Articles | Volume 16, issue 20
https://doi.org/10.5194/acp-16-13081-2016
https://doi.org/10.5194/acp-16-13081-2016
Research article
 | 
26 Oct 2016
Research article |  | 26 Oct 2016

Impact of climate change on the production and transport of sea salt aerosol on European seas

Joana Soares, Mikhail Sofiev, Camilla Geels, Jens H. Christensen, Camilla Andersson, Svetlana Tsyro, and Joakim Langner

Related authors

Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019,https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
The use of hierarchical clustering for the design of optimized monitoring networks
Joana Soares, Paul Andrew Makar, Yayne Aklilu, and Ayodeji Akingunola
Atmos. Chem. Phys., 18, 6543–6566, https://doi.org/10.5194/acp-18-6543-2018,https://doi.org/10.5194/acp-18-6543-2018, 2018
Short summary
Do contemporary (1980–2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017,https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin
M. Sofiev, J. Vira, R. Kouznetsov, M. Prank, J. Soares, and E. Genikhovich
Geosci. Model Dev., 8, 3497–3522, https://doi.org/10.5194/gmd-8-3497-2015,https://doi.org/10.5194/gmd-8-3497-2015, 2015
Short summary
Refinement of a model for evaluating the population exposure in an urban area
J. Soares, A. Kousa, J. Kukkonen, L. Matilainen, L. Kangas, M. Kauhaniemi, K. Riikonen, J.-P. Jalkanen, T. Rasila, O. Hänninen, T. Koskentalo, M. Aarnio, C. Hendriks, and A. Karppinen
Geosci. Model Dev., 7, 1855–1872, https://doi.org/10.5194/gmd-7-1855-2014,https://doi.org/10.5194/gmd-7-1855-2014, 2014

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A global dust emission dataset for estimating dust radiative forcings in climate models
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025,https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025,https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Spatial and temporal evolution of future atmospheric reactive nitrogen deposition in China under different climate change mitigation strategies
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025,https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025,https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025,https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary

Cited articles

Albert, M. F. M. A., Anguelova, M. D., Manders, A. M. M., Schaap, M., and de Leeuw, G.: Parameterization of oceanic whitecap fraction based on satellite observations, Atmos. Chem. Phys. Discuss., 15, 21219–21269, https://doi.org/10.5194/acpd-15-21219-2015, 2015.
Andersson, C., Bergström, R., Bennet, C., Robertson, L., Thomas, M., Korhonen, H., Lehtinen, K. E. J., and Kokkola, H.: MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation, Geosci. Model Dev., 8, 171–189, https://doi.org/10.5194/gmd-8-171-2015, 2015.
Andreas, E. L.: A new sea spray generation function for wind speeds up to 32 m s−1, J. Phys. Oceanogr., 28, 2175–2184, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2, 1998.
Andreas, E. L., Edson, J. B., Monahan, E. C., Rouault, M. P., and Smith, S. D.: The spray contribution to net evaporation from the sea: A review of recent progress, Bound.-Lay. Meteorol., 72, 3–52, https://doi.org/10.1007/BF00712389, 1995.
Bates, T. S., Coffman, D. J., Covert, D. S., and Quinn, P. K.: Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE-1, ACE-2, and Aerosols99, J. Geophys. Res., 107, 8026, https://doi.org/10.1029/2001JD001174, 2002.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Multi-model comparison of four offline dispersion models driven by the global climate projection climate show that the major driver for the sea salt flux changes will be the seawater temperature, but there are substantial differences between the model predictions. The impact on regional radiative budget due to sea spray is considerable in the Mediterranean area, due to warmer temperatures and longer days during the winter.
Share
Altmetrics
Final-revised paper
Preprint