Articles | Volume 16, issue 4
https://doi.org/10.5194/acp-16-2207-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-2207-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions
Christopher E. Sioris
CORRESPONDING AUTHOR
Department of Earth and Space Science and Engineering, York
University, Toronto, Canada, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
Jason Zou
Department of Physics, University of Toronto, 60 St. George. St.,
Toronto, ON, M5S 1A7, Canada
C. Thomas McElroy
Department of Earth and Space Science and Engineering, York
University, Toronto, Canada, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
Chris D. Boone
Department of Chemistry, University
of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
Patrick E. Sheese
Department of Physics, University of Toronto, 60 St. George. St.,
Toronto, ON, M5S 1A7, Canada
Peter F. Bernath
Department of Chemistry, University
of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
Department of Chemistry & Biochemistry, Old Dominion University,
4541 Hampton Blvd., Norfolk, VA 23529, USA
Related authors
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Viktoria F. Sofieva, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Michael Kiefer, Johanna Tamminen, Alexey Rozanov, Carlo Arosio, Nathaniel Livesey, Robert Damadeo, Patrick Sheese, Kaley A. Walker, Doug Degenstein, Daniel Zawada, Natalya A. Kramarova, and Arno Keppens
EGUsphere, https://doi.org/10.5194/egusphere-2025-2830, https://doi.org/10.5194/egusphere-2025-2830, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
For satellite measurements of atmospheric composition, the random uncertainty estimates provided by retrieval algorithms might be imperfect due to various approximations used in the retrievals or presence of unknown error sources. This paper presents an overview of the methods used for validation of random uncertainty estimates. All methods discussed in this study are categorized, and assumptions and limitations of each method are discussed.
Matthew Wyatt, Peter F. Bernath, Chris Boone, Léo Lavy, and Ryan Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3116, https://doi.org/10.5194/egusphere-2025-3116, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
An improved version (v.5.3) of Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) winds is now available. The wind speeds are determined by use of the Doppler effect. Using a better set of reference molecules to determine the Doppler effect as well as a new method for determining the heading angle (look direction) of the satellite has improved our wind speeds, which has been validated by other instruments. These winds can be used to improve atmospheric models.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, and David A. Plummer
Atmos. Chem. Phys., 25, 5199–5213, https://doi.org/10.5194/acp-25-5199-2025, https://doi.org/10.5194/acp-25-5199-2025, 2025
Short summary
Short summary
Observations from Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-FTS) are used to examine global stratospheric water vapour trends for 2004–2021. The satellite measurements are used to quantify trend contributions arising from changes in tropical tropopause temperatures, general circulation patterns, and methane concentrations. While most of the observed trends can be explained by these changes, there remains an unaccounted-for and increasing source of water vapour in the lower mid-stratosphere at mid-latitudes, which is discussed.
Laura N. Saunders, Kaley A. Walker, Gabriele P. Stiller, Thomas von Clarmann, Florian Haenel, Hella Garny, Harald Bönisch, Chris D. Boone, Ariana E. Castillo, Andreas Engel, Johannes C. Laube, Marianna Linz, Felix Ploeger, David A. Plummer, Eric A. Ray, and Patrick E. Sheese
Atmos. Chem. Phys., 25, 4185–4209, https://doi.org/10.5194/acp-25-4185-2025, https://doi.org/10.5194/acp-25-4185-2025, 2025
Short summary
Short summary
We present a 17-year stratospheric age-of-air dataset derived from ACE-FTS satellite measurements of sulfur hexafluoride. This is the longest continuous, global, and vertically resolved age of air time series available to date. In this paper, we show that this dataset agrees well with age-of-air datasets based on measurements from other instruments. We also present trends in the midlatitude lower stratosphere that indicate changes in the global circulation that are predicted by climate models.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Preprint withdrawn
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
Atmos. Meas. Tech., 18, 569–602, https://doi.org/10.5194/amt-18-569-2025, https://doi.org/10.5194/amt-18-569-2025, 2025
Short summary
Short summary
The MAESTRO instrument has been monitoring ozone and NO2 since February 2004. A new version of these data products has recently been released; however, these new products must be validated against other datasets to ensure their validity. This study presents such an assessment, using measurements from 11 satellite instruments to characterize the new MAESTRO products. In the stratosphere, good agreement is found for ozone and acceptable agreement is found for NO2 with these other datasets.
Jiansheng Zou, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick
Atmos. Meas. Tech., 17, 6983–7005, https://doi.org/10.5194/amt-17-6983-2024, https://doi.org/10.5194/amt-17-6983-2024, 2024
Short summary
Short summary
Ozone measurements from the ACE-FTS satellite instrument have been compared to worldwide balloon-borne ozonesonde profiles using pairs of closely spaced profiles and monthly averaged profiles. ACE-FTS typically measures more ozone in the stratosphere by up to 10 %. The long-term stability of the ACE-FTS ozone data is good, exhibiting small (but non-significant) drifts of less than 3 % per decade in the stratosphere. Lower in the profiles, the calculated drifts are larger (up to 10 % per decade).
Selena Zhang, Susan Solomon, Chris D. Boone, and Ghassan Taha
Atmos. Chem. Phys., 24, 11727–11736, https://doi.org/10.5194/acp-24-11727-2024, https://doi.org/10.5194/acp-24-11727-2024, 2024
Short summary
Short summary
This paper investigates the vertical impacts of the anomalous 2023 Canadian wildfire season using multiple satellite instruments. Our results highlight that despite a record-breaking area burned, only a small amount of smoke managed to enter the stratosphere. This shows that the conditions for deep convection were rarely met in the 2023 wildfire season, suggesting that even a massive area burned is not necessarily an indicator of stratospheric perturbations.
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Paul S. Jeffery, James R. Drummond, Jiansheng Zou, and Kaley A. Walker
Atmos. Chem. Phys., 24, 4253–4263, https://doi.org/10.5194/acp-24-4253-2024, https://doi.org/10.5194/acp-24-4253-2024, 2024
Short summary
Short summary
The MOPITT instrument has been monitoring carbon monoxide (CO) since March 2000. This dataset has been used for many applications; however, episodic emission events, which release large amounts of CO into the atmosphere, are a major source of uncertainty. This study presents a method for identifying these events by determining measurements that are unlikely to have typically arisen. The distribution and frequency of these flagged measurements in the MOPITT dataset are presented and discussed.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023, https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
Short summary
This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N2O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O3 decreases above 30 hPa in the Northern Hemisphere.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022, https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Short summary
The upper troposphere–lower stratosphere is one of the most variable regions in the atmosphere. To improve our understanding of water vapour and ozone concentrations in this region, climatologies have been developed from 14 years of measurements from three Canadian satellite instruments. Horizontal and vertical coordinates have been chosen to minimize the effects of variability. To aid in analysis, model simulations have been used to characterize differences between instrument climatologies.
Kimberlee Dubé, Daniel Zawada, Adam Bourassa, Doug Degenstein, William Randel, David Flittner, Patrick Sheese, and Kaley Walker
Atmos. Meas. Tech., 15, 6163–6180, https://doi.org/10.5194/amt-15-6163-2022, https://doi.org/10.5194/amt-15-6163-2022, 2022
Short summary
Short summary
Satellite observations are important for monitoring changes in atmospheric composition. Here we describe an improved version of the NO2 retrieval for the Optical Spectrograph and InfraRed Imager System. The resulting NO2 profiles are compared to those from the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer and the Stratospheric Aerosol and Gas Experiment III on the International Space Station. All datasets agree within 20 % throughout the stratosphere.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Prashant Chavan, Suvarna Fadnavis, Tanusri Chakroborty, Christopher E. Sioris, Sabine Griessbach, and Rolf Müller
Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, https://doi.org/10.5194/acp-21-14371-2021, 2021
Short summary
Short summary
Biomass burning (BB) over Asia is a strong source of carbonaceous aerosols during spring. Here, we show an outflow of Asian BB carbonaceous aerosols into the UTLS. These aerosols enhance atmospheric heating and produce circulation changes that lead to the enhancement of water vapor in the UTLS over the tropics. In the stratosphere, water vapor is further transported to the South Pole by the Brewer–Dobson circulation. Enhancement of water vapor in the UTLS has implications for climate change.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Doug A. Degenstein, Felicia Kolonjari, David Plummer, Douglas E. Kinnison, Patrick Jöckel, and Thomas von Clarmann
Atmos. Meas. Tech., 14, 1425–1438, https://doi.org/10.5194/amt-14-1425-2021, https://doi.org/10.5194/amt-14-1425-2021, 2021
Short summary
Short summary
Output from climate chemistry models (CMAM, EMAC, and WACCM) is used to estimate the expected geophysical variability of ozone concentrations between coincident satellite instrument measurement times and geolocations. We use the Canadian ACE-FTS and OSIRIS instruments as a case study. Ensemble mean estimates are used to optimize coincidence criteria between the two instruments, allowing for the use of more coincident profiles while providing an estimate of the geophysical variation.
Cited articles
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M.,
Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R.,
DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J.,
Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe,
R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R.,
Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P.,
Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J.
J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A.,
Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric
Chemistry Experiment (ACE): mission overview, Geophys. Res. Lett., 32,
L15S01, https://doi.org/10.1029/2005GL022386, 2005.
Bernstein, L. S., Berk, A., Acharya, P. K., Robertson, D. C., Anderson, G.
P., Chetwynd, J. H., and Kimball, L. M.: Very narrow band model calculations
of atmospheric fluxes and cooling rates, J. Atmos. Sci., 53, 2887–2904,
1996.
Bertrand, S., Daga, R., Bedert, R., and Fontijn, K.: Deposition of the
2011–2012 Cordón Caulle tephra (Chile, 40° S) in lake
sediments: Implications for tephrochronology and volcanology, J. Geophys.
Res.-Earth, 119, 2555–2573, https://doi.org/10.1002/2014JF003321, 2014.
Bonadonna, C., Pistolesi, M., Cioni, R., Degruyter, W., Elissondo, M., and
Baumann, V.: Dynamics of wind-affected volcanic plumes: The example of the
2011 Cordón Caulle eruption, Chile, J. Geophys. Res.-Sol. Ea., 120,
2242–2261, https://doi.org/10.1002/2014JB011478, 2015.
Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D.,
Rinsland, C. P., and Bernath, P. F.: Retrievals for the atmospheric
chemistry experiment Fourier-transform spectrometer, Appl. Opt., 44,
7218–7231, 2005.
Boone, C. D., Walker, K. A., and Bernath, P. F.: Version 3 retrievals for the
Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS),
The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation
Anthology, Deepak Publishing, Hampton, VA, USA, 2013.
Bursik, M., Jones, M., Carn, S., Dean, K., Patra, A., Pavolonis, M., Pitman,
E. B., Singh, T., Singla, P., Webley, P., Bjornsson, H., and Ripepe, M.:
Estimation and propagation of volcanic source parameter uncertainty in an
ash transport and dispersal model: application to the Eyjafjallajokull plume
of 14–16 April 2010, Bull. Volcanol., 74, 2321–2338, 2012.
Clarisse, L., Prata, F., Lacour, J.-L., Hurtmans, D., Clerbaux, C., and
Coheur, P.-F.: A correlation method for volcanic ash detection using
hyperspectral infrared measurements, Geophys. Res. Lett., 37, L19806,
https://doi.org/10.1029/2010GL044828, 2010.
Clarisse, L., Coheur, P.-F., Prata, F., Hadji-Lazaro, J., Hurtmans, D., and
Clerbaux, C.: A unified approach to infrared aerosol remote sensing and type
specification, Atmos. Chem. Phys., 13, 2195–2221,
https://doi.org/10.5194/acp-13-2195-2013, 2013.
Degruyter, W. and Bonadonna, C.: Improving on mass flow rate estimates of
volcanic eruptions, Geophys. Res. Lett., 39, L16308,
https://doi.org/10.1029/2012GL052566, 2012.
Durant, A. J. and Rose, W. I.: Sedimentological constraints on
hydrometeor-enhanced particle deposition: 1992 eruptions of Crater Peak,
Alaska, J. Volcanol. Geothermal Res., 186, 40–59, 2009.
Ehhalt, D. H.: Turnover times of 137Cs and HTO in the troposphere and
removal rates of natural aerosol particles and water vapour, J. Geophys.
Res., 78, 7076–7086, 1973.
Forster, P. M. de F. and Collins, M.: Quantifying the water vapour feedback
associated with post-Pinatubo global cooling, Clim. Dynam., 23, 207–214,
2004.
Glaze, L. S., Baloga, S. M., and Wilson, L.: Transport of atmospheric water
vapor by volcanic eruption columns, J. Geophys. Res., 102, 6099–6108, 1997.
Grewe, V. and Stenke, A.: AirClim: an efficient tool for climate evaluation
of aircraft technology, Atmos. Chem. Phys., 8, 4621-4639,
https://doi.org/10.5194/acp-8-4621-2008, 2008.
Grove, T. L., Till, C. B., Lev, E., Chatterjee, N., and Médard, E.:
Kinematic variables and water transport control the formation and location of
arc volcanoes, Nature, 459, 694–697, 2009.
Gudmundsson, M. T., Thordarson, T., Höskuldsson, Á., Larsen, G.,
Björnsson, H., Prata, F. J., Oddsson, B., Magnússon, E.,
Högnadóttir, T., Petersen, G. N., Hayward, C. L., Stevenson, J. A.,
and Jónsdóttir, I.: Ash generation and distribution from the
April-May 2010 eruption of Eyjafjallajökull, Iceland, Sci. Rep., 2, 572,
https://doi.org/10.1038/srep00572, 2012.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and
Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013:
The Physical Science Basis, Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Hegglin, M. I., Tegtmeier, S., Anderson, J., Froidevaux, L., Fuller, R.,
Funke, B., Jones, A., Lingenfelser, G., Lumpe, J., Pendlebury, D., Remsberg,
E., Rozanov, A., Toohey, M., Urban, J., von Clarmann, T., Walker, K. A.,
Wang, R., and Weigel, K.: SPARC Data Initiative: Comparison of water vapor
climatologies from international satellite limb sounders, J. Geophys. Res.
Atmos., 118, 11824–11846, https://doi.org/10.1002/jgrd.50752, 2013.
Hegglin, M. I., Plummer, D. A., Shepherd, T. G., Scinocca, J. F., Anderson,
J., Froidevaux, L., Funke, B., Hurst, D., Rozanov, A., Urban, J., von
Clarmann, T., Walker, K. A., Wang, H. J., Tegtmeier, S., and Weigel, K.:
Vertical structure of stratospheric water vapour trends derived from merged
satellite data, Nat. Geosci., 7, 768–776, 2014.
Junge, C. E.: Air chemistry and radioactivity, Academic Press, New York,
1963.
Khaykin, S. M., Engel, I., Vömel, H., Formanyuk, I. M., Kivi, R., Korshunov,
L. I., Krämer, M., Lykov, A. D., Meier, S., Naebert, T., Pitts, M. C.,
Santee, M. L., Spelten, N., Wienhold, F. G., Yushkov, V. A., and Peter, T.:
Arctic stratospheric dehydration – Part 1: Unprecedented observation of
vertical redistribution of water, Atmos. Chem. Phys., 13, 11503–11517,
https://doi.org/10.5194/acp-13-11503-2013, 2013.
Laroche, S., Gauthier, P., St-James, J., and Morneau, J.: Implementation of
a 3D variational data assimilation system at the Canadian Meteorological
Centre. Part II: The regional analysis, Atmos. Ocean, 37, 281–307, 1999.
Magnússon, E., Gudmundsson, M. T., Roberts, M. J., Sigurðsson, G.,
Höskuldsson, F., and Oddsson, B.: Ice-volcano interactions during the
2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar, J.
Geophys. Res., 117, B07405, https://doi.org/10.1029/2012JB009250, 2012.
McElroy, C. T., Nowlan, C. R., Drummond, J. R., Bernath, P. F., Barton, D.
V., Dufour, D. G., Midwinter, C., Hall, R. B., Ogyu, A., Ullberg, A., Wardle,
D. I., Kar, J., Zou, J., Nichitiu, F., Boone, C. D., Walker, K. A., and
Rowlands, N.: The ACE-MAESTRO instrument on SCISAT: description, performance,
and preliminary results, Appl. Opt., 46, 4341–4356, 2007.
Michelsen, H. A., Manney, G. L., Irion, F. W., Toon, G. C., Gunson, M. R.,
Rinsland, C. P., Zander, R., Mahieu, E., Newchurch, M. J., Purcell, P. N.,
Remsberg, E. E., Russell III, J. M., Pumphrey, H. C., Waters, J. W.,
Bevilacqua, R. M., Kelly, K. K., Hintsa, E. J., Weinstock, E. M., Chiou,
E.-W., Chu, W. P., McCormick, M. P., and Webster, C. R.: ATMOS version 3
water vapor measurements: Comparisons with observations from two ER-2 Lyman-a
hygrometers, MkIV, HALOE, SAGE II, MAS, and MLS, J. Geophys. Res., 107, 4027,
https://doi.org/10.1029/2001JD000587, 2002.
Mo, K. C.: Relationships between low-frequency variability in the southern
hemisphere and sea surface temperature anomalies, J. Climate, 13, 3599–3610,
2000.
Murray, F. W.: On the computation of saturation vapor pressure, J. Appl.
Meteorol., 6, 203–204, 1967.
Nakamae, K., Uchino, O., Morino, I., Liley, B., Sakai, T., Nagai, T., and
Yokota, T.: Lidar observation of the 2011 Puyehue-Cordón Caulle volcanic
aerosols at Lauder, New Zealand, Atmos. Chem. Phys., 14, 12099–12108,
https://doi.org/10.5194/acp-14-12099-2014, 2014.
Newhall, C. G. and Self, S.: The Volcanic Explosivity Index (VEI): An
estimate of explosive magnitude for historical volcanism, J. Geophys. Res.,
1231–1238, 1982.
Petersen, G. N., Bjornsson, H., and Arason, P.: The impact of the atmosphere
on the Eyjafjallajökull 2010 eruption plume, J. Geophys. Res., 117,
D00U07, https://doi.org/10.1029/2011JD016762, 2012.
Pinto, J. P., Turco, R. P., and Toon, O. B.: Self-limiting physical and
chemical effects in volcanic eruption clouds, J. Geophys. Res., 94,
11165–11174, 1989.
Prospero, J. M., Charlson, R. J., Mohnen, V., Jaenicke, R., Delany, C.,
Moyer, J., Zoller, W., and Rahn, K.: The atmospheric aerosol system: An
overview, Rev. Geophys., 21, 1607–1629, 1983.
Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and
precipitation, Springer, New York, 2010.
Pumphrey, H. C., Read, W. G., Livesey, N. J., and Yang, K.: Observations of
volcanic SO2 from MLS on Aura, Atmos. Meas. Tech., 8, 195–209,
https://doi.org/10.5194/amt-8-195-2015, 2015.
Randel, W. J., Moyer, E., Park, M., Jensen, E., Bernath, P., Walker, K., and
Boone, C.: Global variations of HDO and HDO/H2O ratios in the upper
troposphere and lower stratosphere derived from ACE-FTS satellite
measurements, J. Geophys. Res., 117, D06303, https://doi.org/10.1029/2011JD016632, 2012.
Rinsland, C. P., Gunson, M. R., Abrams, M. C., Lowes, L. L., Zander, R.,
Mahieu, E., Goldman, A., Ko, M. K. W., Rodriguez, J. M., and Sze, N. D.:
Heterogeneous conversion of N2O5 to HNO3 in the post-Mount
Pinatubo eruption stratosphere, J. Geophys. Res., 99, 8213–8219, 1994.
Schmidt, A., Witham, C. S., Theys, N., Richards, N. A. D., Thordarson, T.,
Szpek, K., Feng, W., Hort, M. C., Woolley, A. M., Jones, A. R., Redington, A.
L., Johnson, B. T., Hayward, C. L., and Carslaw, K. S.: Assessing hazards to
aviation from sulfur dioxide emitted by explosive Icelandic eruptions, J.
Geophys. Res. Atmos., 119, 14180–14196, https://doi.org/10.1002/2014JD022070, 2014.
Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A.,
Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H., Voigt, C.,
Rahm, S., Simmet, R., Scheibe, M., Lichtenstern, M., Stock, P., Rüba, H.,
Schäuble, D., Tafferner, A., Rautenhaus, M., Gerz, T., Ziereis, H.,
Krautstrunk, M., Mallaun, C., Gayet, J.-F., Lieke, K., Kandler, K., Ebert,
M., Weinbruch, S., Stohl, A., Gasteiger, J., Groß, S., Freudenthaler, V.,
Wiegner, M., Ansmann, A., Tesche, M., Olafsson, H., and Sturm, K.: Airborne
observations of the Eyjafjalla volcano ash cloud over Europe during air space
closure in April and May 2010, Atmos. Chem. Phys., 11, 2245–2279,
https://doi.org/10.5194/acp-11-2245-2011, 2011.
Sears, T. M., Thomas, G. E., Carboni, E., Smith, A. J. A., and Grainger, R.
G.: SO2 as a possible proxy for volcanic ash in aviation hazard
avoidance, J. Geophys. Res. Atmos., 118, 5698–5709, https://doi.org/10.1002/jgrd.50505,
2013.
Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Árnadóttir, T.,
Pedersen, R., Roberts, M. J., Óskarsson, N., Auriac, A., Decriem, J.,
Einarsson, P., Geirsson, H., Hensch, M., Ófeigsson, B. G., Sturkell, E.,
Sveinbjörnsson, H., and Feigl, K. L.: Intrusion triggering of the 2010
Eyjafjallajökull explosive eruption, Nature, 468, 426–430, 2010.
Sioris, C. E., Zou, J., McElroy, C. T., McLinden, C. A., and Vömel,
H.:
High vertical resolution water vapour profiles in the upper troposphere and
lower stratosphere retrieved from MAESTRO solar occultation spectra, Adv.
Space. Res., 46, 642–650, 2010a.
Sioris, C. E., Boone, C. D., Bernath, P. F., Zou, J., McElroy, C.
T., and McLinden, C. A.: ACE observations of aerosol in the upper troposphere
and lower stratosphere from the Kasatochi volcanic eruption, J. Geophys.
Res., 115, D00L14, https://doi.org/10.1029/2009JD013469, 2010b.
Sioris, C. E., Zou, J., Plummer, D. A., Boone, C. D., McElroy, C. T., Sheese, P. E., Moeini, O., and Bernath, P. F.: Upper tropospheric water vapour variability at high latitudes – Part 1: Influence of the annular modes, Atmos. Chem. Phys. Discuss., 15, 22291–22329, https://doi.org/10.5194/acpd-15-22291-2015, 2015.
Soden, B. J., Wetherald, R. T., Stenchikov, G. L., and Robock, A.: Global
cooling after the eruption of Mount Pinatubo: A test of climate feedback by
water vapor, Science, 296, 727–730, 2002.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of stratospheric water
vapor to decadal changes in the rate of global warming, Science, 327,
1219–1223, https://doi.org/10.1126/science.1182488, 2010.
Steele, H. M., Eldering, A., and Lumpe, J. D.: Simulations of the accuracy
in retrieving stratospheric aerosol effective radius, composition, and
loading from infrared spectral transmission measurements, Appl. Opt., 45,
2014–2027, 2006.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2078, https://doi.org/10.1175/BAMS-D-14-00110.1,
2015.
Stiller, G. P., Kiefer, M., Eckert, E., von Clarmann, T., Kellmann, S.,
García-Comas, M., Funke, B., Leblanc, T., Fetzer, E., Froidevaux, L.,
Gomez, M., Hall, E., Hurst, D., Jordan, A., Kämpfer, N., Lambert, A.,
McDermid, I. S., McGee, T., Miloshevich, L., Nedoluha, G., Read, W.,
Schneider, M., Schwartz, M., Straub, C., Toon, G., Twigg, L. W., Walker, K.,
and Whiteman, D. N.: Validation of MIPAS IMK/IAA temperature, water vapor,
and ozone profiles with MOHAVE-2009 campaign measurements, Atmos. Meas.
Tech., 5, 289–320, https://doi.org/10.5194/amt-5-289-2012, 2012.
Theys, N., Campion, R., Clarisse, L., Brenot, H., van Gent, J., Dils, B.,
Corradini, S., Merucci, L., Coheur, P.-F., Van Roozendael, M., Hurtmans, D.,
Clerbaux, C., Tait, S., and Ferrucci, F.: Volcanic SO2 fluxes derived from
satellite data: a survey using OMI, GOME-2, IASI and MODIS, Atmos. Chem.
Phys., 13, 5945–5968, https://doi.org/10.5194/acp-13-5945-2013, 2013.
Theys, N., De Smedt, I., Van Roozendael, M., Froidevaux, L., Clarisse, L.,
and Hendrick, F.: First satellite detection of volcanic OClO after the
eruption of Puyehue-Cordón Caulle, Geophys. Res. Lett., 41, 667–672,
https://doi.org/10.1002/2013GL058416, 2014.
Thomas, H. E. and Prata, A. J.: Sulphur dioxide as a volcanic ash proxy
during the April–May 2010 eruption of Eyjafjallajökull Volcano, Iceland,
Atmos. Chem. Phys., 11, 687–6880, https://doi.org/10.5194/acp-11-6871-2011, 2011.
Thomason, L. W., Moore, J. R., Pitts, M. C., Zawodny, J. M., and Chiou, E.
W.: An evaluation of the SAGE III version 4 aerosol extinction coefficient
and water vapor data products, Atmos. Chem. Phys., 10, 2159–2173,
https://doi.org/10.5194/acp-10-2159-2010, 2010.
Uemera, N., Kuriki, S., Nobuta, K., Yokota, T., Nakajima, H., Sugita, T.,
and Sasano, Y.: Retrieval of trace gases from aerosol-influenced infrared
transmission spectra observed by low-spectral-resolution Fourier-transform
spectrometers, Appl. Opt., 44, 455–466, 2005.
Vanhellemont, F., Tetard, C., Bourassa, A., Fromm, M., Dodion, J., Fussen,
D., Brogniez, C., Degenstein, D., Gilbert, K. L., Turnbull, D. N., Bernath,
P., Boone, C., and Walker, K. A.: Aerosol extinction profiles at 525 nm and
1020 nm derived from ACE imager data: comparisons with GOMOS, SAGE II, SAGE
III, POAM III, and OSIRIS, Atmos. Chem. Phys., 8, 2027–2037,
https://doi.org/10.5194/acp-8-2027-2008, 2008.
Vernier, J.-P., Fairlie, T. D., Murray, J. J., Tupper, A., Trepte, C.,
Winker, D., Pelon, J., Garnier, A., Jumelet, J., Pavalonis, M., Omar, A. H.,
and Powell, K. A.: An advanced system to monitor the 3D structure of diffuse
volcanic ash clouds, J. Appl. Meteor. Climatol., 52, 2125–2138, 2013.
Wang, X.: Remote sensing of the vertical profile of cirrus cloud effective
particle size, PhD thesis, University of California at Los Angeles, Los
Angeles, 2008.
Woodhouse, M. J., Hogg, A. J., Phillips, J. C., and Sparks, R. S. J.:
Interaction between volcanic plumes and wind during the 2010
Eyjafjallajökull eruption, Iceland, J. Geophys. Res.-Sol. Ea., 118,
92–109,
https://doi.org/10.1029/2012JB009592, 2013.
Woodhouse, M. J., Hogg, A. J., Phillips, J. C., and Rougier, J. C.: Uncertainty
analysis of a model of wind-blown volcanic plumes, Bull. Volcanol., 77, 83,
https://doi.org/10.1007/s00445-015-0959-2, 2015.
Short summary
This paper shows that volcanic eruptions occurring at higher latitudes in windy environments can lead to significant perturbations to upper tropospheric (UT) humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes.
This research was performed for the purpose of determining long-term trends in high-latitude UT water vapour. The steps involve building a monthly climatology and using it to deseasonalize the time series. Large observed anomalies are then studied.
This paper shows that volcanic eruptions occurring at higher latitudes in windy environments can...
Altmetrics
Final-revised paper
Preprint