

Supplement of

Impact of climate change on the production and transport of sea salt aerosol on European seas

Joana Soares et al.

Correspondence to: Joana Soares (joana.soares@fmi.fi)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

$$1 \quad \frac{dF}{dD_p} = 1.373 * U_{10m}^{3.41} * \frac{1 + 0.057 D_p^{1.05}}{D_p^3} * 10^{1.19 \exp\left(-\left(\frac{0.38 - \lg D_p}{0.65}\right)^2\right)}$$
(S1)

3 where dF/dD_p is the rate of sea salt droplet generation per unit area of the whitecap and per 4 increment of droplet dry radius (dD_p) U₁₀ is the wind speed at 10 m

5

$${}_{6} \quad \frac{dF}{dD_{p}} = 3.84 * 10^{-6} * A_{k}T_{w} + B_{k} * U_{10m}^{3.41}$$
(S2)

7

8 where dF/dD_p is the rate of sea salt droplet generation per unit area of sea surface and per 9 increment of log of the droplet dry radius (dD_p) , T_w is the temperature of seasurface water, 10 and A_k and B_k are the parameters describing the dependence of sea salt flux on the aerosol 11 size (described in Eq. S3), and U_{10} is the wind speed at 10 m.

$$A_{k} = C_{4}d_{d}^{4} + C_{3}d_{d}^{3} + C_{2}d_{d}^{2} + C_{1}d_{d} + C_{0}$$

$$B_{k} = D_{4}d_{d}^{4} + D_{3}d_{d}^{3} + D_{2}d_{d}^{2} + D_{1}d_{d} + D_{0}$$
(S3)

13 Where C_i and D_i are empirical coefficients tabulated according to Mårtensson et al. (2003),

14 shown in the table below.

15

16	Table S1:	Coefficients f	or the Paran	neterization of	of A_k (C ₄ -	$-C_0$) and B_k	$(D_4 - D_0)$ in	Equation
----	-----------	----------------	--------------	-----------------	----------------------------	--------------------	------------------	----------

17 (S3) for the Three Size Intervals (k)

Size Interval, 10 ⁻⁶ m	C ₄	C ₃	C_2	C ₁	C ₀
0.020-0.145	-2.576×10^{35}	5.932×10^{28}	2.867×10^{21}	-3.003×10^{13}	2.881×10^{6}
0.145–0.419	-2.452×10^{33}	2.404 x10 ²⁷	-8.148x10 ²⁰	1.183x10 ¹⁴	-6.743×10^{6}
0.419–2.8	1.085x10 ²⁹	-9.841x10 ²³	3.132x10 ¹⁸	-4.165×10^{12}	2.181x10 ⁶
Size Interval, 10 ⁻⁶ m	D_4	D ₃	D_2	D_1	D_0
Size Interval, 10 ⁻⁶ m 0.020–0.145	D ₄ 7.188x10 ³⁷	D ₃ -1.616x10 ³¹	D ₂ 6.791x10 ²³	D ₁ 1.829x10 ¹⁶	D ₀ 7.609x10 ⁸
Size Interval, 10 ⁻⁶ m 0.020–0.145 0.145–0.419	$\begin{array}{c} D_4 \\ \hline 7.188 x 10^{37} \\ \hline 7.368 x 10^{35} \end{array}$	$\begin{array}{r} \underline{D_3} \\ -1.616 x 10^{31} \\ -7.310 x 10^{29} \end{array}$	$\begin{array}{c} \underline{D}_2 \\ 6.791 x 10^{23} \\ 2.528 x 10^{23} \end{array}$	$\begin{array}{c} D_1 \\ 1.829 x 10^{16} \\ -3.787 x 10^{16} \end{array}$	D ₀ 7.609x10 ⁸ 2.279x10 ⁹

Figure S1 Annual mean win speed (m s⁻¹) normalized trend (y) over the past and future periods (x [year]), over the Baltic, Black, North and Mediterranean Seas. Only sea cells considered.

Figure S2 Annual mean water surface temperature (K) normalized trend (y) over the past and future periods (x [year]), over the Baltic, Black, North and Mediterranean Seas. Only sea cells considered.

4 [year]), over the Baltic, Black, North and Mediterranean Seas. Only sea cells considered.

Figure S4 Location of the EMEP measurement sites measuring concentration and wet
deposition of Na⁺. The ones measuring both quantities are marked in red.

- **Figure S5** Baltic Sea SSA annual emission (mgPM₁₀ m⁻²) normalized trend (y) over the past
- 2 and future periods (x [year]).

Figure S6 Black Sea SSA annual emission (mgPM₁₀ m⁻²) normalized trend (y) over the past
and future periods (x [year]).

Figure S7 Mediterranean Sea SSA annual emission (mgPM₁₀ m⁻²) normalized trend (y) over
the past and future periods (x [year]).

Figure S8 North Sea SSA annual emission (mgPM₁₀ m⁻²) normalized trend (y) over the past
and future periods (x [year]).

Figure S9 Baltic Sea SSA mean concentration (μ gPM₁₀ m⁻³) normalized trend (y) over the 2 past and future periods (x [year]).

Figure S10 Black Sea SSA mean concentration (μ gPM₁₀ m⁻³) normalized trend (y) over the past and future periods (x [year]).

Figure S11 Mediterranean Sea SSA mean concentration (µgPM₁₀/m³) normalized trend (y)
over the past and future periods (x [year]).

Figure S12 North Sea SSA mean concentration (μ gPM₁₀ m⁻³) normalized trend (y) over the past and future periods (x [year]).

Figure S13 Baltic Sea SSA annual deposition (mgPM₁₀ m⁻²) normalized trend (y) over the past and future periods (x [year]).

.

Figure S14 Black Sea SSA annual deposition $(mgPM_{10} m^{-2})$ normalized trend (y) over the past and future periods (x [year]).

Figure S15 Mediterranean Sea SSA annual deposition (mgPM₁₀ m⁻²) normalized trend (y)
 over the past and future periods (x [year]).

Figure S16 North Sea SSA annual deposition (mgPM₁₀ m⁻²) normalized trend (y) over the past and future periods (x [year]).