Articles | Volume 16, issue 18
https://doi.org/10.5194/acp-16-11671-2016
https://doi.org/10.5194/acp-16-11671-2016
Research article
 | 
21 Sep 2016
Research article |  | 21 Sep 2016

The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

Andreas Reichert and Ralf Sussmann

Related authors

The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum
Ralf Sussmann, Andreas Reichert, and Markus Rettinger
Atmos. Chem. Phys., 16, 11649–11669, https://doi.org/10.5194/acp-16-11649-2016,https://doi.org/10.5194/acp-16-11649-2016, 2016
Short summary
The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation
Andreas Reichert, Markus Rettinger, and Ralf Sussmann
Atmos. Meas. Tech., 9, 4673–4686, https://doi.org/10.5194/amt-9-4673-2016,https://doi.org/10.5194/amt-9-4673-2016, 2016
Short summary
Pointing errors in solar absorption spectrometry – correction scheme and its validation
A. Reichert, P. Hausmann, and R. Sussmann
Atmos. Meas. Tech., 8, 3715–3728, https://doi.org/10.5194/amt-8-3715-2015,https://doi.org/10.5194/amt-8-3715-2015, 2015
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Quantifying large methane emissions from the Nord Stream pipeline gas leak of September 2022 using IASI satellite observations and inverse modelling
Chris Wilson, Brian J. Kerridge, Richard Siddans, David P. Moore, Lucy J. Ventress, Emily Dowd, Wuhu Feng, Martyn P. Chipperfield, and John J. Remedios
Atmos. Chem. Phys., 24, 10639–10653, https://doi.org/10.5194/acp-24-10639-2024,https://doi.org/10.5194/acp-24-10639-2024, 2024
Short summary
Automated detection of regions with persistently enhanced methane concentrations using Sentinel-5 Precursor satellite data
Steffen Vanselow, Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Hartmut Boesch, and John P. Burrows
Atmos. Chem. Phys., 24, 10441–10473, https://doi.org/10.5194/acp-24-10441-2024,https://doi.org/10.5194/acp-24-10441-2024, 2024
Short summary
Biomass burning CO emissions: exploring insights through TROPOMI-derived emissions and emission coefficients
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024,https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Measurement report: Combined use of MAX-DOAS and AERONET ground-based measurements in Montevideo, Uruguay, for the detection of distant biomass burning
Matías Osorio, Alejandro Agesta, Tim Bösch, Nicolás Casaballe, Andreas Richter, Leonardo M. A. Alvarado, and Erna Frins
Atmos. Chem. Phys., 24, 7447–7465, https://doi.org/10.5194/acp-24-7447-2024,https://doi.org/10.5194/acp-24-7447-2024, 2024
Short summary
Development of high spatial resolution annual emission inventory of greenhouse gases from open straw burning in Northeast China from 2001 to 2020
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
EGUsphere, https://doi.org/10.5194/egusphere-2024-980,https://doi.org/10.5194/egusphere-2024-980, 2024
Short summary

Cited articles

Baranov, Y. I. and Lafferty, W. J.: The water-vapor continuum and selective absorption in the 3–5 µ spectral region at temperatures from 311 to 363 K, J. Quant. Spectrosc. Ra., 112, 1304–1313, 2011.
Baranov, Y. I., Lafferty, W. J., Ma, Q., and Tipping, R. H.: Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K, J. Quant. Spectrosc. Ra., 109, 2291–2302, https://doi.org/10.1016/j.jqsrt.2008.03.004, 2008.
Bicknell, W. E., Cecca, S. D., Griffin, M. K., Swartz S. D., and Flusberg, A.: Search for Low-Absorption Regions in the 1.6- and 2.1-µm Atmospheric Windows, J. Directed Energy, 2, 151–161, 2006.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, 1999.
Bolsée, D., Pereira, N., Decuyper, W., Gillotay, D., Yu, H., Sperfeld, P., Pape, S., Cuevas, E., Redondas, A., Hernandéz, Y., and Weber, M.: Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer-Langley Technique, Sol. Phys., 289, 2433–2457, https://doi.org/10.1007/s11207-014-0474-1, 2014.
Short summary
Quantitative knowledge of water vapor infrared absorption is crucial for remote sensing and climate simulations. The water vapor continuum is a major contribution to atmospheric absorption in the near infrared (NIR), but recent laboratory studies show inconsistent results and cannot be transferred to atmospheric conditions. Therefore, we performed atmospheric measurements of the NIR continuum (2500–7800 cm−1) and found significant differences relative to the MT_CKD model and laboratory studies.
Altmetrics
Final-revised paper
Preprint