Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 18
Atmos. Chem. Phys., 16, 11671–11686, 2016
https://doi.org/10.5194/acp-16-11671-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Twenty-five years of operations of the Network for the Detection...

Atmos. Chem. Phys., 16, 11671–11686, 2016
https://doi.org/10.5194/acp-16-11671-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Sep 2016

Research article | 21 Sep 2016

The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

Andreas Reichert and Ralf Sussmann

Viewed

Total article views: 1,531 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
805 676 50 1,531 158 49 48
  • HTML: 805
  • PDF: 676
  • XML: 50
  • Total: 1,531
  • Supplement: 158
  • BibTeX: 49
  • EndNote: 48
Views and downloads (calculated since 25 Apr 2016)
Cumulative views and downloads (calculated since 25 Apr 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 27 Oct 2020
Publications Copernicus
Short summary
Quantitative knowledge of water vapor infrared absorption is crucial for remote sensing and climate simulations. The water vapor continuum is a major contribution to atmospheric absorption in the near infrared (NIR), but recent laboratory studies show inconsistent results and cannot be transferred to atmospheric conditions. Therefore, we performed atmospheric measurements of the NIR continuum (2500–7800 cm−1) and found significant differences relative to the MT_CKD model and laboratory studies.
Quantitative knowledge of water vapor infrared absorption is crucial for remote sensing and...
Citation
Altmetrics
Final-revised paper
Preprint