric Chemistry, Mainz, Germany
Peter F. J. van Velthoven
Royal
Netherlands Meteorological Institute (KNMI), Chemistry and Climate Division,
De Bilt, the Netherlands
Andreas Zahn
Karlsruhe Institute of Technology (KIT),
Institute of Meteorology and Climate Research, Karlsruhe, Germany
Helmut Ziereis
Deutsches Zentrum
für Luft- und Raumfahrt (DLR), Institute of Atmospheric Physics,
Oberpfaffenhofen, Germany
Related authors
Jörg Beecken, Andreas Weigelt, Simone Griesel, Johan Mellqvist, Alexander V. Conde Jacobo, Daniëlle van Dinther, Jan Duyzer, Jon Knudsen, Bettina Knudsen, and Leonidas Ntziachristos
Atmos. Meas. Tech., 16, 5883–5895, https://doi.org/10.5194/amt-16-5883-2023, https://doi.org/10.5194/amt-16-5883-2023, 2023
Short summary
Short summary
Air pollution from shipping is a debated topic in science and politics. We compare different monitoring systems currently used in different European countries for the enforcement of emission limits regarding air pollution from ships according to regulation. The system performances were individually assessed in the field by comparison with true values. Non-compliant vessels with actual fuel sulfur contents > 0.15–0.19 % Sm/m can be detected by the compared systems with 95 % confidence.
Kai Krause, Folkard Wittrock, Andreas Richter, Stefan Schmitt, Denis Pöhler, Andreas Weigelt, and John P. Burrows
Atmos. Meas. Tech., 14, 5791–5807, https://doi.org/10.5194/amt-14-5791-2021, https://doi.org/10.5194/amt-14-5791-2021, 2021
Short summary
Short summary
Ships are an important source of key pollutants. Usually, these are measured aboard the ship or on the coast using in situ instruments. This study shows how active optical remote sensing can be used to measure ship emissions and how to determine emission rates of individual ships out of those measurements. These emission rates are valuable input for the assessment of the influence of shipping emissions in regions close to the shipping lanes.
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Johannes Bieser, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Markus Hermann, Bengt G. Martinsson, Peter van Velthoven, Harald Bönisch, Marco Neumaier, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, https://doi.org/10.5194/acp-18-12329-2018, 2018
Short summary
Short summary
Total and elemental mercury were measured in the upper troposphere and lower stratosphere onboard a passenger aircraft. Their concentrations in the upper troposphere were comparable implying low concentrations of oxidized mercury in this region. Large scale seasonally dependent influence of emissions from biomass burning was also observed. Their distributions in the lower stratosphere implies a long stratospheric lifetime, which precludes significant mercury oxidation by ozone.
Johannes Bieser, Franz Slemr, Jesse Ambrose, Carl Brenninkmeijer, Steve Brooks, Ashu Dastoor, Francesco DeSimone, Ralf Ebinghaus, Christian N. Gencarelli, Beate Geyer, Lynne E. Gratz, Ian M. Hedgecock, Daniel Jaffe, Paul Kelley, Che-Jen Lin, Lyatt Jaegle, Volker Matthias, Andrei Ryjkov, Noelle E. Selin, Shaojie Song, Oleg Travnikov, Andreas Weigelt, Winston Luke, Xinrong Ren, Andreas Zahn, Xin Yang, Yun Zhu, and Nicola Pirrone
Atmos. Chem. Phys., 17, 6925–6955, https://doi.org/10.5194/acp-17-6925-2017, https://doi.org/10.5194/acp-17-6925-2017, 2017
Short summary
Short summary
We conducted a multi model study to investigate our ability to reproduce the vertical distribution of mercury in the atmosphere. For this, we used observational data from over 40 aircraft flights in EU and US. We compared observations to the results of seven chemistry transport models and found that the models are able to reproduce vertical gradients of total and elemental Hg. Finally, we found that different chemical reactions seem responsible for the oxidation of Hg depending on altitude.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Helene Angot, Carlo Barbante, Ernst-Günther Brunke, Flor Arcega-Cabrera, Warren Cairns, Sara Comero, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Xuewu Fu, Patricia Elizabeth Garcia, Bernd Manfred Gawlik, Ulla Hageström, Katarina Hansson, Milena Horvat, Jože Kotnik, Casper Labuschagne, Olivier Magand, Lynwill Martin, Nikolay Mashyanov, Thumeka Mkololo, John Munthe, Vladimir Obolkin, Martha Ramirez Islas, Fabrizio Sena, Vernon Somerset, Pia Spandow, Massimiliano Vardè, Chavon Walters, Ingvar Wängberg, Andreas Weigelt, Xu Yang, and Hui Zhang
Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, https://doi.org/10.5194/acp-17-2689-2017, 2017
Short summary
Short summary
The results on total mercury (THg) wet deposition flux obtained within the GMOS network have been presented and discussed to understand the atmospheric Hg cycling and its seasonal depositional patterns over the 2011–2015 period. The data set provides new insight into baseline concentrations of THg concentrations in precipitation particularly in regions where wet deposition and atmospheric Hg species were not investigated before, opening the way for additional measurements and modeling studies.
Lynwill G. Martin, Casper Labuschagne, Ernst-Günther Brunke, Andreas Weigelt, Ralf Ebinghaus, and Franz Slemr
Atmos. Chem. Phys., 17, 2393–2399, https://doi.org/10.5194/acp-17-2393-2017, https://doi.org/10.5194/acp-17-2393-2017, 2017
Short summary
Short summary
Currently the Cape Point GAW GEM record is a very sought-after data record for international modelers and scientist alike, as the data set of 20 years represents the longest record in the Southern Hemisphere (SH). CPT was the only monitoring site on the African continent and one of eight GMOS ground-based monitoring sites located in the SH. The increasing Hg trend observed at CPT is of global importance as treaties such as the Minamata Convention on Mercury is there to combat Hg pollution.
Andreas Weigelt, Franz Slemr, Ralf Ebinghaus, Nicola Pirrone, Johannes Bieser, Jan Bödewadt, Giulio Esposito, and Peter F. J. van Velthoven
Atmos. Chem. Phys., 16, 13653–13668, https://doi.org/10.5194/acp-16-13653-2016, https://doi.org/10.5194/acp-16-13653-2016, 2016
Short summary
Short summary
Hg ∕ SO2, Hg ∕ CO, and NOx ∕ SO2 emission ratios (ERs) in the plume of the coal-fired power plant (CFPP), Lippendorf, near Leipzig in Germany, were determined in August 2013. GOM fraction of mercury emissions was also assessed. Measured Hg ∕ SO2 and Hg ∕ CO ERs were consistent with the ratios calculated from annual emissions in 2013 reported by the CFPP operator. The NOx ∕ SO2 ER was somewhat lower. GOM fractions of ~ 40 % of CFPP mercury emissions in current emission inventories are overestimated.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Francesco Carbone, Sergio Cinnirella, Valentino Mannarino, Matthew Landis, Ralf Ebinghaus, Andreas Weigelt, Ernst-Günther Brunke, Casper Labuschagne, Lynwill Martin, John Munthe, Ingvar Wängberg, Paulo Artaxo, Fernando Morais, Henrique de Melo Jorge Barbosa, Joel Brito, Warren Cairns, Carlo Barbante, María del Carmen Diéguez, Patricia Elizabeth Garcia, Aurélien Dommergue, Helene Angot, Olivier Magand, Henrik Skov, Milena Horvat, Jože Kotnik, Katie Alana Read, Luis Mendes Neves, Bernd Manfred Gawlik, Fabrizio Sena, Nikolay Mashyanov, Vladimir Obolkin, Dennis Wip, Xin Bin Feng, Hui Zhang, Xuewu Fu, Ramesh Ramachandran, Daniel Cossa, Joël Knoery, Nicolas Marusczak, Michelle Nerentorp, and Claus Norstrom
Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, https://doi.org/10.5194/acp-16-11915-2016, 2016
Short summary
Short summary
This work presents atmospheric Hg concentrations recorded within the GMOS global network analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. The over-arching benefit of this coordinated Hg monitoring network would clearly be the production of high-quality measurement datasets on a global scale useful in developing and validating models on different spatial and temporal scales.
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Hans H. Kock, Jan Bödewadt, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Stefan Weber, Markus Hermann, Julia Becker, Andreas Zahn, and Bengt Martinsson
Atmos. Meas. Tech., 9, 2291–2302, https://doi.org/10.5194/amt-9-2291-2016, https://doi.org/10.5194/amt-9-2291-2016, 2016
Short summary
Short summary
The goal of CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrumented Container) is to carry out regular and detailed observations of atmospheric chemistry at 9–12 km altitude. Mercury has been measured since May 2005 during intercontinental flights between Europe and South and North America, Africa, and Asia. Here we describe the instrument modifications, the post-flight processing of the raw instrument signal, and the fractionation experiments.
Markus Hermann, Andreas Weigelt, Denise Assmann, Sascha Pfeifer, Thomas Müller, Thomas Conrath, Jens Voigtländer, Jost Heintzenberg, Alfred Wiedensohler, Bengt G. Martinsson, Terry Deshler, Carl A. M. Brenninkmeijer, and Andreas Zahn
Atmos. Meas. Tech., 9, 2179–2194, https://doi.org/10.5194/amt-9-2179-2016, https://doi.org/10.5194/amt-9-2179-2016, 2016
Short summary
Short summary
Aerosol particles are an important component of the Earth's atmosphere. Here we describe the composition and characterization of a new optical particle size spectrometer (OPSS) for aircraft-borne measurements of the aerosol particle size distribution (how many particles there are with a certain size) in the 140–1050 nm size range. The OPSS was characterized throughout concerning its measurement capabilities (response, pressure dependence, coincidence) and validated versus balloon measurement.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Preprint under review for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Randall Chiu, Florian Obersteiner, Alessandro Franchin, Teresa Campos, Adriana Bailey, Christopher Webster, Andreas Zahn, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5731–5746, https://doi.org/10.5194/amt-17-5731-2024, https://doi.org/10.5194/amt-17-5731-2024, 2024
Short summary
Short summary
The ozone sink into oceans and marine clouds is seldom studied and highly uncertain. Calculations suggest O3 destruction at aqueous surfaces (ocean, droplets) may be strongly accelerated, but field evidence is missing. Here we compare three fast airborne O3 instruments to measure eddy covariance fluxes of O3 over the remote ocean, in clear and cloudy air. We find O3 fluxes below clouds are consistently directed into clouds, while O3 fluxes into oceans are much smaller and spatially variable.
Patrick Konjari, Christian Rolf, Michaela Imelda Hegglin, Susanne Rohs, Yun Li, Andreas Zahn, Harald Bönisch, Martina Krämer, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2360, https://doi.org/10.5194/egusphere-2024-2360, 2024
Short summary
Short summary
This study introduces a new method to deriving adjusted water vapor (H2O) climatologies for the upper tropopshere and lower statosphere (UT/LS) using data from 60,000 flights under the IAGOS program. Biases in the IAGOS water vapor dataset are adjusted, based on the more accurate IAGOS-CARIBIC data. The resulting highly resolved H2O climatologies will contribute to a better understanding of the H2O variability in the UT/LS and its connection to various transport and mixing processes.
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2208, https://doi.org/10.5194/egusphere-2024-2208, 2024
Short summary
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in-situ data on board passenger aircraft to assess the ability of 5 chemistry-climate models to reproduce (bi-)decadal climatologies in ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce well the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere.
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, and Stephan Borrmann
Atmos. Chem. Phys., 24, 7499–7522, https://doi.org/10.5194/acp-24-7499-2024, https://doi.org/10.5194/acp-24-7499-2024, 2024
Short summary
Short summary
From aircraft measurements in the upper troposphere/lower stratosphere, we find a correlation between the ozone and particulate sulfate in the lower stratosphere. The correlation exhibits some variability over the measurement period exceeding the background sulfate-to-ozone correlation. From our analysis, we conclude that gas-to-particle conversion of volcanic sulfur dioxide leads to observed enhanced sulfate aerosol mixing ratios.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Terry Keating, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-65, https://doi.org/10.5194/gmd-2024-65, 2024
Revised manuscript under review for GMD
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed to inform the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic and multi-media mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases in the environment.
Ian Michael Hedgecock, Francesco De Simone, Francesco Carbone, and Nicola Pirrone
EGUsphere, https://doi.org/10.5194/egusphere-2024-861, https://doi.org/10.5194/egusphere-2024-861, 2024
Short summary
Short summary
Many artisanal gold mining operations around the world use mercury amalgamation to refine the gold. Much of this mercury is released to the atmosphere where it can be taken up by vegetation. In heavily forested locations, such as the Amazon Basin or South East Asia, much of this mercury will be taken up locally and will eventually find its way into the soil and local water courses, where it will have an impact on human and ecosystem health. A model has been developed to evaluate this impact.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Jörg Beecken, Andreas Weigelt, Simone Griesel, Johan Mellqvist, Alexander V. Conde Jacobo, Daniëlle van Dinther, Jan Duyzer, Jon Knudsen, Bettina Knudsen, and Leonidas Ntziachristos
Atmos. Meas. Tech., 16, 5883–5895, https://doi.org/10.5194/amt-16-5883-2023, https://doi.org/10.5194/amt-16-5883-2023, 2023
Short summary
Short summary
Air pollution from shipping is a debated topic in science and politics. We compare different monitoring systems currently used in different European countries for the enforcement of emission limits regarding air pollution from ships according to regulation. The system performances were individually assessed in the field by comparison with true values. Non-compliant vessels with actual fuel sulfur contents > 0.15–0.19 % Sm/m can be detected by the compared systems with 95 % confidence.
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, John Philip Burrows, Birger Bohn, Eric Förster, Florian Obersteiner, Andreas Zahn, Theresa Harlaß, Helmut Ziereis, Hans Schlager, Benjamin Schreiner, Flora Kluge, Katja Bigge, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 7799–7822, https://doi.org/10.5194/acp-23-7799-2023, https://doi.org/10.5194/acp-23-7799-2023, 2023
Short summary
Short summary
The applicability of photostationary steady-state (PSS) assumptions to estimate the amount of the sum of peroxy radicals (RO2*) during the EMeRGe airborne observations from the known radical chemistry and onboard measurements of RO2* precursors, photolysis frequencies, and other trace gases such as NOx and O3 was investigated. The comparison of the calculated RO2* with the actual measurements provides an insight into the main processes controlling their concentration in the air masses measured.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2023-528, https://doi.org/10.5194/egusphere-2023-528, 2023
Short summary
Short summary
Anthropogenic emissions are a major source of precursors for tropospheric ozone formation. As ozone formation is highly non-linear, we apply a global-regional chemistry-climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. We focus on two major polluted areas in Europe, the Po Valley and the Benelux region. Our analysis shows that in particular anthropogenic emissions from Europe contribute largely to ground-level ozone.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Eric Förster, Harald Bönisch, Marco Neumaier, Florian Obersteiner, Andreas Zahn, Andreas Hilboll, Anna B. Kalisz Hedegaard, Nikos Daskalakis, Alexandros Panagiotis Poulidis, Mihalis Vrekoussis, Michael Lichtenstern, and Peter Braesicke
Atmos. Chem. Phys., 23, 1893–1918, https://doi.org/10.5194/acp-23-1893-2023, https://doi.org/10.5194/acp-23-1893-2023, 2023
Short summary
Short summary
The airborne megacity campaign EMeRGe provided an unprecedented amount of trace gas measurements. We combine measured volatile organic compounds (VOCs) with trajectory-modelled emission uptakes to identify potential source regions of pollution. We also characterise the chemical fingerprints (e.g. biomass burning and anthropogenic signatures) of the probed air masses to corroborate the contributing source regions. Our approach is the first large-scale study of VOCs originating from megacities.
Laura Tomsche, Andreas Marsing, Tina Jurkat-Witschas, Johannes Lucke, Stefan Kaufmann, Katharina Kaiser, Johannes Schneider, Monika Scheibe, Hans Schlager, Lenard Röder, Horst Fischer, Florian Obersteiner, Andreas Zahn, Martin Zöger, Jos Lelieveld, and Christiane Voigt
Atmos. Chem. Phys., 22, 15135–15151, https://doi.org/10.5194/acp-22-15135-2022, https://doi.org/10.5194/acp-22-15135-2022, 2022
Short summary
Short summary
The detection of sulfur compounds in the upper troposphere (UT) and lower stratosphere (LS) is a challenge. In-flight measurements of SO2 and sulfate aerosol were performed during the BLUESKY mission in spring 2020 under exceptional atmospheric conditions. Reduced sinks in the dry UTLS and lower but still significant air traffic influenced the enhanced SO2 in the UT, and aged volcanic plumes enhanced the LS sulfate aerosol impacting the atmospheric radiation budget and global climate.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Danilo Custódio, Katrine Aspmo Pfaffhuber, T. Gerard Spain, Fidel F. Pankratov, Iana Strigunova, Koketso Molepo, Henrik Skov, Johannes Bieser, and Ralf Ebinghaus
Atmos. Chem. Phys., 22, 3827–3840, https://doi.org/10.5194/acp-22-3827-2022, https://doi.org/10.5194/acp-22-3827-2022, 2022
Short summary
Short summary
As a poison in the air that we breathe and the food that we eat, mercury is a human health concern for society as a whole. In that regard, this work deals with monitoring and modelling mercury in the environment, improving wherewithal, identifying the strength of the different components at play, and interpreting information to support the efforts that seek to safeguard public health.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Yu-Wen Chen, Yi-Chun Chen, Charles C.-K. Chou, Hui-Ming Hung, Shih-Yu Chang, Lisa Eirenschmalz, Michael Lichtenstern, Helmut Ziereis, Hans Schlager, Greta Stratmann, Katharina Kaiser, Johannes Schneider, Stephan Borrmann, Florian Obersteiner, Eric Förster, Andreas Zahn, Wei-Nai Chen, Po-Hsiung Lin, Shuenn-Chin Chang, Maria Dolores Andrés Hernández, Pao-Kuan Wang, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-788, https://doi.org/10.5194/acp-2021-788, 2021
Preprint withdrawn
Short summary
Short summary
By presenting an approach using EMeRGe-Asia airborne field measurements and surface observations, this study shows that the fraction of OH reactivity due to SO2-OH reaction has a significant correlation with the sulfate concentration. Approximately 30 % of sulfate is produced by SO2-OH reaction. Our results underline the importance of SO2-OH gas-phase oxidation in sulfate formation, and demonstrate that the method can be applied to other regions and under different meteorological conditions.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021, https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
Short summary
Airborne total bromine (Brtot) and tracer measurements suggest Brtot-rich air masses persistently protruded into the lower stratosphere (LS), creating a high Brtot region over the North Atlantic in fall 2017. The main source is via isentropic transport by the Asian monsoon and to a lesser extent transport across the extratropical tropopause as quantified by a Lagrange model. The transport of Brtot via Central American hurricanes is also observed. Lastly, the impact of Brtot on LS O3 is assessed.
Kai Krause, Folkard Wittrock, Andreas Richter, Stefan Schmitt, Denis Pöhler, Andreas Weigelt, and John P. Burrows
Atmos. Meas. Tech., 14, 5791–5807, https://doi.org/10.5194/amt-14-5791-2021, https://doi.org/10.5194/amt-14-5791-2021, 2021
Short summary
Short summary
Ships are an important source of key pollutants. Usually, these are measured aboard the ship or on the coast using in situ instruments. This study shows how active optical remote sensing can be used to measure ship emissions and how to determine emission rates of individual ships out of those measurements. These emission rates are valuable input for the assessment of the influence of shipping emissions in regions close to the shipping lanes.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Romain Blot, Philippe Nedelec, Damien Boulanger, Pawel Wolff, Bastien Sauvage, Jean-Marc Cousin, Gilles Athier, Andreas Zahn, Florian Obersteiner, Dieter Scharffe, Hervé Petetin, Yasmine Bennouna, Hannah Clark, and Valérie Thouret
Atmos. Meas. Tech., 14, 3935–3951, https://doi.org/10.5194/amt-14-3935-2021, https://doi.org/10.5194/amt-14-3935-2021, 2021
Short summary
Short summary
A lack of information about temporal changes in measurement uncertainties is an area of concern for long-term trend studies of the key compounds which have a direct or indirect impact on climate change. The IAGOS program has measured O3 and CO within the troposphere and lower stratosphere for more than 25 years. In this study, we demonstrated that the IAGOS database can be treated as one continuous program and is therefore appropriate for studies of long-term trends.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Bettina Hottmann, Sascha Hafermann, Laura Tomsche, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Marco Neumaier, Andreas Zahn, Birger Bohn, Greta Stratmann, Helmut Ziereis, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 12655–12673, https://doi.org/10.5194/acp-20-12655-2020, https://doi.org/10.5194/acp-20-12655-2020, 2020
Short summary
Short summary
During OMO we observed enhanced mixing ratios of hydroperoxides (ROOH) in the Asian monsoon anticyclone (AMA) relative to the background. The observed mixing ratios are higher than steady-state calculations and EMAC simulations, especially in the AMA, indicating atmospheric transport of ROOH. Uncertainties in the scavenging efficiencies likely cause deviations from EMAC. Longitudinal gradients indicate a pool of ROOH towards the center of the AMA associated with upwind convection over India.
Johannes Bieser, Hélène Angot, Franz Slemr, and Lynwill Martin
Atmos. Chem. Phys., 20, 10427–10439, https://doi.org/10.5194/acp-20-10427-2020, https://doi.org/10.5194/acp-20-10427-2020, 2020
Short summary
Short summary
We use numerical models to determine the origin of air masses measured for elemental gaseous mercury (GEM) at Cape Point (CPT), South Africa. Our analysis is based on 10 years of hourly GEM measurements at CPT from 2007 to 2016. Based on GEM concentration and the origin of the air mass, we identify source and sink regions at CPT. We find, that the warm Agulhas Current to the south-east is the major Hg source and the continent the major sink.
Danilo Custodio, Ralf Ebinghaus, T. Gerard Spain, and Johannes Bieser
Atmos. Chem. Phys., 20, 7929–7939, https://doi.org/10.5194/acp-20-7929-2020, https://doi.org/10.5194/acp-20-7929-2020, 2020
Short summary
Short summary
Using a stereo algorithm, we reconstructed 99.9 % of the total atmospheric gas mercury and presented a new insight into atmospheric mercury source assessing, which can have great relevance for policy and regulations in light of the Minamata convention.
Franz Slemr, Lynwill Martin, Casper Labuschagne, Thumeka Mkololo, Hélène Angot, Olivier Magand, Aurélien Dommergue, Philippe Garat, Michel Ramonet, and Johannes Bieser
Atmos. Chem. Phys., 20, 7683–7692, https://doi.org/10.5194/acp-20-7683-2020, https://doi.org/10.5194/acp-20-7683-2020, 2020
Short summary
Short summary
Monitoring of atmospheric mercury (Hg) concentrations is an important part of the effectiveness evaluation of the Minamata Convention on Hg. Hg concentrations in 2012–2017 at Cape Point, South Africa, and at Amsterdam Island in the remote Indian Ocean are comparable, and no trend or a slightly downward trend was observed at both stations. Over the 2007–2017 period an upward trend was observed at CPT which was driven mainly by the 2007–2014 data. The trend and its change are discussed.
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020, https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Short summary
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission sources and sinks in a dynamic global environment. In this study, its global budget from 1997 to 2016 is simulated with a general circulation model using emission estimates of 11 source categories. The model results are evaluated against 17 ground station and 320 intercontinental flight observation series. Deviations are used to re-scale the emission quantities with the aim of matching observations.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Tanja J. Schuck, Ann-Katrin Blank, Elisa Rittmeier, Jonathan Williams, Carl A. M. Brenninkmeijer, Andreas Engel, and Andreas Zahn
Atmos. Meas. Tech., 13, 73–84, https://doi.org/10.5194/amt-13-73-2020, https://doi.org/10.5194/amt-13-73-2020, 2020
Short summary
Short summary
Air sample collection aboard aircraft is a tool to measure atmospheric trace gas mixing ratios at altitude. We present results on the stability of 28 halocarbons during storage of air samples collected in stainless-steel flasks inside an automated air sampling unit which is part of the CARIBIC instrument package. Selected fluorinated compounds grew during the experiments while short-lived compounds were depleted. Individual substances were additionally influenced by high mixing ratios of ozone.
Marleen Braun, Jens-Uwe Grooß, Wolfgang Woiwode, Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Hermann Oelhaf, Peter Preusse, Jörn Ungermann, Björn-Martin Sinnhuber, Helmut Ziereis, and Peter Braesicke
Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, https://doi.org/10.5194/acp-19-13681-2019, 2019
Short summary
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
Martin Otto Paul Ramacher, Matthias Karl, Johannes Bieser, Jukka-Pekka Jalkanen, and Lasse Johansson
Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, https://doi.org/10.5194/acp-19-9153-2019, 2019
Short summary
Short summary
We simulated the impact of NOx shipping emissions on air quality and exposure in the Baltic Sea harbour cities Rostock (Germany), Riga (Latvia) and Gdańsk–Gdynia (Poland) for 2012. We found that local shipping affects total NO2, with contributions of 22 %, 11 % and 16 % in Rostock, Riga and Gdańsk–Gdynia. Exposure to NO2 from all emission sources was highest at home addresses (54 %–59 %). Emissions from shipping have a high impact on NO2 exposure in the port area (50 %–80 %).
Matthias Karl, Johannes Bieser, Beate Geyer, Volker Matthias, Jukka-Pekka Jalkanen, Lasse Johansson, and Erik Fridell
Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, https://doi.org/10.5194/acp-19-1721-2019, 2019
Short summary
Short summary
Air emissions of nitrogen oxides from ship traffic in the Baltic Sea are a health concern in coastal areas of the Baltic Sea region. We find that the introduction of the nitrogen emission control area (NECA) is critical for reducing ship emissions of nitrogen oxides to levels that are low enough to sustainably dampen ozone production. The decline of the ship-related nitrogen deposition to the Baltic Sea between 2012 and 2040 varies between 46 % and 78 % in different regulation scenarios.
Gabriele Curci, Ummugulsum Alyuz, Rocio Barò, Roberto Bianconi, Johannes Bieser, Jesper H. Christensen, Augustin Colette, Aidan Farrow, Xavier Francis, Pedro Jiménez-Guerrero, Ulas Im, Peng Liu, Astrid Manders, Laura Palacios-Peña, Marje Prank, Luca Pozzoli, Ranjeet Sokhi, Efisio Solazzo, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 19, 181–204, https://doi.org/10.5194/acp-19-181-2019, https://doi.org/10.5194/acp-19-181-2019, 2019
Short summary
Short summary
Atmospheric carbonaceous aerosols are able to absorb solar radiation and they continue to contribute some of the largest uncertainties in projected climate change. One important detail is how the chemical species are arranged inside each particle, i.e. the knowledge of their mixing state. We use an ensemble of regional model simulations to test different mixing state assumptions and found that a combination of internal and external mixing may better reproduce sunphotometer observations.
Johannes Eckstein, Roland Ruhnke, Stephan Pfahl, Emanuel Christner, Christopher Diekmann, Christoph Dyroff, Daniel Reinert, Daniel Rieger, Matthias Schneider, Jennifer Schröter, Andreas Zahn, and Peter Braesicke
Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, https://doi.org/10.5194/gmd-11-5113-2018, 2018
Short summary
Short summary
We present ICON-ART-Iso, an extension to the global circulation model ICON, which allows for the simulation of the stable isotopologues of water. The main advantage over other isotope-enabled models is its flexible design with respect to the number of tracers simulated. We compare the results of several simulations to measurements of different scale. ICON-ART-Iso is able to reasonably reproduce the measurements. It is a promising tool to aid in the investigation of the atmospheric water cycle.
Peng Liu, Christian Hogrefe, Ulas Im, Jesper H. Christensen, Johannes Bieser, Uarporn Nopmongcol, Greg Yarwood, Rohit Mathur, Shawn Roselle, and Tanya Spero
Atmos. Chem. Phys., 18, 17157–17175, https://doi.org/10.5194/acp-18-17157-2018, https://doi.org/10.5194/acp-18-17157-2018, 2018
Short summary
Short summary
This study represents an intercomparison of four regional-scale air quality simulations in order to understand the model similarities and differences in estimating the impact of ozone imported from outside of the US on the surface ozone within the US at process level. Vertical turbulent mixing stands out as a primary contributor to the model differences in inert tracers.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Marina Astitha, Ioannis Kioutsioukis, Ghezae Araya Fisseha, Roberto Bianconi, Johannes Bieser, Jesper H. Christensen, Owen R. Cooper, Stefano Galmarini, Christian Hogrefe, Ulas Im, Bryan Johnson, Peng Liu, Uarporn Nopmongcol, Irina Petropavlovskikh, Efisio Solazzo, David W. Tarasick, and Greg Yarwood
Atmos. Chem. Phys., 18, 13925–13945, https://doi.org/10.5194/acp-18-13925-2018, https://doi.org/10.5194/acp-18-13925-2018, 2018
Short summary
Short summary
This work is unique in the detailed analyses of modeled ozone vertical profiles from sites in North America through the collaboration of four research groups from the US and EU. We assess the air quality models' performance and model inter-comparison for ozone vertical profiles and stratospheric ozone intrusions. Lastly, we designate the important role of lateral boundary conditions in the ozone vertical profiles using chemically inert tracers.
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Johannes Bieser, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Markus Hermann, Bengt G. Martinsson, Peter van Velthoven, Harald Bönisch, Marco Neumaier, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, https://doi.org/10.5194/acp-18-12329-2018, 2018
Short summary
Short summary
Total and elemental mercury were measured in the upper troposphere and lower stratosphere onboard a passenger aircraft. Their concentrations in the upper troposphere were comparable implying low concentrations of oxidized mercury in this region. Large scale seasonally dependent influence of emissions from biomass burning was also observed. Their distributions in the lower stratosphere implies a long stratospheric lifetime, which precludes significant mercury oxidation by ozone.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Marta G. Vivanco, Mark R. Theobald, Héctor García-Gómez, Juan Luis Garrido, Marje Prank, Wenche Aas, Mario Adani, Ummugulsum Alyuz, Camilla Andersson, Roberto Bellasio, Bertrand Bessagnet, Roberto Bianconi, Johannes Bieser, Jørgen Brandt, Gino Briganti, Andrea Cappelletti, Gabriele Curci, Jesper H. Christensen, Augustin Colette, Florian Couvidat, Cornelis Cuvelier, Massimo D'Isidoro, Johannes Flemming, Andrea Fraser, Camilla Geels, Kaj M. Hansen, Christian Hogrefe, Ulas Im, Oriol Jorba, Nutthida Kitwiroon, Astrid Manders, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Luca Pozzoli, Efisio Solazzo, Svetlana Tsyro, Alper Unal, Peter Wind, and Stefano Galmarini
Atmos. Chem. Phys., 18, 10199–10218, https://doi.org/10.5194/acp-18-10199-2018, https://doi.org/10.5194/acp-18-10199-2018, 2018
Short summary
Short summary
European wet and dry atmospheric deposition of N and S estimated by 14 air quality models was found to vary substantially. An ensemble of models meeting acceptability criteria was used to estimate the exceedances of the critical loads for N in habitats within the Natura 2000 network, as well as their lower and upper limits. Scenarios with 20 % emission reductions in different regions of the world showed that European emissions are responsible for most of the N and S deposition in Europe.
Ulas Im, Jesper Heile Christensen, Camilla Geels, Kaj Mantzius Hansen, Jørgen Brandt, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Peng Liu, Uarporn Nopmongcol, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 8929–8952, https://doi.org/10.5194/acp-18-8929-2018, https://doi.org/10.5194/acp-18-8929-2018, 2018
Short summary
Short summary
We evaluate the impact of global and regional anthropogenic emission reductions on major air pollutant levels over Europe and North America, using a multi-model ensemble of regional chemistry and transport models. Results show that ozone levels are largely driven by long-range transport over both continents while other pollutants such as carbon monoxide or aerosols are mainly controlled by domestic sources. Use of multi-model ensembles can help to reduce the uncertainties in individual models.
Stefano Galmarini, Ioannis Kioutsioukis, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Roberto Bellasio, Anna M. K. Benedictow, Roberto Bianconi, Johannes Bieser, Joergen Brandt, Jesper H. Christensen, Augustin Colette, Gabriele Curci, Yanko Davila, Xinyi Dong, Johannes Flemming, Xavier Francis, Andrea Fraser, Joshua Fu, Daven K. Henze, Christian Hogrefe, Ulas Im, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Jan Eiof Jonson, Nutthida Kitwiroon, Astrid Manders, Rohit Mathur, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marie Prank, Martin Schultz, Rajeet S. Sokhi, Kengo Sudo, Paolo Tuccella, Toshihiko Takemura, Takashi Sekiya, and Alper Unal
Atmos. Chem. Phys., 18, 8727–8744, https://doi.org/10.5194/acp-18-8727-2018, https://doi.org/10.5194/acp-18-8727-2018, 2018
Short summary
Short summary
An ensemble of model results relating to ozone concentrations in Europe in 2010 has been produced and studied. The novelty consists in the fact that the ensemble is made of results of models working at two different scales (regional and global), therefore contributing in detail two different parts of the atmospheric spectrum. The ensemble defined as a hybrid has been studied in detail and shown to bring additional value to the assessment of air quality.
Ulas Im, Jørgen Brandt, Camilla Geels, Kaj Mantzius Hansen, Jesper Heile Christensen, Mikael Skou Andersen, Efisio Solazzo, Ioannis Kioutsioukis, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Ciao-Kai Liang, Uarporn Nopmongcol, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta Garcia Vivanco, Jason West, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, https://doi.org/10.5194/acp-18-5967-2018, 2018
Short summary
Short summary
The impacts of air pollution on human health and their costs in Europe and the United States for the year 2010 ared modeled by a multi-model ensemble. In Europe, the number of premature deaths is calculated to be 414 000, while in the US it is estimated to be 160 000. Health impacts estimated by individual models can vary up to a factor of 3. Results show that the domestic emissions have the largest impact on premature deaths, compared to foreign sources.
Klaus-Dirk Gottschaldt, Hans Schlager, Robert Baumann, Duy Sinh Cai, Veronika Eyring, Phoebe Graf, Volker Grewe, Patrick Jöckel, Tina Jurkat-Witschas, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018, https://doi.org/10.5194/acp-18-5655-2018, 2018
Short summary
Short summary
This study places aircraft trace gas measurements from within the Asian summer monsoon anticyclone into the context of regional, intra- and interannual variability. We find that the processes reflected in the measurements are present throughout multiple simulated monsoon seasons. Dynamical instabilities, photochemical ozone production, lightning and entrainments from the lower troposphere and from the tropopause region determine the distinct composition of the anticyclone and its outflow.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Tilman Hüneke, Oliver-Alex Aderhold, Jannik Bounin, Marcel Dorf, Eric Gentry, Katja Grossmann, Jens-Uwe Grooß, Peter Hoor, Patrick Jöckel, Mareike Kenntner, Marvin Knapp, Matthias Knecht, Dominique Lörks, Sabrina Ludmann, Sigrun Matthes, Rasmus Raecke, Marcel Reichert, Jannis Weimar, Bodo Werner, Andreas Zahn, Helmut Ziereis, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 4209–4234, https://doi.org/10.5194/amt-10-4209-2017, https://doi.org/10.5194/amt-10-4209-2017, 2017
Short summary
Short summary
This paper describes a novel instrument for the aircraft-borne remote sensing of trace gases and liquid and solid water. Until recently, such measurements could only be evaluated under clear-sky conditions. We present a characterization and error assessment of the novel "scaling method", which allows for the retrieval of absolute trace gas concentrations under all sky conditions, significantly expanding the applicability of such measurements to study atmospheric photochemistry.
Bengt G. Martinsson, Johan Friberg, Oscar S. Sandvik, Markus Hermann, Peter F. J. van Velthoven, and Andreas Zahn
Atmos. Chem. Phys., 17, 10937–10953, https://doi.org/10.5194/acp-17-10937-2017, https://doi.org/10.5194/acp-17-10937-2017, 2017
Short summary
Short summary
We find that the aerosol of the lowermost stratosphere has a considerable climate forcing. The upper tropospheric (UT) particulate sulfur is strongly influenced by stratospheric sources the first half of the year, whereas tropospheric sources dominate in fall; 50 % of the UT particulate sulfur (S) was found to be stratospheric at background condition, and 70 % under moderate influence from volcanism. The Asian monsoon is found to be an important tropospheric source of S in the NH extratropical UT.
Johannes Bieser, Franz Slemr, Jesse Ambrose, Carl Brenninkmeijer, Steve Brooks, Ashu Dastoor, Francesco DeSimone, Ralf Ebinghaus, Christian N. Gencarelli, Beate Geyer, Lynne E. Gratz, Ian M. Hedgecock, Daniel Jaffe, Paul Kelley, Che-Jen Lin, Lyatt Jaegle, Volker Matthias, Andrei Ryjkov, Noelle E. Selin, Shaojie Song, Oleg Travnikov, Andreas Weigelt, Winston Luke, Xinrong Ren, Andreas Zahn, Xin Yang, Yun Zhu, and Nicola Pirrone
Atmos. Chem. Phys., 17, 6925–6955, https://doi.org/10.5194/acp-17-6925-2017, https://doi.org/10.5194/acp-17-6925-2017, 2017
Short summary
Short summary
We conducted a multi model study to investigate our ability to reproduce the vertical distribution of mercury in the atmosphere. For this, we used observational data from over 40 aircraft flights in EU and US. We compared observations to the results of seven chemistry transport models and found that the models are able to reproduce vertical gradients of total and elemental Hg. Finally, we found that different chemical reactions seem responsible for the oxidation of Hg depending on altitude.
Hannah M. Horowitz, Daniel J. Jacob, Yanxu Zhang, Theodore S. Dibble, Franz Slemr, Helen M. Amos, Johan A. Schmidt, Elizabeth S. Corbitt, Eloïse A. Marais, and Elsie M. Sunderland
Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, https://doi.org/10.5194/acp-17-6353-2017, 2017
Short summary
Short summary
Mercury is a toxic, global pollutant released to the air from human activities like coal burning. Chemical reactions in air determine how far mercury is transported before it is deposited to the environment, where it may be converted to a form that accumulates in fish. We use a 3-D atmospheric model to evaluate a new set of chemical reactions and its effects on mercury deposition. We find it is consistent with observations and leads to increased deposition to oceans, especially in the tropics.
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, Francesco D'Amore, Ashu Dastoor, Francesco De Simone, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Olivier Magand, Lynwill Martin, Volker Matthias, Nikolay Mashyanov, Nicola Pirrone, Ramesh Ramachandran, Katie Alana Read, Andrei Ryjkov, Noelle E. Selin, Fabrizio Sena, Shaojie Song, Francesca Sprovieri, Dennis Wip, Ingvar Wängberg, and Xin Yang
Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, https://doi.org/10.5194/acp-17-5271-2017, 2017
Short summary
Short summary
The study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measurement data and simulation results of chemical transport models. Evaluation of the model simulations and numerical experiments against observations allows explaining spatial and temporal variations of Hg concentration in the near-surface atmospheric layer and shows possibility of multiple pathways of Hg oxidation occurring concurrently in various parts of the atmosphere.
Liang Feng, Paul I. Palmer, Hartmut Bösch, Robert J. Parker, Alex J. Webb, Caio S. C. Correia, Nicholas M. Deutscher, Lucas G. Domingues, Dietrich G. Feist, Luciana V. Gatti, Emanuel Gloor, Frank Hase, Rigel Kivi, Yi Liu, John B. Miller, Isamu Morino, Ralf Sussmann, Kimberly Strong, Osamu Uchino, Jing Wang, and Andreas Zahn
Atmos. Chem. Phys., 17, 4781–4797, https://doi.org/10.5194/acp-17-4781-2017, https://doi.org/10.5194/acp-17-4781-2017, 2017
Short summary
Short summary
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. Our results show that assimilation of GOSAT data significantly reduced the posterior uncertainty and changed the a priori spatial distribution of CH4 emissions.
Efisio Solazzo, Roberto Bianconi, Christian Hogrefe, Gabriele Curci, Paolo Tuccella, Ummugulsum Alyuz, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Johannes Bieser, Jørgen Brandt, Jesper H. Christensen, Augistin Colette, Xavier Francis, Andrea Fraser, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Ulas Im, Astrid Manders, Uarporn Nopmongcol, Nutthida Kitwiroon, Guido Pirovano, Luca Pozzoli, Marje Prank, Ranjeet S. Sokhi, Alper Unal, Greg Yarwood, and Stefano Galmarini
Atmos. Chem. Phys., 17, 3001–3054, https://doi.org/10.5194/acp-17-3001-2017, https://doi.org/10.5194/acp-17-3001-2017, 2017
Short summary
Short summary
As part of the third phase of AQMEII, this study uses timescale analysis to apportion error to the responsible processes, detect causes of model error, and identify the processes and scales that require dedicated investigations. The analysis tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of model biases for ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature over Europe and North America.
Johannes Eckstein, Roland Ruhnke, Andreas Zahn, Marco Neumaier, Ole Kirner, and Peter Braesicke
Atmos. Chem. Phys., 17, 2775–2794, https://doi.org/10.5194/acp-17-2775-2017, https://doi.org/10.5194/acp-17-2775-2017, 2017
Short summary
Short summary
Data on atmospheric trace gases have been collected with instruments on-board a commercial airliner for more than 10 years in the CARIBIC project. We investigate which species in the dataset can be used for a representative climatology, by comparing data from the chemistry–climate model EMAC along the flight paths to a larger set of model data. We find that long-lived species are captured quite well by the CARIBIC sample while this is not the case for more variable, shorter-lived species.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Helene Angot, Carlo Barbante, Ernst-Günther Brunke, Flor Arcega-Cabrera, Warren Cairns, Sara Comero, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Xuewu Fu, Patricia Elizabeth Garcia, Bernd Manfred Gawlik, Ulla Hageström, Katarina Hansson, Milena Horvat, Jože Kotnik, Casper Labuschagne, Olivier Magand, Lynwill Martin, Nikolay Mashyanov, Thumeka Mkololo, John Munthe, Vladimir Obolkin, Martha Ramirez Islas, Fabrizio Sena, Vernon Somerset, Pia Spandow, Massimiliano Vardè, Chavon Walters, Ingvar Wängberg, Andreas Weigelt, Xu Yang, and Hui Zhang
Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, https://doi.org/10.5194/acp-17-2689-2017, 2017
Short summary
Short summary
The results on total mercury (THg) wet deposition flux obtained within the GMOS network have been presented and discussed to understand the atmospheric Hg cycling and its seasonal depositional patterns over the 2011–2015 period. The data set provides new insight into baseline concentrations of THg concentrations in precipitation particularly in regions where wet deposition and atmospheric Hg species were not investigated before, opening the way for additional measurements and modeling studies.
Lynwill G. Martin, Casper Labuschagne, Ernst-Günther Brunke, Andreas Weigelt, Ralf Ebinghaus, and Franz Slemr
Atmos. Chem. Phys., 17, 2393–2399, https://doi.org/10.5194/acp-17-2393-2017, https://doi.org/10.5194/acp-17-2393-2017, 2017
Short summary
Short summary
Currently the Cape Point GAW GEM record is a very sought-after data record for international modelers and scientist alike, as the data set of 20 years represents the longest record in the Southern Hemisphere (SH). CPT was the only monitoring site on the African continent and one of eight GMOS ground-based monitoring sites located in the SH. The increasing Hg trend observed at CPT is of global importance as treaties such as the Minamata Convention on Mercury is there to combat Hg pollution.
Garlich Fischbeck, Harald Bönisch, Marco Neumaier, Carl A. M. Brenninkmeijer, Johannes Orphal, Joel Brito, Julia Becker, Detlev Sprung, Peter F. J. van Velthoven, and Andreas Zahn
Atmos. Chem. Phys., 17, 1985–2008, https://doi.org/10.5194/acp-17-1985-2017, https://doi.org/10.5194/acp-17-1985-2017, 2017
Christian N. Gencarelli, Johannes Bieser, Francesco Carbone, Francesco De Simone, Ian M. Hedgecock, Volker Matthias, Oleg Travnikov, Xin Yang, and Nicola Pirrone
Atmos. Chem. Phys., 17, 627–643, https://doi.org/10.5194/acp-17-627-2017, https://doi.org/10.5194/acp-17-627-2017, 2017
Short summary
Short summary
Atmospheric deposition is an important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. High resolution numerical experiments has been performed in order to investigate the contributions (sensitivity) of the Hg anthtropogenic emissions, speciation and atmospherical chemical reactions on Hg depositions over Europe. The comparison of wet deposition fluxes and concentrations measured on 28 monitioring sites were used to support the analysis.
Christos I. Efstathiou, Jana Matejovičová, Johannes Bieser, and Gerhard Lammel
Atmos. Chem. Phys., 16, 15327–15345, https://doi.org/10.5194/acp-16-15327-2016, https://doi.org/10.5194/acp-16-15327-2016, 2016
Short summary
Short summary
Gas-particle partitioning is an important process that determines the fate and long-range transport potential of persistent organic pollutants. This work is the first effort to evaluate the behaviour of parameterizations within a regional air quality system adapted for Europe. Results corroborate the significance of the chosen implementation in predicting ambient levels and transport patterns. Implications point to improvements on the side of the emission inventories and aerosol module.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Andreas Weigelt, Franz Slemr, Ralf Ebinghaus, Nicola Pirrone, Johannes Bieser, Jan Bödewadt, Giulio Esposito, and Peter F. J. van Velthoven
Atmos. Chem. Phys., 16, 13653–13668, https://doi.org/10.5194/acp-16-13653-2016, https://doi.org/10.5194/acp-16-13653-2016, 2016
Short summary
Short summary
Hg ∕ SO2, Hg ∕ CO, and NOx ∕ SO2 emission ratios (ERs) in the plume of the coal-fired power plant (CFPP), Lippendorf, near Leipzig in Germany, were determined in August 2013. GOM fraction of mercury emissions was also assessed. Measured Hg ∕ SO2 and Hg ∕ CO ERs were consistent with the ratios calculated from annual emissions in 2013 reported by the CFPP operator. The NOx ∕ SO2 ER was somewhat lower. GOM fractions of ~ 40 % of CFPP mercury emissions in current emission inventories are overestimated.
Bertrand Bessagnet, Guido Pirovano, Mihaela Mircea, Cornelius Cuvelier, Armin Aulinger, Giuseppe Calori, Giancarlo Ciarelli, Astrid Manders, Rainer Stern, Svetlana Tsyro, Marta García Vivanco, Philippe Thunis, Maria-Teresa Pay, Augustin Colette, Florian Couvidat, Frédérik Meleux, Laurence Rouïl, Anthony Ung, Sebnem Aksoyoglu, José María Baldasano, Johannes Bieser, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Sandro Finardi, Richard Kranenburg, Camillo Silibello, Claudio Carnevale, Wenche Aas, Jean-Charles Dupont, Hilde Fagerli, Lucia Gonzalez, Laurent Menut, André S. H. Prévôt, Pete Roberts, and Les White
Atmos. Chem. Phys., 16, 12667–12701, https://doi.org/10.5194/acp-16-12667-2016, https://doi.org/10.5194/acp-16-12667-2016, 2016
Short summary
Short summary
The EURODELTA III exercise allows a very comprehensive intercomparison and evaluation of air quality models' performance. On average, the models provide a rather good picture of the particulate matter (PM) concentrations over Europe even if the highest concentrations are underestimated. The meteorology is responsible for model discrepancies, while the lack of emissions, particularly in winter, is mentioned as the main reason for the underestimations of PM.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Francesco Carbone, Sergio Cinnirella, Valentino Mannarino, Matthew Landis, Ralf Ebinghaus, Andreas Weigelt, Ernst-Günther Brunke, Casper Labuschagne, Lynwill Martin, John Munthe, Ingvar Wängberg, Paulo Artaxo, Fernando Morais, Henrique de Melo Jorge Barbosa, Joel Brito, Warren Cairns, Carlo Barbante, María del Carmen Diéguez, Patricia Elizabeth Garcia, Aurélien Dommergue, Helene Angot, Olivier Magand, Henrik Skov, Milena Horvat, Jože Kotnik, Katie Alana Read, Luis Mendes Neves, Bernd Manfred Gawlik, Fabrizio Sena, Nikolay Mashyanov, Vladimir Obolkin, Dennis Wip, Xin Bin Feng, Hui Zhang, Xuewu Fu, Ramesh Ramachandran, Daniel Cossa, Joël Knoery, Nicolas Marusczak, Michelle Nerentorp, and Claus Norstrom
Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, https://doi.org/10.5194/acp-16-11915-2016, 2016
Short summary
Short summary
This work presents atmospheric Hg concentrations recorded within the GMOS global network analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. The over-arching benefit of this coordinated Hg monitoring network would clearly be the production of high-quality measurement datasets on a global scale useful in developing and validating models on different spatial and temporal scales.
Stefan Müller, Peter Hoor, Heiko Bozem, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, and Andreas Engel
Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, https://doi.org/10.5194/acp-16-10573-2016, 2016
Short summary
Short summary
In situ airborne measurements performed during TACTS/ESMVal 2012 were analysed to investigate the chemical compostion of the upper troposphere and lower stratosphere. N2O, CO and O3 data show an increase in tropospherically affected air masses within the extratropical stratosphere from August to September 2012, which originate from the Asian monsoon region. Thus, the Asian monsoon anticyclone significantly affected the chemical composition of the extratropical stratosphere during summer 2012.
Daniel Neumann, Volker Matthias, Johannes Bieser, Armin Aulinger, and Markus Quante
Atmos. Chem. Phys., 16, 9905–9933, https://doi.org/10.5194/acp-16-9905-2016, https://doi.org/10.5194/acp-16-9905-2016, 2016
Short summary
Short summary
Atmospheric sea salt particles provide surface area for the condensation of gaseous substances and, thus, impact these substances' atmospheric residence time and chemical reactions. The number and size of sea salt particles govern the strength of these impacts. Therefore, these parameters should be reflected accurately in chemistry transport models. In this study, three different sea salt emission functions are compared in order to evaluate which one is best suited for the given model setup.
Hélène Angot, Olivier Magand, Detlev Helmig, Philippe Ricaud, Boris Quennehen, Hubert Gallée, Massimo Del Guasta, Francesca Sprovieri, Nicola Pirrone, Joël Savarino, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 8249–8264, https://doi.org/10.5194/acp-16-8249-2016, https://doi.org/10.5194/acp-16-8249-2016, 2016
Short summary
Short summary
While the Arctic has been extensively monitored, there is still much to be learned from the Antarctic continent regarding the processes that govern the budget of atmospheric mercury species. We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. The striking reactivity observed on the Antarctic plateau most likely influences the cycle of atmospheric mercury on a continental scale.
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Hans H. Kock, Jan Bödewadt, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Stefan Weber, Markus Hermann, Julia Becker, Andreas Zahn, and Bengt Martinsson
Atmos. Meas. Tech., 9, 2291–2302, https://doi.org/10.5194/amt-9-2291-2016, https://doi.org/10.5194/amt-9-2291-2016, 2016
Short summary
Short summary
The goal of CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrumented Container) is to carry out regular and detailed observations of atmospheric chemistry at 9–12 km altitude. Mercury has been measured since May 2005 during intercontinental flights between Europe and South and North America, Africa, and Asia. Here we describe the instrument modifications, the post-flight processing of the raw instrument signal, and the fractionation experiments.
Markus Hermann, Andreas Weigelt, Denise Assmann, Sascha Pfeifer, Thomas Müller, Thomas Conrath, Jens Voigtländer, Jost Heintzenberg, Alfred Wiedensohler, Bengt G. Martinsson, Terry Deshler, Carl A. M. Brenninkmeijer, and Andreas Zahn
Atmos. Meas. Tech., 9, 2179–2194, https://doi.org/10.5194/amt-9-2179-2016, https://doi.org/10.5194/amt-9-2179-2016, 2016
Short summary
Short summary
Aerosol particles are an important component of the Earth's atmosphere. Here we describe the composition and characterization of a new optical particle size spectrometer (OPSS) for aircraft-borne measurements of the aerosol particle size distribution (how many particles there are with a certain size) in the 140–1050 nm size range. The OPSS was characterized throughout concerning its measurement capabilities (response, pressure dependence, coincidence) and validated versus balloon measurement.
Tina Jurkat, Stefan Kaufmann, Christiane Voigt, Dominik Schäuble, Philipp Jeßberger, and Helmut Ziereis
Atmos. Meas. Tech., 9, 1907–1923, https://doi.org/10.5194/amt-9-1907-2016, https://doi.org/10.5194/amt-9-1907-2016, 2016
Short summary
Short summary
The paper details novel mass spectrometric measurements with AIMS-TG aboard the new German research aircraft HALO. The measurements comprise a wide range of tracers with characteristic source regions. Using these tracers, stratospheric and tropospheric air in the UTLS is tagged. The instrument is equipped with a new discharge ionization source, an in-flight calibration and improved transmission of adhesive gases like HNO3 and HCl. AIMS was built to characterize transport and mixing in the UTLS.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Armin Rauthe-Schöch, Angela K. Baker, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Andreas Zahn, Markus Hermann, Greta Stratmann, Helmut Ziereis, Peter F. J. van Velthoven, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3609–3629, https://doi.org/10.5194/acp-16-3609-2016, https://doi.org/10.5194/acp-16-3609-2016, 2016
Short summary
Short summary
The flying laboratory CARIBIC onboard a passenger aircraft measured trace gases and aerosol particles in the upper tropospheric Indian summer monsoon anticyclone in summer 2008. We used the measurements together with meteorological analyses to investigate the chemical signature of the northern and southern part of the monsoon, the source regions from where the air was entrained into the monsoon and which parts of the world received polluted air that had been chemically processed in the monsoon.
Daniel Neumann, Volker Matthias, Johannes Bieser, Armin Aulinger, and Markus Quante
Atmos. Chem. Phys., 16, 2921–2942, https://doi.org/10.5194/acp-16-2921-2016, https://doi.org/10.5194/acp-16-2921-2016, 2016
Short summary
Short summary
Sea salt emissions were updated to be dependent on salinity which improved sodium predictions in the Baltic Sea region. The impact of sea salt on atmospheric nitrate and ammonium concentrations and on nitrogen deposition in the North and Baltic Sea region is assessed. Sea salt has a low effect on nitrate concentrations but does not improve them. 3 to 7 % of the nitrogen deposition into the North Sea is accounted to the presence of sea salt. In the Baltic Sea, the contribution is negligible.
V. Matthias, A. Aulinger, A. Backes, J. Bieser, B. Geyer, M. Quante, and M. Zeretzke
Atmos. Chem. Phys., 16, 759–776, https://doi.org/10.5194/acp-16-759-2016, https://doi.org/10.5194/acp-16-759-2016, 2016
Short summary
Short summary
Scenarios for future shipping emissions in the North Sea were developed. Compared to today, the contribution of shipping to the nitrogen dioxide and ozone concentrations will increase due to the expected enhanced traffic by more than 20 % and 5 %, respectively, by 2030 if no regulation for further emission reductions is implemented. PM2.5 will decrease slightly because the sulfur content in ship fuels will be reduced.
A. Aulinger, V. Matthias, M. Zeretzke, J. Bieser, M. Quante, and A. Backes
Atmos. Chem. Phys., 16, 739–758, https://doi.org/10.5194/acp-16-739-2016, https://doi.org/10.5194/acp-16-739-2016, 2016
Short summary
Short summary
A multi-model approach consisting of a bottom-up ship emissions model and a chemistry transport model was used to evaluate the impact of shipping on air quality in North Sea bordering countries. As an example, the results of the simulations indicated that the relative contribution of ships to NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers away from the sea, the contribution was about 6 % in summer and 4 % in winter.
A. D. Venter, J. P. Beukes, P. G. van Zyl, E.-G. Brunke, C. Labuschagne, F. Slemr, R. Ebinghaus, and H. Kock
Atmos. Chem. Phys., 15, 10271–10280, https://doi.org/10.5194/acp-15-10271-2015, https://doi.org/10.5194/acp-15-10271-2015, 2015
Short summary
Short summary
Statistical techniques applied to continuous high-resolution Hg data and back-trajectory analyses showed lower GEM concentrations originating from the sparsely populated semi-arid interior of SA and the marine environment, whereas higher GEM concentrations coincided with trade routes and industrial activities along the coast. Multi-linear regression indicated the relation of GEM with other atmospheric parameters. Measured and MLR data confirm a decline in GEM concentrations at CPT GAW station.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
J. Zhu, T. Wang, J. Bieser, and V. Matthias
Atmos. Chem. Phys., 15, 8767–8779, https://doi.org/10.5194/acp-15-8767-2015, https://doi.org/10.5194/acp-15-8767-2015, 2015
Short summary
Short summary
This study estimated the contributions to mercury concentration and deposition in easter China from seven categories of emission sources by CMAQ-Hg. Also, this study focuses on diagnostic and process analyses for atmospheric mercury pollution formation and on identification of the dominant atmospheric processes for mercury.
S. Song, N. E. Selin, A. L. Soerensen, H. Angot, R. Artz, S. Brooks, E.-G. Brunke, G. Conley, A. Dommergue, R. Ebinghaus, T. M. Holsen, D. A. Jaffe, S. Kang, P. Kelley, W. T. Luke, O. Magand, K. Marumoto, K. A. Pfaffhuber, X. Ren, G.-R. Sheu, F. Slemr, T. Warneke, A. Weigelt, P. Weiss-Penzias, D. C. Wip, and Q. Zhang
Atmos. Chem. Phys., 15, 7103–7125, https://doi.org/10.5194/acp-15-7103-2015, https://doi.org/10.5194/acp-15-7103-2015, 2015
Short summary
Short summary
A better knowledge of mercury (Hg) emission fluxes into the global atmosphere is important for assessing its human health impacts and evaluating the effectiveness of corresponding policy actions. We for the first time apply a top-down approach at a global scale to quantitatively estimate present-day mercury emission sources as well as key parameters in a chemical transport model, in order to better constrain the global biogeochemical cycle of mercury.
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
C. Dyroff, S. Sanati, E. Christner, A. Zahn, M. Balzer, H. Bouquet, J. B. McManus, Y. González-Ramos, and M. Schneider
Atmos. Meas. Tech., 8, 2037–2049, https://doi.org/10.5194/amt-8-2037-2015, https://doi.org/10.5194/amt-8-2037-2015, 2015
F. Slemr, H. Angot, A. Dommergue, O. Magand, M. Barret, A. Weigelt, R. Ebinghaus, E.-G. Brunke, K. A. Pfaffhuber, G. Edwards, D. Howard, J. Powell, M. Keywood, and F. Wang
Atmos. Chem. Phys., 15, 3125–3133, https://doi.org/10.5194/acp-15-3125-2015, https://doi.org/10.5194/acp-15-3125-2015, 2015
Short summary
Short summary
• Longer-term mercury measurement in the Southern Hemisphere is compared.
• Mercury, in terms of monthly and annual medians and averages, is more evenly distributed than hitherto believed.
• Consequently, trends observed at one or a few sites are likely to be representative of the whole hemisphere, and smaller trends can be detected in shorter time periods.
• We report a change in the trend sign at Cape Point from decreasing mercury concentrations in 1996-2004 to increasing ones since 2007.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
T. P. C. van Noije, P. Le Sager, A. J. Segers, P. F. J. van Velthoven, M. C. Krol, W. Hazeleger, A. G. Williams, and S. D. Chambers
Geosci. Model Dev., 7, 2435–2475, https://doi.org/10.5194/gmd-7-2435-2014, https://doi.org/10.5194/gmd-7-2435-2014, 2014
C. Warneke, F. Geiger, P. M. Edwards, W. Dube, G. Pétron, J. Kofler, A. Zahn, S. S. Brown, M. Graus, J. B. Gilman, B. M. Lerner, J. Peischl, T. B. Ryerson, J. A. de Gouw, and J. M. Roberts
Atmos. Chem. Phys., 14, 10977–10988, https://doi.org/10.5194/acp-14-10977-2014, https://doi.org/10.5194/acp-14-10977-2014, 2014
B. G. Martinsson, J. Friberg, S. M. Andersson, A. Weigelt, M. Hermann, D. Assmann, J. Voigtländer, C. A. M. Brenninkmeijer, P. J. F. van Velthoven, and A. Zahn
Atmos. Meas. Tech., 7, 2581–2596, https://doi.org/10.5194/amt-7-2581-2014, https://doi.org/10.5194/amt-7-2581-2014, 2014
K.-P. Heue, H. Riede, D. Walter, C. A. M. Brenninkmeijer, T. Wagner, U. Frieß, U. Platt, A. Zahn, G. Stratmann, and H. Ziereis
Atmos. Chem. Phys., 14, 6621–6642, https://doi.org/10.5194/acp-14-6621-2014, https://doi.org/10.5194/acp-14-6621-2014, 2014
A. Wisher, D. E. Oram, J. C. Laube, G. P. Mills, P. van Velthoven, A. Zahn, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 14, 3557–3570, https://doi.org/10.5194/acp-14-3557-2014, https://doi.org/10.5194/acp-14-3557-2014, 2014
C. Dyroff, A. Zahn, S. Sanati, E. Christner, A. Rauthe-Schöch, and T. J. Schuck
Atmos. Meas. Tech., 7, 743–755, https://doi.org/10.5194/amt-7-743-2014, https://doi.org/10.5194/amt-7-743-2014, 2014
J. E. Williams, G. Le Bras, A. Kukui, H. Ziereis, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 14, 2363–2382, https://doi.org/10.5194/acp-14-2363-2014, https://doi.org/10.5194/acp-14-2363-2014, 2014
A. Steffen, J. Bottenheim, A. Cole, R. Ebinghaus, G. Lawson, and W. R. Leaitch
Atmos. Chem. Phys., 14, 2219–2231, https://doi.org/10.5194/acp-14-2219-2014, https://doi.org/10.5194/acp-14-2219-2014, 2014
A. Steffen, J. Bottenheim, A. Cole, T. A. Douglas, R. Ebinghaus, U. Friess, S. Netcheva, S. Nghiem, H. Sihler, and R. Staebler
Atmos. Chem. Phys., 13, 7007–7021, https://doi.org/10.5194/acp-13-7007-2013, https://doi.org/10.5194/acp-13-7007-2013, 2013
F. Slemr, E.-G. Brunke, S. Whittlestone, W. Zahorowski, R. Ebinghaus, H. H. Kock, and C. Labuschagne
Atmos. Chem. Phys., 13, 6421–6428, https://doi.org/10.5194/acp-13-6421-2013, https://doi.org/10.5194/acp-13-6421-2013, 2013
J. E. Williams, P. F. J. van Velthoven, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 13, 2857–2891, https://doi.org/10.5194/acp-13-2857-2013, https://doi.org/10.5194/acp-13-2857-2013, 2013
S. M. Andersson, B. G. Martinsson, J. Friberg, C. A. M. Brenninkmeijer, A. Rauthe-Schöch, M. Hermann, P. F. J. van Velthoven, and A. Zahn
Atmos. Chem. Phys., 13, 1781–1796, https://doi.org/10.5194/acp-13-1781-2013, https://doi.org/10.5194/acp-13-1781-2013, 2013
Ø. Hodnebrog, T. K. Berntsen, O. Dessens, M. Gauss, V. Grewe, I. S. A. Isaksen, B. Koffi, G. Myhre, D. Olivié, M. J. Prather, F. Stordal, S. Szopa, Q. Tang, P. van Velthoven, and J. E. Williams
Atmos. Chem. Phys., 12, 12211–12225, https://doi.org/10.5194/acp-12-12211-2012, https://doi.org/10.5194/acp-12-12211-2012, 2012
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Fluxes, patterns and sources of phosphorus deposition in an urban–rural transition region in Southwest China
Kinetics and impacting factors of HO2 uptake onto submicron atmospheric aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan
Influence of tropical cyclones on tropospheric ozone: possible implications
Atmospheric deposition of polybromodiphenyl ethers in remote mountain regions of Europe
A multi-sensor upper tropospheric ozone product (MUTOP) based on TES ozone and GOES water vapor: validation with ozonesondes
Composition of the TTL over Darwin: local mixing or long-range transport?
Yuanyuan Chen, Jiang Liu, Jiangyou Ran, Rong Huang, Chunlong Zhang, Xuesong Gao, Wei Zhou, Ting Lan, Dinghua Ou, Yan He, Yalan Xiong, Ling Luo, Lu Wang, and Ouping Deng
Atmos. Chem. Phys., 22, 14813–14823, https://doi.org/10.5194/acp-22-14813-2022, https://doi.org/10.5194/acp-22-14813-2022, 2022
Short summary
Short summary
Estimating the characteristics of atmospheric P deposition is critical to understanding the biogeochemical P cycle. Here we chose a typical urban–rural transition to monitor the dry and wet P depositions for 2 years. We found that atmospheric dry P deposition was the primary form of total P deposition, and P deposition could be affected by both meteorological factors and land-use types. Findings provide proper management of land use, which may help mitigate the pollution caused by P deposition.
Jun Zhou, Kei Sato, Yu Bai, Yukiko Fukusaki, Yuka Kousa, Sathiyamurthi Ramasamy, Akinori Takami, Ayako Yoshino, Tomoki Nakayama, Yasuhiro Sadanaga, Yoshihiro Nakashima, Jiaru Li, Kentaro Murano, Nanase Kohno, Yosuke Sakamoto, and Yoshizumi Kajii
Atmos. Chem. Phys., 21, 12243–12260, https://doi.org/10.5194/acp-21-12243-2021, https://doi.org/10.5194/acp-21-12243-2021, 2021
Short summary
Short summary
HO2 radicals play key roles in tropospheric chemistry, their levels in ambient air not yet fully explained by sophisticated models. Here we measured HO2 uptake kinetics onto ambient aerosols in real time using a self-built online system and investigated the impacting factors on such processes by coupling with other instrumentations. The role of the HO2 uptake process in O3 formation is also discussed. Results give useful information for coordinated control of aerosol and ozone pollutants.
Siddarth Shankar Das, Madineni Venkat Ratnam, Kizhathur Narasimhan Uma, Kandula Venkata Subrahmanyam, Imran Asatar Girach, Amit Kumar Patra, Sundaresan Aneesh, Kuniyil Viswanathan Suneeth, Karanam Kishore Kumar, Amit Parashuram Kesarkar, Sivarajan Sijikumar, and Geetha Ramkumar
Atmos. Chem. Phys., 16, 4837–4847, https://doi.org/10.5194/acp-16-4837-2016, https://doi.org/10.5194/acp-16-4837-2016, 2016
Short summary
Short summary
The present study examines the role of tropical cyclones in the enhancement of tropospheric ozone. The most significant and new observation reported is the increase in the upper-tropospheric ozone by 20–50 ppbv, which has extended down to the middle and lower troposphere. The descent rate of enhanced ozone layer during the passage of tropical cyclone is 0.8–1 km day−1. Enhancement of surface ozone concentration by ~ 10 ppbv in the daytime and 10–15 ppbv at night-time is observed.
L. Arellano, P. Fernández, J. F. López, N. L. Rose, U. Nickus, H. Thies, E. Stuchlik, L. Camarero, J. Catalan, and J. O. Grimalt
Atmos. Chem. Phys., 14, 4441–4457, https://doi.org/10.5194/acp-14-4441-2014, https://doi.org/10.5194/acp-14-4441-2014, 2014
J. L. Moody, S. R. Felker, A. J. Wimmers, G. Osterman, K. Bowman, A. M. Thompson, and D. W. Tarasick
Atmos. Chem. Phys., 12, 5661–5676, https://doi.org/10.5194/acp-12-5661-2012, https://doi.org/10.5194/acp-12-5661-2012, 2012
W. J. Heyes, G. Vaughan, G. Allen, A. Volz-Thomas, H.-W. Pätz, and R. Busen
Atmos. Chem. Phys., 9, 7725–7736, https://doi.org/10.5194/acp-9-7725-2009, https://doi.org/10.5194/acp-9-7725-2009, 2009
Cited articles
Ambrose, J. L., Gratz, L. E., Jaffe, D. A., Campos, T., Flocke, F. M., Knapp,
D. J., Stechman, D. M., Stell, M., Weinheimer, A. J., Cantrell, C. A., and
Mauldin, R. L.: Mercury emission ratios from coal-fired power plants in the
southeastern United States during NOMADSS, Environ. Sci. Technol., 49,
10389–10397, https://doi.org/10.1021/acs.est.5b01755, 2015.
Banic, C. M., Beauchamp, S. T., Tordon, R. J., Schroeder, W. H., Steffen, A.,
Anlauf, K. A., and Wong, H. K. T.: Vertical distribution of gaseous elemental
mercury in Canada, J. Geophys. Res., 108, 4264, https://doi.org/10.1029/2002JD002116,
2003.
Brenninkmeijer, C. A. M., Crutzen, P., Boumard, F., Dauer, T., Dix, B.,
Ebinghaus, R., Filippi, D., Fischer, H., Franke, H., Frieß, U.,
Heintzenberg, J., Helleis, F., Hermann, M., Kock, H. H., Koeppel, C.,
Lelieveld, J., Leuenberger, M., Martinsson, B. G., Miemczyk, S., Moret, H.
P., Nguyen, H. N., Nyfeler, P., Oram, D., O'Sullivan, D., Penkett, S., Platt,
U., Pupek, M., Ramonet, M., Randa, B., Reichelt, M., Rhee, T. S., Rohwer, J.,
Rosenfeld, K., Scharffe, D., Schlager, H., Schumann, U., Slemr, F., Sprung,
D., Stock, P., Thaler, R., Valentino, F., van Velthoven, P., Waibel, A.,
Wandel, A., Waschitschek, K., Wiedensohler, A., Xueref-Remy, I., Zahn, A.,
Zech, U., and Ziereis, H.: Civil Aircraft for the regular investigation of
the atmosphere based on an instrumented container: The new CARIBIC system,
Atmos. Chem. Phys., 7, 4953–4976, https://doi.org/10.5194/acp-7-4953-2007, 2007.
Brooks, S., Ren, X., Cohen, M., Luke, W. T., Kelley, P., Artz, R., Hynes, A.,
Landing, W., and Martos, B.: Airborne vertical profiling of mercury
speciation near Tullahoma, TN, USA, Atmosphere, 5, 557–574,
https://doi.org/10.3390/atmos5030557, 2014.
Brosset, C.: The behavior of mercury in the physical environment, Water Air
Soil Pollut., 34, 145–166, 1987.
Ebinghaus, R. and Slemr, F.: Aircraft measurements of atmospheric mercury
over southern and eastern Germany, Atmos. Environ., 34, 895–903,
https://doi.org/10.1016/S1352-2310(99)00347-7, 2000.
Ebinghaus, R., Jennings, S. G., Schroeder, W. H., Berg, T., Donaghy, T.,
Guentzel, J., Kenny, C., Kock, H. H., Kvietkus, K., Landing, W., Mühleck,
T., Munthe, J., Prestbo, E. M., Schneeberger, D., Slemr, F., Sommar, J.,
Urba, A., Wallschläger, D., and Xiao, Z.: International field
intercomparison measurements of atmospheric mercury species at Mace Head,
Ireland, Atmos. Environ., 33, 3063–3073, https://doi.org/10.1016/S1352-2310(98)00119-8,
1999.
Ebinghaus, R., Slemr, F., Brenninkmeijer, C. A. M., van Velthoven, P., Zahn,
A., Hermann, M., O'Sullivan, D. A., and Oram, D. E.: Emissions of gaseous
mercury from biomass burning in South America in 2005 observed during CARIBIC
flights, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL028866, 2007.
Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., and Nater, E. A.: The case
for atmospheric mercury contamination in remote areas, Environ. Sci.
Technol., 32, 1–7, https://doi.org/10.1021/es970284w, 1998.
Friedli, H. R., Radke, L. F., Prescott, R., Li, P., Woo, J.-H., and
Carmichael, G. R.: Mercury in the atmosphere around Japan, Korea, and China
as observed during the 2001 ACE-Asia field campaign: Measurements,
distributions, sources, and implications, J. Geophys. Res., 109, D19S25,
https://doi.org/10.1029/2003JD004244, 2004.
Grönlund, R., Edner, H., Svanberg, S., Kotnik, J., and Horvat, M.:
Mercury emissions from the Idrija mercury mine measured by differential
absorption lidar techniques and a point monitoring absorption spectrometer,
Atmos. Environ., 39, 4067–4074, https://doi.org/10.1016/j.atmosenv.2005.03.027, 2005.
Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S.,
Takami, A., Hatakeyama, S., and Kajii, Y.: Export of atmospheric mercury from
Asia, Atmos. Environ., 39, 3029–3038, https://doi.org/10.1016/j.atmosenv.2005.01.030,
2005.
Klemp, D., Mannschreck, K., Pätz, H. W., Habram, M., Matuska, P., and
Slemr, F.: Determination of anthropogenic emission ratios in the Augsburg
area from concentration ratios: Results from long-term measurements, Atmos.
Environ., 36, 61–80, https://doi.org/10.1016/S1352-2310(02)00210-8, 2002.
Kvietkus, K.: Investigation of the gaseous and particulate mercury
concentrations along horizontal and vertical profiles in the lower
troposphere, in: Proceedings of the 10th World Clean Air Congress, Espoo,
Finland, 28 May–2 June 1995: Atmospheric pollution, edited by: Anttiba, P.,
Kämäri, J., and Jolvanen, M., 284–287, Finnish Air Pollution
Prevention Society, Helsinki, 1995.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald,
W., Pirrone, N., Prestbo, E., and Seigneur, C.: A synthesis of progress and
uncertainties in attributing the sources of mercury in deposition, AMBIO, 36,
19–33, https://doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2, 2007.
Lyman, S. N. and Jaffe, D. A.: Formation and fate of oxidized mercury in the
upper troposphere and lower stratosphere, Nat. Geosci., 5, 114–117,
https://doi.org/10.1038/ngeo1353, 2011.
Olsen, M. A., Schoeberl, M. R., and Douglass, A. R.: Stratosphere-troposphere
exchange of mass and ozone, J. Geophys. Res., 109, D24114,
https://doi.org/10.1029/2004JD005186, 2004.
Parrish, D. D., Trainer, M., Buhr, M. P., Watkins, B. A., and Fehsenfeld, F.
C.: Carbon monoxide concentrations and their relation to concentrations of
total reactive oxidized nitrogen at two rural US sites, J. Geophys. Res., 96,
9309–9320, https://doi.org/10.1029/91JD00047, 1991.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R.,
Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and
Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and
natural sources, Atmos. Chem. Phys., 10, 5951–5964,
https://doi.org/10.5194/acp-10-5951-2010, 2010.
Radke, L. F., Friedli, H. R., and Heikes, B. G.: Atmospheric mercury over the
NE Pacific during spring 2002: Gradients, residence time, upper troposphere
lower stratosphere loss, and long-range transport, J. Geophys. Res., 112,
1–17, https://doi.org/10.1029/2005JD005828, 2007.
Scheele, M. P., Siegmund, P. C., and Van Velthoven, P. F. J.: Sensitivity of trajectories
to data resolution and its dependence on the starting point: In or outside a tropopause fold, Meteorol. Apps, 3, 267–273, https://doi.org/10.1002/met.5060030308, 1996.
Selin, N. E.: Global biogeochemical cycling of mercury: A review, Annu. Rev.
Environ. Resour., 34, 43–63, https://doi.org/10.1146/annurev.environ.051308.084314,
2009.
Shah, V., Jaeglé, L., Gratz, L. E., Ambrose, J. L., Jaffe, D. A., Selin,
N. E., Song, S., Campos, T. L., Flocke, F. M., Reeves, M., Stechman, D.,
Stell, M., Festa, J., Stutz, J., Weinheimer, A. J., Knapp, D. J., Montzka, D.
D., Tyndall, G. S., Apel, E. C., Hornbrook, R. S., Hills, A. J., Riemer, D.
D., Blake, N. J., Cantrell, C. A., and Mauldin III, R. L.: Origin of oxidized
mercury in the summertime free troposphere over the southeastern US, Atmos.
Chem. Phys., 16, 1511–1530, https://doi.org/10.5194/acp-16-1511-2016, 2016.
Slemr, F., Schuster, G., and Seiler, W.: Distribution, speciation, and budget
of atmospheric mercury, J. Atmos. Chem., 3, 407–434, https://doi.org/10.1007/BF00053870,
1985.
Slemr, F., Ebinghaus, R., Brenninkmeijer, C. A. M., Hermann, M., Kock, H. H.,
Martinsson, B. G., Schuck, T., Sprung, D., van Velthoven, P., Zahn, A., and
Ziereis, H.: Gaseous mercury distribution in the upper troposphere and lower
stratosphere observed onboard the CARIBIC passenger aircraft, Atmos. Chem.
Phys., 9, 1957–1969, https://doi.org/10.5194/acp-9-1957-2009, 2009.
Slemr, F., Weigelt, A., Ebinghaus, R., Brenninkmeijer, C., Baker, A., Schuck,
T., Rauthe-Schöch, A., Riede, H., Leedham, E., Hermann, M., van
Velthoven, P., Oram, D., O'Sullivan, D., Dyroff, C., Zahn, A., and Ziereis,
H.: Mercury plumes in the global upper troposphere observed during flights
with the CARIBIC observatory from May 2005 until June 2013, Atmosphere, 5(2),
342–369, https://doi.org/10.3390/atmos5020342, 2014.
Slemr, F., Weigelt, A., Ebinghaus, R., Kock, H. H., Bödewadt, J.,
Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Weber, S., Hermann, M.,
Zahn, A., and Martinsson, B.: Atmospheric mercury measurements onboard the
CARIBIC passenger aircraft, Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2015-376, in review, 2016.
Song, S., Selin, N. E., Soerensen, A. L., Angot, H., Artz, R., Brooks, S.,
Brunke, E.-G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T. M.,
Jaffe, D. A., Kang, S., Kelley, P., Luke, W. T., Magand, O., Marumoto, K.,
Pfaffhuber, K. A., Ren, X., Sheu, G.-R., Slemr, F., Warneke, T., Weigelt, A.,
Weiss-Penzias, P., Wip, D. C., and Zhang, Q.: Top-down constraints on
atmospheric mercury emissions and implications for global biogeochemical
cycling, Atmos. Chem. Phys., 15, 7103–7125, https://doi.org/10.5194/acp-15-7103-2015,
2015.
Spencer, R. W. and Braswell, W. D.: How dry is the tropical free troposphere?
Implications for global warming theory, B. Am. Meteorol. Soc., 78,
1097–1106,
https://doi.org/10.1175/1520-0477(1997)078<1097:HDITTF>2.0.CO;2,
1996.
Stull, R. B.: An Introduction to Boundary Layer Meteorology,
Atmospheric Sciences Library 13, Kluwer Academic Publishers, Dordrecht,
https://doi.org/10.1007/978-94-009-3027-8, 1988.
Swartzendruber, P. C., Jaffe, D. A., Prestbo, E. M., Weiss-Penzias, P.,
Selin, N. E., Park, R., Jacob, D. J., Strode, S., and Jaeglé, L.:
Observations of reactive gaseous mercury in the free troposphere at the Mount
Bachelor Observatory, J. Geophys. Res.-Atmos., 111, D24301,
https://doi.org/10.1029/2006JD007415, 2006.
Swartzendruber, P. C., Chand, D., Jaffe, D. A., Smith, J., Reidmiller, D.,
Gratz, L., Keeler, J., Strode, S., Jaeglé, L., and Talbot, R.: Vertical
distribution of mercury, CO, ozone, and aerosol scattering coefficient in the
Pacific Northwest during the spring 2006 INTEX-B campaign, J. Geophys.
Res.-Atmos., 113, D10305, https://doi.org/10.1029/2007JD009579, 2008.
Swartzendruber, P. C., Jaffe, D. A., and Finley, B.: Development and first
results of an aircraft-based, high time resolution technique for gaseous
elemental and reactive (oxidized) gaseous mercury, Environ. Sci. Technol.,
43, 7484–7489, https://doi.org/10.1021/es901390t, 2009.
Talbot, R., Mao, H., Scheuer, E., Dibb, J., and Avery, M.: Total depletion of
Hg° in the upper troposphere-lower stratosphere, Geophys. Res. Lett.,
34, L23804, https://doi.org/10.1029/2007GL031366, 2007.
Talbot, R., Mao, H., Scheuer, E., Dibb, J., Avery, M., Browell, E., Sachse,
G., Vay, S., Blake, D., Huey, G., and Fuelberg, H.: Factors influencing the
large-scale distribution of Hg° in the Mexico City area and over the
North Pacific, Atmos. Chem. Phys., 8, 2103–2114,
https://doi.org/10.5194/acp-8-2103-2008, 2008.
Temme, C., Einax, J. W., Ebinghaus, R., and Schroeder, W. H.: Measurements of
atmospheric mercury species at a coastal site in the Antarctic and over the
South Atlantic Ocean during polar summer, Environ. Sci. Technol., 37, 22–31,
https://doi.org/10.1021/es025884w, 2003a.
Temme, C., Slemr, F., Ebinghaus, R., and Einax, J. W.: Distribution of
mercury over the Atlantic Ocean in 1996 and 1999–2001, Atmos. Environ., 37,
1889–1897, https://doi.org/10.1016/S1352-2310(03)00069-4, 2003b.
Weigelt, A., Temme, C., Bieber, E., Schwerin, A., Schuetze, M., Ebinghaus,
R., and Kock, H. H.: Measurements of atmospheric mercury species at a German
rural background site from 2009 to 2011 – methods and results, Environ.
Chem., 10, 102–110, https://doi.org/10.1071/EN12107, 2013.
Weigelt, A., Ebinghaus, R., Manning, A. J., Derwent, R. G., Simmonds, P. G.,
Spain, T. G., Jennings, S. G., and Slemr, F.: Analysis and interpretation of
18 years of mercury observations since 1996 at Mace Head, Ireland, Atmos.
Environ., 100, 85–93, https://doi.org/10.1016/j.atmosenv.2014.10.050, 2015.
Weigelt, A., Slemr, F, Ebinghaus, R., Pirrone, N., Bieser, J., Bödewadt,
J., Esposito, G., and van Velthoven, P. F. J.: Airborne measurements of
mercury emissions from a modern coal fired power plant in central Europe, in
preparation, 2016.
Zahn, A. and Brenninkmeijer, C. A.: New directions: A chemical tropopause
defined, Atmos. Environ., 37, 439–440, https://doi.org/10.1016/S1352-2310(02)00901-9,
2003.
Short summary
We show the first mercury profile measurements over Europe since 1996. Besides gaseous elemental mercury (GEM) and total gaseous mercury (TGM), the gases CO, SO2, NOx, and O3 were measured from aboard a research aircraft over four European locations. Compared to the boundary layer, the concentration of GEM and TGM in the free troposphere was 10–30% lower. Inside the individual layers no vertical gradient was apparent. Combined with CARIBIC data, a unique profile from 0.4 to 10.5 km is provided.
We show the first mercury profile measurements over Europe since 1996. Besides gaseous elemental...
Special issue
Altmetrics
Final-revised paper
Preprint