Research article 10 Jun 2014
Research article | 10 Jun 2014
Reactive uptake of N2O5 to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations
C. J. Gaston et al.
Related authors
No articles found.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-401, https://doi.org/10.5194/amt-2020-401, 2021
Preprint under review for AMT
Short summary
Short summary
Infrared spectrometry can be applied in routine monitoring of atmospheric particles to give comprehensive characterization of the organic material by bond rather than species. Using this technique, the concentrations of particle organic material were found to decrease 2011–2016 in the Southeastern U.S., driven by a decline in highly aged material, concurrent with declining anthropogenic emissions. However, an increase was observed in the fraction of more moderately aged organic matter.
Weiqi Xu, Masayuki Takeuchi, Chun Chen, Yanmei Qiu, Conghui Xie, Wanyun Xu, Nan Ma, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-474, https://doi.org/10.5194/amt-2020-474, 2020
Revised manuscript under review for AMT
Short summary
Short summary
Here we developed a method for estimation of Particulate organic nitrates (pON) from the measurements of high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally had improvements in reducing negative values due to the influences of high concentration of inorganic nitrate and constant the ratio of NO+ to NO2+ of organic nitrates (RON).
Thomas Berkemeier, Masayuki Takeuchi, Gamze Eris, and Nga L. Ng
Atmos. Chem. Phys., 20, 15513–15535, https://doi.org/10.5194/acp-20-15513-2020, https://doi.org/10.5194/acp-20-15513-2020, 2020
Short summary
Short summary
This paper presents how environmental chamber data of secondary organic aerosol (SOA) formation can be interpreted using kinetic modeling techniques. Utilizing pure and mixed precursor experiments, we show that SOA formation and evaporation can be understood by explicitly treating gas-phase chemistry, gas–particle partitioning, and, notably, particle-phase oligomerization, but some of the non-linear, non-equilibrium effects must be accredited to diffusion limitations in the particle phase.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Matthias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1180, https://doi.org/10.5194/acp-2020-1180, 2020
Preprint under review for ACP
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Yunle Chen, Masayuki Takeuchi, Theodora Nah, Lu Xu, Manjula R. Canagaratna, Harald Stark, Karsten Baumann, Francesco Canonaco, André S. H. Prévôt, L. Gregory Huey, Rodney J. Weber, and Nga L. Ng
Atmos. Chem. Phys., 20, 8421–8440, https://doi.org/10.5194/acp-20-8421-2020, https://doi.org/10.5194/acp-20-8421-2020, 2020
Short summary
Short summary
Two online mass spectrometry instruments, an aerosol mass spectrometer and a chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols, were deployed at Yorkville, GA, for a comprehensive characterization of organic aerosol. We observed notable secondary organic aerosol formation from isoprene and monoterpenes via different pathways during both day and night, and a series of highly oxidized acid-like compounds was found to be closely related to aged SOA.
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Ziyue Li, Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Jiumeng Liu, John E. Shilling, Joel A. Thornton, and Christopher D. Cappa
Atmos. Chem. Phys., 20, 2489–2512, https://doi.org/10.5194/acp-20-2489-2020, https://doi.org/10.5194/acp-20-2489-2020, 2020
Short summary
Short summary
We discuss the development and application of a robust clustering method for the interpretation of compound-specific organic aerosol thermal desorption profiles. We demonstrate the utility of clustering for analysis and interpretation of the composition and volatility of secondary organic aerosol. We show that the thermal desorption profiles are represented by only 9–13 distinct clusters, with the number of clusters obtained dependent on the precursor and formation conditions.
Masayuki Takeuchi and Nga L. Ng
Atmos. Chem. Phys., 19, 12749–12766, https://doi.org/10.5194/acp-19-12749-2019, https://doi.org/10.5194/acp-19-12749-2019, 2019
Short summary
Short summary
Organic nitrate is ubiquitous in the atmosphere and impacts the formation of aerosol and ozone, two leading air pollutants of concern worldwide. We conducted a comprehensive laboratory study to investigate the hydrolysis process of organic nitrate aerosol formed from monoterpenes, which are important reactive chemicals emitted by plants. Our results provide experimentally constrained parameters required to assess the role of organic nitrate in the formation of the air pollutants of our concern.
Felipe D. Lopez-Hilfiker, Veronika Pospisilova, Wei Huang, Markus Kalberer, Claudia Mohr, Giulia Stefenelli, Joel A. Thornton, Urs Baltensperger, Andre S. H. Prevot, and Jay G. Slowik
Atmos. Meas. Tech., 12, 4867–4886, https://doi.org/10.5194/amt-12-4867-2019, https://doi.org/10.5194/amt-12-4867-2019, 2019
Short summary
Short summary
We present a novel, field-deployable extractive electrospray time-of-flight mass spectrometer (EESI-TOF), which provides real-time, near-molecular measurements of organic aerosol at atmospherically relevant concentrations, addressing a critical gap in existing measurement capabilities. Successful deployments of the EESI-TOF for laboratory measurements, ground-based ambient sampling, and aboard a research aircraft highlight the versatility and potential of the EESI-TOF system.
Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Ben H. Lee, Jiumeng Liu, Alla Zelenyuk, David Bell, Christopher D. Cappa, Taylor Helgestad, Ziyue Li, Alex Guenther, Jian Wang, Matthew Wise, Ryan Caylor, Jason D. Surratt, Theran Riedel, Noora Hyttinen, Vili-Taneli Salo, Galib Hasan, Theo Kurtén, John E. Shilling, and Joel A. Thornton
Atmos. Chem. Phys., 19, 11253–11265, https://doi.org/10.5194/acp-19-11253-2019, https://doi.org/10.5194/acp-19-11253-2019, 2019
Short summary
Short summary
Isoprene is the most abundantly emitted reactive organic gas globally, and thus it is important to understand its fate and role in aerosol formation and growth. A major product of its oxidation is an epoxydiol, IEPOX, which can be efficiently taken up by acidic aerosol to generate substantial amounts of secondary organic aerosol (SOA). We present chamber experiments exploring the properties of IEPOX SOA and reconcile discrepancies between field, laboratory, and model studies of this process.
Erin E. McDuffie, Caroline C. Womack, Dorothy L. Fibiger, William P. Dube, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Joel A. Thornton, Alexander Moravek, Jennifer G. Murphy, Munkhbayar Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 19, 9287–9308, https://doi.org/10.5194/acp-19-9287-2019, https://doi.org/10.5194/acp-19-9287-2019, 2019
Short summary
Short summary
Populated mountain basins, including the Salt Lake Valley (SLV) in Utah, suffer from wintertime stagnation events that trap emissions near the surface and cause fine particulate matter (PM2.5) concentrations to reach unhealthy levels. Previously limited by a lack of nighttime measurements, this study uses 2017 UWFPS aircraft campaign data, in combination with a box model, to show that nitrogen chemistry above the surface at night is a major source of PM2.5 during a wintertime event in the SLV.
Xiaoxi Liu, Benjamin Deming, Demetrios Pagonis, Douglas A. Day, Brett B. Palm, Ranajit Talukdar, James M. Roberts, Patrick R. Veres, Jordan E. Krechmer, Joel A. Thornton, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 12, 3137–3149, https://doi.org/10.5194/amt-12-3137-2019, https://doi.org/10.5194/amt-12-3137-2019, 2019
Short summary
Short summary
Delays or losses of gases in sampling tubing and instrumental surfaces due to surface interactions can lead to inaccurate quantification. By sampling with several chemical ionization mass spectrometers and six tubing materials, we quantify delays of semivolatile organic compounds and small polar gases. Delay times generally increase with decreasing volatility or increasing polarity and also depend on materials. The method and results will inform inlet material selection and instrumental design.
Alessandro Franchin, Dorothy L. Fibiger, Lexie Goldberger, Erin E. McDuffie, Alexander Moravek, Caroline C. Womack, Erik T. Crosman, Kenneth S. Docherty, William P. Dube, Sebastian W. Hoch, Ben H. Lee, Russell Long, Jennifer G. Murphy, Joel A. Thornton, Steven S. Brown, Munkhbayar Baasandorj, and Ann M. Middlebrook
Atmos. Chem. Phys., 18, 17259–17276, https://doi.org/10.5194/acp-18-17259-2018, https://doi.org/10.5194/acp-18-17259-2018, 2018
Short summary
Short summary
We present the results of aerosol and trace gas measurements from airborne and ground-based platforms. The measurements took place in January–February 2017 in northern Utah as part of the Utah Winter Fine Particulate Study (UWFPS). We characterized the chemical composition of PM1 on a regional scale, also probing the vertical dimension. We used a thermodynamic model to study the effectiveness of limiting total ammonium or total nitrate as a strategy to control aerosol concentrations.
Theodora Nah, Yi Ji, David J. Tanner, Hongyu Guo, Amy P. Sullivan, Nga Lee Ng, Rodney J. Weber, and L. Gregory Huey
Atmos. Meas. Tech., 11, 5087–5104, https://doi.org/10.5194/amt-11-5087-2018, https://doi.org/10.5194/amt-11-5087-2018, 2018
Short summary
Short summary
The sources and atmospheric chemistry of gas-phase organic acids are currently poorly understood, due in part to the limited range of measurement techniques available. We evaluated the use of SF6− as a sensitive and selective chemical ionization reagent ion for real-time measurements of gas-phase organic acids at a rural site in Yorkville, Georgia. We found that ambient concentrations of organic acids ranged from a few ppt to several ppb, and are dependent on ambient temperature.
Lu Xu, Havala O. T. Pye, Jia He, Yunle Chen, Benjamin N. Murphy, and Nga Lee Ng
Atmos. Chem. Phys., 18, 12613–12637, https://doi.org/10.5194/acp-18-12613-2018, https://doi.org/10.5194/acp-18-12613-2018, 2018
Short summary
Short summary
In this study, we integrate lab-in-the-field experiments, extensive ambient ground measurements, and state-of-the-art modeling to constrain the concentration of organic aerosol from biogenic monoterpenes and sesquiterpenes. Further, we show that the organic aerosol from the investigated sources accounts for roughly 20 % of the World Health Organization PM2.5 standard in the southeastern US.
Ben H. Lee, Felipe D. Lopez-Hilfiker, Emma L. D'Ambro, Putian Zhou, Michael Boy, Tuukka Petäjä, Liqing Hao, Annele Virtanen, and Joel A. Thornton
Atmos. Chem. Phys., 18, 11547–11562, https://doi.org/10.5194/acp-18-11547-2018, https://doi.org/10.5194/acp-18-11547-2018, 2018
Short summary
Short summary
Molecular identities and abundances of organic compounds residing in the gas and particle phases above a Finnish boreal forest are presented. We determined that in each phase, the organic components are categorized into three subgroups based on their behavior in time. Some are more enhanced at night, others during midday, and another around sunrise. Identifying such collective behavior can potentially connect the chemical processes that evolve in time to specific distributions of products.
Theodora Nah, Hongyu Guo, Amy P. Sullivan, Yunle Chen, David J. Tanner, Athanasios Nenes, Armistead Russell, Nga Lee Ng, L. Gregory Huey, and Rodney J. Weber
Atmos. Chem. Phys., 18, 11471–11491, https://doi.org/10.5194/acp-18-11471-2018, https://doi.org/10.5194/acp-18-11471-2018, 2018
Short summary
Short summary
We present measurements from a field study conducted in an agriculturally intensive region in the southeastern US during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via gas–particle partitioning of semi-volatile organic acids. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.
Evangelia Kostenidou, Eleni Karnezi, James R. Hite Jr., Aikaterini Bougiatioti, Kate Cerully, Lu Xu, Nga L. Ng, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 5799–5819, https://doi.org/10.5194/acp-18-5799-2018, https://doi.org/10.5194/acp-18-5799-2018, 2018
Short summary
Short summary
The volatility distribution of organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS) was estimated. The volatility distribution of all components covered a wide range including both semi-volatile and low-volatility components. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
Riinu Ots, Mathew R. Heal, Dominique E. Young, Leah R. Williams, James D. Allan, Eiko Nemitz, Chiara Di Marco, Anais Detournay, Lu Xu, Nga L. Ng, Hugh Coe, Scott C. Herndon, Ian A. Mackenzie, David C. Green, Jeroen J. P. Kuenen, Stefan Reis, and Massimo Vieno
Atmos. Chem. Phys., 18, 4497–4518, https://doi.org/10.5194/acp-18-4497-2018, https://doi.org/10.5194/acp-18-4497-2018, 2018
Short summary
Short summary
The main hypothesis of this paper is that people who live in large cities in the UK disobey the
smoke control lawas it has not been actively enforced for decades now. However, the use of wood in residential heating has increased, partly due to renewable energy targets, but also for discretionary (i.e. pleasant fireplaces) reasons. Our study is based mainly in London, but similar struggles with urban air quality due to residential wood and coal burning are seen in other major European cities.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Jingyi Li, Jingqiu Mao, Arlene M. Fiore, Ronald C. Cohen, John D. Crounse, Alex P. Teng, Paul O. Wennberg, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Jeff Peischl, Ilana B. Pollack, Thomas B. Ryerson, Patrick Veres, James M. Roberts, J. Andrew Neuman, John B. Nowak, Glenn M. Wolfe, Thomas F. Hanisco, Alan Fried, Hanwant B. Singh, Jack Dibb, Fabien Paulot, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2341–2361, https://doi.org/10.5194/acp-18-2341-2018, https://doi.org/10.5194/acp-18-2341-2018, 2018
Short summary
Short summary
We present the first comprehensive model evaluation of summertime reactive oxidized nitrogen using a high-resolution chemistry–climate model with up-to-date isoprene oxidation chemistry, along with a series of observations from aircraft campaigns and ground measurement networks from 2004 to 2013 over the Southeast US. We investigate the impact of NOx emission reductions on changes in reactive nitrogen speciation and export efficiency as well as ozone in the past and future decade.
Havala O. T. Pye, Andreas Zuend, Juliane L. Fry, Gabriel Isaacman-VanWertz, Shannon L. Capps, K. Wyat Appel, Hosein Foroutan, Lu Xu, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 357–370, https://doi.org/10.5194/acp-18-357-2018, https://doi.org/10.5194/acp-18-357-2018, 2018
Short summary
Short summary
Thermodynamic modeling revealed that some but not all measurements of ammonium-to-sulfate ratios are consistent with theory. The measurement diversity likely explains the previously reported range of results regarding the suitability of thermodynamic modeling. Despite particles being predominantly phase separated, organic–inorganic interactions resulted in increased aerosol pH and partitioning towards the particle phase for highly oxygenated organic compounds compared to traditional methods.
Ryan Thalman, Suzane S. de Sá, Brett B. Palm, Henrique M. J. Barbosa, Mira L. Pöhlker, M. Lizabeth Alexander, Joel Brito, Samara Carbone, Paulo Castillo, Douglas A. Day, Chongai Kuang, Antonio Manzi, Nga Lee Ng, Arthur J. Sedlacek III, Rodrigo Souza, Stephen Springston, Thomas Watson, Christopher Pöhlker, Ulrich Pöschl, Meinrat O. Andreae, Paulo Artaxo, Jose L. Jimenez, Scot T. Martin, and Jian Wang
Atmos. Chem. Phys., 17, 11779–11801, https://doi.org/10.5194/acp-17-11779-2017, https://doi.org/10.5194/acp-17-11779-2017, 2017
Short summary
Short summary
Particle hygroscopicity, mixing state, and the hygroscopicity of organic components were characterized in central Amazonia for 1 year; their seasonal and diel variations were driven by a combination of primary emissions, photochemical oxidation, and boundary layer development. The relationship between the hygroscopicity of organic components and their oxidation level was examined, and the results help to reconcile the differences among the relationships observed in previous studies.
Yue Zhao, Jeremy K. Chan, Felipe D. Lopez-Hilfiker, Megan A. McKeown, Emma L. D'Ambro, Jay G. Slowik, Jeffrey A. Riffell, and Joel A. Thornton
Atmos. Meas. Tech., 10, 3609–3625, https://doi.org/10.5194/amt-10-3609-2017, https://doi.org/10.5194/amt-10-3609-2017, 2017
Short summary
Short summary
We present a novel atmospheric pressure electrospray chemical ionization (ESCI) source that can generate intense and stable currents of several specific reagent ions using a range of salt solutions prepared in methanol. We couple the ESCI source to a high-resolution time-of-flight mass spectrometer (HRToF-MS) and assess instrument performance through calibrations using different gas standards and measurements of organic mixtures formed by ozonolysis of α-pinene.
Wing Y. Tuet, Yunle Chen, Shierly Fok, Julie A. Champion, and Nga L. Ng
Atmos. Chem. Phys., 17, 11423–11440, https://doi.org/10.5194/acp-17-11423-2017, https://doi.org/10.5194/acp-17-11423-2017, 2017
Short summary
Short summary
Exposure to secondary organic aerosols (SOAs) may have cardiopulmonary health implications. Alveolar macrophages were exposed to various SOA systems and reactive oxygen and nitrogen species production and cytokine secretion was measured post-exposure. Results from this study show that the chemical structure of SOA products may be important for determining cellular responses and demonstrate that the health effects of SOA are important to consider for the health implications of ambient aerosols.
Benjamin N. Murphy, Matthew C. Woody, Jose L. Jimenez, Ann Marie G. Carlton, Patrick L. Hayes, Shang Liu, Nga L. Ng, Lynn M. Russell, Ari Setyan, Lu Xu, Jeff Young, Rahul A. Zaveri, Qi Zhang, and Havala O. T. Pye
Atmos. Chem. Phys., 17, 11107–11133, https://doi.org/10.5194/acp-17-11107-2017, https://doi.org/10.5194/acp-17-11107-2017, 2017
Short summary
Short summary
We incorporate recent findings about the behavior of organic pollutants in urban airsheds into the Community Multiscale Air Quality (CMAQ) model to refine predictions of organic particulate pollution in the United States. The new techniques, which account for the volatility and ongoing chemistry of airborne organic compounds, substantially reduce biases, particularly in the winter time and near emission sources.
Theodora Nah, Renee C. McVay, Jeffrey R. Pierce, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 17, 2297–2310, https://doi.org/10.5194/acp-17-2297-2017, https://doi.org/10.5194/acp-17-2297-2017, 2017
Short summary
Short summary
We present a model framework that accounts for coagulation in chamber studies where high seed aerosol surface area concentrations are used. The uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments are also assessed. We show that SOA mass yields calculated by the four methods can deviate significantly in studies where high seed aerosol surface area concentrations are used.
Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, and Rahul A. Zaveri
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, https://doi.org/10.5194/acp-17-2103-2017, 2017
Short summary
Short summary
Oxidation of biogenic volatile organic compounds by NO3 is an important interaction between anthropogenic
and natural emissions. This review results from a June 2015 workshop and includes the recent literature
on kinetics, mechanisms, organic aerosol yields, and heterogeneous chemistry; advances in analytical
instrumentation; the current state NO3-BVOC chemistry in atmospheric models; and critical needs for
future research in modeling, field observations, and laboratory studies.
Wing Y. Tuet, Yunle Chen, Lu Xu, Shierly Fok, Dong Gao, Rodney J. Weber, and Nga L. Ng
Atmos. Chem. Phys., 17, 839–853, https://doi.org/10.5194/acp-17-839-2017, https://doi.org/10.5194/acp-17-839-2017, 2017
Short summary
Short summary
Secondary organic aerosols (SOA) comprise a significant fraction of particulate matter (PM) and may have health implications. The water-soluble oxidative potentials of various SOA systems were determined using dithiothreitol consumption. Results from this study demonstrate that precursor identity was more influential than reaction condition in determining SOA oxidative potential and highlight a need to consider SOA contributions from anthropogenic hydrocarbons to PM-induced health effects.
Provat K. Saha, Andrey Khlystov, Khairunnisa Yahya, Yang Zhang, Lu Xu, Nga L. Ng, and Andrew P. Grieshop
Atmos. Chem. Phys., 17, 501–520, https://doi.org/10.5194/acp-17-501-2017, https://doi.org/10.5194/acp-17-501-2017, 2017
Havala O. T. Pye, Benjamin N. Murphy, Lu Xu, Nga L. Ng, Annmarie G. Carlton, Hongyu Guo, Rodney Weber, Petros Vasilakos, K. Wyat Appel, Sri Hapsari Budisulistiorini, Jason D. Surratt, Athanasios Nenes, Weiwei Hu, Jose L. Jimenez, Gabriel Isaacman-VanWertz, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, https://doi.org/10.5194/acp-17-343-2017, 2017
Short summary
Short summary
We use a chemical transport model to examine how organic compounds in the atmosphere interact with water present in particles. Organic compounds themselves lead to water uptake, and organic compounds interact with water associated with inorganic compounds in the rural southeast atmosphere. Including interactions of organic compounds with water requires a treatment of nonideality to more accurately represent aerosol observations during the Southern Oxidant and Aerosol Study (SOAS) 2013.
Emma L. D'Ambro, Ben H. Lee, Jiumeng Liu, John E. Shilling, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Siegfried Schobesberger, Rahul A. Zaveri, Claudia Mohr, Anna Lutz, Zhenfa Zhang, Avram Gold, Jason D. Surratt, Jean C. Rivera-Rios, Frank N. Keutsch, and Joel A. Thornton
Atmos. Chem. Phys., 17, 159–174, https://doi.org/10.5194/acp-17-159-2017, https://doi.org/10.5194/acp-17-159-2017, 2017
Short summary
Short summary
We studied the formation and properties of secondary organic aerosol produced from isoprene. We find that a significant fraction (~50 %) of the mass is composed of low-volatility, highly oxidized compounds such as C5H12O6. A significant fraction of the remainder appears to be in the form of oligomeric material. Adding NOx maintained or decreased SOA yields while increasing the fraction of low-volatility material, possibly due to oligomers.
Neha Sareen, Annmarie G. Carlton, Jason D. Surratt, Avram Gold, Ben Lee, Felipe D. Lopez-Hilfiker, Claudia Mohr, Joel A. Thornton, Zhenfa Zhang, Yong B. Lim, and Barbara J. Turpin
Atmos. Chem. Phys., 16, 14409–14420, https://doi.org/10.5194/acp-16-14409-2016, https://doi.org/10.5194/acp-16-14409-2016, 2016
Javier Sanchez, David J. Tanner, Dexian Chen, L. Gregory Huey, and Nga L. Ng
Atmos. Meas. Tech., 9, 3851–3861, https://doi.org/10.5194/amt-9-3851-2016, https://doi.org/10.5194/amt-9-3851-2016, 2016
Short summary
Short summary
HO2 radicals play an important role in tropospheric chemistry. Here we propose a new direct method for measuring HO2 radicals in the atmosphere using bromide anion chemical ionization mass spectrometry. Ambient measurements in Atlanta are presented. Instrument performance parameters: sensitivity, lower detection limit, and time resolution are discussed. We demonstrate that the technique provides excellent selectivity and is suitable for in situ ground-based HO2 measurements.
Theodora Nah, Renee C. McVay, Xuan Zhang, Christopher M. Boyd, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 16, 9361–9379, https://doi.org/10.5194/acp-16-9361-2016, https://doi.org/10.5194/acp-16-9361-2016, 2016
Short summary
Short summary
The influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis is studied. SOA growth rate and mass yields are independent of seed surface area, consistent with the condensation of SOA-forming vapors being dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations, indicating that a faster α-pinene oxidation rate leads to rapidly produced SOA-forming oxidation products.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
Riinu Ots, Dominique E. Young, Massimo Vieno, Lu Xu, Rachel E. Dunmore, James D. Allan, Hugh Coe, Leah R. Williams, Scott C. Herndon, Nga L. Ng, Jacqueline F. Hamilton, Robert Bergström, Chiara Di Marco, Eiko Nemitz, Ian A. Mackenzie, Jeroen J. P. Kuenen, David C. Green, Stefan Reis, and Mathew R. Heal
Atmos. Chem. Phys., 16, 6453–6473, https://doi.org/10.5194/acp-16-6453-2016, https://doi.org/10.5194/acp-16-6453-2016, 2016
Short summary
Short summary
This study investigates the contribution of diesel vehicle emissions to organic aerosol formation and particulate matter concentrations in London. Comparisons of simulated pollutant concentrations with observations show good agreement and give confidence in the skill of the model applied. The contribution of diesel vehicle emissions, which are currently not included in official emissions inventories, is demonstrated to be substantial, indicating that more research on this topic is required.
Charles A. Brock, Nicholas L. Wagner, Bruce E. Anderson, Alexis R. Attwood, Andreas Beyersdorf, Pedro Campuzano-Jost, Annmarie G. Carlton, Douglas A. Day, Glenn S. Diskin, Timothy D. Gordon, Jose L. Jimenez, Daniel A. Lack, Jin Liao, Milos Z. Markovic, Ann M. Middlebrook, Nga L. Ng, Anne E. Perring, Matthews S. Richardson, Joshua P. Schwarz, Rebecca A. Washenfelder, Andre Welti, Lu Xu, Luke D. Ziemba, and Daniel M. Murphy
Atmos. Chem. Phys., 16, 4987–5007, https://doi.org/10.5194/acp-16-4987-2016, https://doi.org/10.5194/acp-16-4987-2016, 2016
Short summary
Short summary
Microscopic pollution particles make the atmosphere look hazy and also cool the earth by sending sunlight back to space. When the air is moist, these particles swell with water and scatter even more sunlight. We showed that particles formed from organic material – which dominates particulate pollution in the southeastern U.S. – does not take up water very effectively, toward the low end of most previous studies. We also found a better way to mathematically describe this swelling process.
Felipe D. Lopez-Hilfiker, Siddarth Iyer, Claudia Mohr, Ben H. Lee, Emma L. D'Ambro, Theo Kurtén, and Joel A. Thornton
Atmos. Meas. Tech., 9, 1505–1512, https://doi.org/10.5194/amt-9-1505-2016, https://doi.org/10.5194/amt-9-1505-2016, 2016
Short summary
Short summary
We present the maximum sensitivity of a TOF-CIMS using the collision limit and iodide adducts. We also present an ion adduct declustering scanning procedure which determines the effective binding energies of the detected ion adducts and therefore their approximate sensitivity. The combination of declustering scanning and the collision limit provides an approximate calibration for many compounds in the mass spectrum which would otherwise be impossible to obtain by traditional methods.
G. M. Wolfe, J. Kaiser, T. F. Hanisco, F. N. Keutsch, J. A. de Gouw, J. B. Gilman, M. Graus, C. D. Hatch, J. Holloway, L. W. Horowitz, B. H. Lee, B. M. Lerner, F. Lopez-Hilifiker, J. Mao, M. R. Marvin, J. Peischl, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. A. Thornton, P. R. Veres, and C. Warneke
Atmos. Chem. Phys., 16, 2597–2610, https://doi.org/10.5194/acp-16-2597-2016, https://doi.org/10.5194/acp-16-2597-2016, 2016
Short summary
Short summary
This study uses airborne trace gas observations acquired over the southeast US to examine how both natural (isoprene) and anthropogenic (NOx) emissions influence the production of formaldehyde (HCHO). We find a 3-fold increase in HCHO yield between rural and polluted environments. State-of-the-science chemical mechanisms are generally able to reproduce this behavior. These results add confidence to global hydrocarbon emission inventories constrained by spaceborne HCHO observations.
T. P. Riedel, Y.-H. Lin, Z. Zhang, K. Chu, J. A. Thornton, W. Vizuete, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 16, 1245–1254, https://doi.org/10.5194/acp-16-1245-2016, https://doi.org/10.5194/acp-16-1245-2016, 2016
Short summary
Short summary
IEPOX, a photooxidation product of isoprene, contributes to ambient secondary organic aerosol concentrations. Controlled atmospheric chamber experiments and modeling are used to extract formation rate information of chemical species that contribute to IEPOX-derived secondary organic aerosol.
L. Xu, L. R. Williams, D. E. Young, J. D. Allan, H. Coe, P. Massoli, E. Fortner, P. Chhabra, S. Herndon, W. A. Brooks, J. T. Jayne, D. R. Worsnop, A. C. Aiken, S. Liu, K. Gorkowski, M. K. Dubey, Z. L. Fleming, S. Visser, A. S. H. Prévôt, and N. L. Ng
Atmos. Chem. Phys., 16, 1139–1160, https://doi.org/10.5194/acp-16-1139-2016, https://doi.org/10.5194/acp-16-1139-2016, 2016
Short summary
Short summary
We investigate the spatial distribution of submicron aerosol in the greater London area as part of the Clean Air for London (ClearfLo) project in winter 2012. Although the concentrations of organic aerosol (OA) are similar between a rural and an urban site, the OA sources are different. We also examine the volatility of submicron aerosol at the rural site and find that the non-volatile organics have similar sources or have undergone similar chemical processing as refractory black carbon.
R. J. Wild, P. M. Edwards, T. S. Bates, R. C. Cohen, J. A. de Gouw, W. P. Dubé, J. B. Gilman, J. Holloway, J. Kercher, A. R. Koss, L. Lee, B. M. Lerner, R. McLaren, P. K. Quinn, J. M. Roberts, J. Stutz, J. A. Thornton, P. R. Veres, C. Warneke, E. Williams, C. J. Young, B. Yuan, K. J. Zarzana, and S. S. Brown
Atmos. Chem. Phys., 16, 573–583, https://doi.org/10.5194/acp-16-573-2016, https://doi.org/10.5194/acp-16-573-2016, 2016
Short summary
Short summary
High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation, and we find that nighttime chemistry has a large effect on its partitioning. Much of the oxidation of reactive nitrogen during a high-ozone year occurred via heterogeneous uptake onto aerosol at night, keeping NOx at concentrations comparable to a low-ozone year.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
K. M. Cerully, A. Bougiatioti, J. R. Hite Jr., H. Guo, L. Xu, N. L. Ng, R. Weber, and A. Nenes
Atmos. Chem. Phys., 15, 8679–8694, https://doi.org/10.5194/acp-15-8679-2015, https://doi.org/10.5194/acp-15-8679-2015, 2015
Short summary
Short summary
The hygroscopicity of SE US aerosol is mostly water-soluble, with a hygroscopicity that is insensitive to partial volatilization in a thermodenuder.
The most and least oxidized components of the aerosol are the most hygroscopic of organic constituents.
No clear relationship was found between organic aerosol hygroscopicity and oxygen-to-carbon ratio.
The aerosol factors covary in a way that induces the observed diurnal invariance in total organic hygroscopicity.
F. D. Lopez-Hilfiker, C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, Th. F. Mentel, A. J. Carrasquillo, K. E. Daumit, J. F. Hunter, J. H. Kroll, D. R. Worsnop, and J. A. Thornton
Atmos. Chem. Phys., 15, 7765–7776, https://doi.org/10.5194/acp-15-7765-2015, https://doi.org/10.5194/acp-15-7765-2015, 2015
Short summary
Short summary
We measured a large suite organic compounds using a recently developed Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a (HR-ToF-CIMS). The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We find that approximately 50% of the detected particle phase mass is associated with compounds having effective vapor pressures 4, or more, orders of magnitude lower than commonly measured products.
C. M. Boyd, J. Sanchez, L. Xu, A. J. Eugene, T. Nah, W. Y. Tuet, M. I. Guzman, and N. L. Ng
Atmos. Chem. Phys., 15, 7497–7522, https://doi.org/10.5194/acp-15-7497-2015, https://doi.org/10.5194/acp-15-7497-2015, 2015
Short summary
Short summary
Laboratory chamber studies were conducted to investigate the formation of secondary organic aerosol from β-pinene oxidation by nitrate radicals. These experiments probed the effects of peroxy radical fate and relative humidity on the mass and chemical composition of secondary organic aerosol formed from nighttime chemistry. Results from this study were used to evaluate the contributions of NO3+monoterpene reaction to ambient organic aerosol recently measured in the southeastern United States.
L. Xu, S. Suresh, H. Guo, R. J. Weber, and N. L. Ng
Atmos. Chem. Phys., 15, 7307–7336, https://doi.org/10.5194/acp-15-7307-2015, https://doi.org/10.5194/acp-15-7307-2015, 2015
Short summary
Short summary
Year-long comprehensive characterization of ambient aerosol was performed in both rural and urban sites in the southeastern US as part of Southeastern Center of Air Pollution and Epidemiology (SCAPE) study and Southeastern Oxidant and Aerosol Study (SOAS). Three independent methods were applied to estimate the concentration of particle-phase organic nitrates. The spatial distribution of organic aerosol is investigated by comparing simultaneous HR-ToF-AMS and ACSM measurements at different sites.
D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams, and J. Xu
Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, https://doi.org/10.5194/acp-15-6283-2015, 2015
Short summary
Short summary
Formic acid (HCOOH) is an abundant atmospheric acid that affects precipitation chemistry and acidity. HCOOH measurements over the USA are 2-3× larger than can be explained by known sources and sinks, revealing a key gap in current understanding. Observations indicate a large biogenic source plus chemical production across a range of precursors. Model simulations cannot capture the HCOOH diurnal amplitude or nocturnal profile, implying a deposition bias and possibly even larger missing source.
H. Guo, L. Xu, A. Bougiatioti, K. M. Cerully, S. L. Capps, J. R. Hite Jr., A. G. Carlton, S.-H. Lee, M. H. Bergin, N. L. Ng, A. Nenes, and R. J. Weber
Atmos. Chem. Phys., 15, 5211–5228, https://doi.org/10.5194/acp-15-5211-2015, https://doi.org/10.5194/acp-15-5211-2015, 2015
Short summary
Short summary
Particle pH can affect many aerosol processes, including gas-particle partitioning, SOA formation, and mobilization of toxic redox metals. pH is challenging to directly measure and often improperly characterized by proxies like ion balances or molar ratios of measured aerosol ionic species. We present a detailed analysis predicting pH with a thermodynamic model, verify the prediction, and test pH sensitivity to model inputs based on data from the SOAS field campaign.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, R. Dressler, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, S. C. Herndon, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, A. Detournay, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2367–2386, https://doi.org/10.5194/acp-15-2367-2015, https://doi.org/10.5194/acp-15-2367-2015, 2015
Short summary
Short summary
Ambient concentrations of trace elements with 2h time resolution were measured in three size ranges (PM10–2.5, PM2.5–1.0, PM1.0–0.3) at kerbside, urban background and rural sites in London during the ClearfLo (Clean Air for London) field campaign. Quantification of kerb and urban increments, and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure.
M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M. Donahue, R. L. Mauldin III, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H. Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R. Worsnop, M. Kulmala, V.-M. Kerminen, and T. Petäjä
Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, https://doi.org/10.5194/acp-14-12143-2014, 2014
S. H. Budisulistiorini, M. R. Canagaratna, P. L. Croteau, K. Baumann, E. S. Edgerton, M. S. Kollman, N. L. Ng, V. Verma, S. L. Shaw, E. M. Knipping, D. R. Worsnop, J. T. Jayne, R.J. Weber, and J. D. Surratt
Atmos. Meas. Tech., 7, 1929–1941, https://doi.org/10.5194/amt-7-1929-2014, https://doi.org/10.5194/amt-7-1929-2014, 2014
S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, and C. Zetzsch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10135-2014, https://doi.org/10.5194/acpd-14-10135-2014, 2014
Revised manuscript has not been submitted
T. P. Riedel, G. M. Wolfe, K. T. Danas, J. B. Gilman, W. C. Kuster, D. M. Bon, A. Vlasenko, S.-M. Li, E. J. Williams, B. M. Lerner, P. R. Veres, J. M. Roberts, J. S. Holloway, B. Lefer, S. S. Brown, and J. A. Thornton
Atmos. Chem. Phys., 14, 3789–3800, https://doi.org/10.5194/acp-14-3789-2014, https://doi.org/10.5194/acp-14-3789-2014, 2014
F. D. Lopez-Hilfiker, C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, Th. F. Mentel, A. Lutz, M. Hallquist, D. Worsnop, and J. A. Thornton
Atmos. Meas. Tech., 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, https://doi.org/10.5194/amt-7-983-2014, 2014
S. E. Pusede, D. R. Gentner, P. J. Wooldridge, E. C. Browne, A. W. Rollins, K.-E. Min, A. R. Russell, J. Thomas, L. Zhang, W. H. Brune, S. B. Henry, J. P. DiGangi, F. N. Keutsch, S. A. Harrold, J. A. Thornton, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, J. Sanders, X. Ren, T. C. VandenBoer, M. Z. Markovic, A. Guha, R. Weber, A. H. Goldstein, and R. C. Cohen
Atmos. Chem. Phys., 14, 3373–3395, https://doi.org/10.5194/acp-14-3373-2014, https://doi.org/10.5194/acp-14-3373-2014, 2014
P. Tiitta, V. Vakkari, P. Croteau, J. P. Beukes, P. G. van Zyl, M. Josipovic, A. D. Venter, K. Jaars, J. J. Pienaar, N. L. Ng, M. R. Canagaratna, J. T. Jayne, V.-M. Kerminen, H. Kokkola, M. Kulmala, A. Laaksonen, D. R. Worsnop, and L. Laakso
Atmos. Chem. Phys., 14, 1909–1927, https://doi.org/10.5194/acp-14-1909-2014, https://doi.org/10.5194/acp-14-1909-2014, 2014
R. L. N. Yatavelli, H. Stark, S. L. Thompson, J. R. Kimmel, M. J. Cubison, D. A. Day, P. Campuzano-Jost, B. B. Palm, A. Hodzic, J. A. Thornton, J. T. Jayne, D. R. Worsnop, and J. L. Jimenez
Atmos. Chem. Phys., 14, 1527–1546, https://doi.org/10.5194/acp-14-1527-2014, https://doi.org/10.5194/acp-14-1527-2014, 2014
C. L. Loza, J. S. Craven, L. D. Yee, M. M. Coggon, R. H. Schwantes, M. Shiraiwa, X. Zhang, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 1423–1439, https://doi.org/10.5194/acp-14-1423-2014, https://doi.org/10.5194/acp-14-1423-2014, 2014
B. Friedman, A. Zelenyuk, J. Beranek, G. Kulkarni, M. Pekour, A. Gannet Hallar, I. B. McCubbin, J. A. Thornton, and D. J Cziczo
Atmos. Chem. Phys., 13, 11839–11851, https://doi.org/10.5194/acp-13-11839-2013, https://doi.org/10.5194/acp-13-11839-2013, 2013
L. D. Yee, J. S. Craven, C. L. Loza, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 11121–11140, https://doi.org/10.5194/acp-13-11121-2013, https://doi.org/10.5194/acp-13-11121-2013, 2013
P. M. Edwards, C. J. Young, K. Aikin, J. deGouw, W. P. Dubé, F. Geiger, J. Gilman, D. Helmig, J. S. Holloway, J. Kercher, B. Lerner, R. Martin, R. McLaren, D. D. Parrish, J. Peischl, J. M. Roberts, T. B. Ryerson, J. Thornton, C. Warneke, E. J. Williams, and S. S. Brown
Atmos. Chem. Phys., 13, 8955–8971, https://doi.org/10.5194/acp-13-8955-2013, https://doi.org/10.5194/acp-13-8955-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, M. C. Minguillon, M. Alier, F. Amato, M. Brines, M. Cusack, J. O. Grimalt, A. Karanasiou, T. Moreno, M. Pandolfi, J. Pey, C. Reche, A. Ripoll, R. Tauler, B. L. Van Drooge, M. Viana, R. M. Harrison, J. Gietl, D. Beddows, W. Bloss, C. O'Dowd, D. Ceburnis, G. Martucci, N. L. Ng, D. Worsnop, J. Wenger, E. Mc Gillicuddy, J. Sodeau, R. Healy, F. Lucarelli, S. Nava, J. L. Jimenez, F. Gomez Moreno, B. Artinano, A. S. H. Prévôt, L. Pfaffenberger, S. Frey, F. Wilsenack, D. Casabona, P. Jiménez-Guerrero, D. Gross, and N. Cots
Atmos. Chem. Phys., 13, 8991–9019, https://doi.org/10.5194/acp-13-8991-2013, https://doi.org/10.5194/acp-13-8991-2013, 2013
Y. J. Li, B. Y. L. Lee, J. Z. Yu, N. L. Ng, and C. K. Chan
Atmos. Chem. Phys., 13, 8739–8753, https://doi.org/10.5194/acp-13-8739-2013, https://doi.org/10.5194/acp-13-8739-2013, 2013
J. S. Craven, L. D. Yee, N. L. Ng, M. R. Canagaratna, C. L. Loza, K. A. Schilling, R. L. N. Yatavelli, J. A. Thornton, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 12, 11795–11817, https://doi.org/10.5194/acp-12-11795-2012, https://doi.org/10.5194/acp-12-11795-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Characterization of secondary organic aerosol from heated-cooking-oil emissions: evolution in composition and volatility
Measurement report: Diurnal and temporal variations of sugar compounds in suburban aerosols from the northern vicinity of Beijing, China – an influence of biogenic and anthropogenic sources
Pre-deliquescent water uptake in deposited nanoparticles observed with in situ ambient pressure X-ray photoelectron spectroscopy
Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles
Measurement report: Distinct emissions and volatility distribution of intermediate-volatility organic compounds from on-road Chinese gasoline vehicles: implication of high secondary organic aerosol formation potential
Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India
Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles
Measurement report: Sulfuric acid nucleation and experimental conditions in a photolytic flow reactor
Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols
Formation kinetics and mechanism of ozone and secondary organic aerosols from photochemical oxidation of different aromatic hydrocarbons: dependence of NOx and organic substituent
SO2 and NH3 emissions enhance organosulfur compounds and fine particles formation from the photooxidation of a typical aromatic hydrocarbon
Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
The production and hydrolysis of organic nitrates from OH radical oxidation of β-ocimene
Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) from illegal burning of different types of municipal waste in households
Kinetic modeling of formation and evaporation of secondary organic aerosol from NO3 oxidation of pure and mixed monoterpenes
On the similarities and differences between the products of oxidation of hydrocarbons under simulated atmospheric conditions and cool-flames
Water uptake of subpollen aerosol particles: hygroscopic growth, CCN activation, and liquid-liquid phase separation
Production of HONO from heterogeneous uptake of NO2 on illuminated TiO2 aerosols measured by Photo-Fragmentation Laser Induced Fluorescence
Direct contribution of ammonia to α-pinene secondary organic aerosol formation
Hygroscopic behavior of aerosols generated from solutions of 3-methyl-1,2,3-butanetricarboxylic acid, its sodium salts, and its mixtures with NaCl
Chemical composition, structures, and light absorption of N-containing aromatic compounds emitted from burning wood and charcoal in household cookstoves
Source Apportionment of Carbonaceous Aerosols in Beijing with Radiocarbon and Organic Tracers: Insight into the Differences between Urban and Rural Sites
Chemical composition and light absorption of carbonaceous aerosols emitted from crop residue burning: influence of combustion efficiency
On mineral dust aerosol hygroscopicity
Distinct chemical and mineralogical composition of Icelandic dust compared to northern African and Asian dust
Secondary organic aerosol yields from the oxidation of benzyl alcohol
The Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA): particle formation, organic acids, and dimer esters from α-pinene ozonolysis at different temperatures
Molecular understanding of the suppression of new-particle formation by isoprene
Heterogeneous Interactions between SO2 and Organic Peroxides in Submicron Aerosol
Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?
Liquid–liquid phase separation and morphologies in organic particles consisting of α-pinene and β-caryophyllene ozonolysis products and mixtures with commercially available organic compounds
Characterization of primary and aged wood burning and coal combustion organic aerosols in environmental chamber and its implications for atmospheric aerosols
Oligomer and highly oxygenated organic molecule formation from oxidation of oxygenated monoterpenes emitted by California sage plants
Increased Primary and Secondary H2SO4 Showing the Opposing Roles in SOA Formation from Ethyl Methacrylate Ozonolysis
Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber system
Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – Part 2: Chemical properties and characterization
Impact of NOx on secondary organic aerosol (SOA) formation from α-pinene and β-pinene photooxidation: the role of highly oxygenated organic nitrates
Laboratory study of the collection efficiency of submicron aerosol particles by cloud droplets. Part II – Influence of electric charges
Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation
Glyoxal's impact on dry ammonium salts: fast and reversible surface aerosol browning
Oxygenated products formed from OH-initiated reactions of trimethylbenzene: autoxidation and accretion
Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties
Measured solid state and subcooled liquid vapour pressures of nitroaromatics using Knudsen effusion mass spectrometry
Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor
Temperature effects on optical properties and chemical composition of secondary organic aerosol derived from n-dodecane
An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: roles of organic and inorganic components
Deconvolution of FIGAERO–CIMS thermal desorption profiles using positive matrix factorisation to identify chemical and physical processes during particle evaporation
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air
Photochemical transformation of residential wood combustion emissions: dependence of organic aerosol composition on OH exposure
Manpreet Takhar, Yunchun Li, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 5137–5149, https://doi.org/10.5194/acp-21-5137-2021, https://doi.org/10.5194/acp-21-5137-2021, 2021
Short summary
Short summary
Our study highlights the importance of molecular composition in constraining the chemical properties of cooking SOA as well as understanding the contribution of aldehydes in formation of SOA from cooking emissions. We show that fragmentation reactions are key in atmospheric processing of cooking SOA, and aldehydes emitted from cooking emissions contribute substantially to SOA formation. Our study provides a framework to better predict SOA formation in and downwind of urban atmospheres.
Santosh Kumar Verma, Kimitaka Kawamura, Fei Yang, Pingqing Fu, Yugo Kanaya, and Zifa Wang
Atmos. Chem. Phys., 21, 4959–4978, https://doi.org/10.5194/acp-21-4959-2021, https://doi.org/10.5194/acp-21-4959-2021, 2021
Short summary
Short summary
We studied aerosol samples collected in autumn 2007 with day and night intervals in a rural site of Mangshan, north of Beijing, for sugar compounds (SCs) that are abundant organic aerosol components and can influence the air quality and climate. We found higher concentrations of biomass burning (BB) products at nighttime than daytime, whereas pollen tracers and other SCs showed an opposite diurnal trend, because this site is meteorologically characterized by a mountain/valley breeze.
Jack J. Lin, Kamal Raj R, Stella Wang, Esko Kokkonen, Mikko-Heikki Mikkelä, Samuli Urpelainen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 4709–4727, https://doi.org/10.5194/acp-21-4709-2021, https://doi.org/10.5194/acp-21-4709-2021, 2021
Short summary
Short summary
We used surface-sensitive X-ray photoelectron spectroscopy (XPS) to study laboratory-generated nanoparticles of atmospheric interest at 0–16 % relative humidity. XPS gives direct information about changes in the chemical state from the binding energies of probed elements. Our results indicate water adsorption and associated chemical changes at the particle surfaces well below deliquescence, with distinct features for different particle components and implications for atmospheric chemistry.
Evangelia Kostenidou, Alvaro Martinez-Valiente, Badr R'Mili, Baptiste Marques, Brice Temime-Roussel, Amandine Durand, Michel André, Yao Liu, Cédric Louis, Boris Vansevenant, Daniel Ferry, Carine Laffon, Philippe Parent, and Barbara D'Anna
Atmos. Chem. Phys., 21, 4779–4796, https://doi.org/10.5194/acp-21-4779-2021, https://doi.org/10.5194/acp-21-4779-2021, 2021
Short summary
Short summary
Passenger vehicle emissions can be a significant source of particulate matter in urban areas. In this study the particle-phase emissions of seven Euro 5 passenger vehicles were characterized. Changes in engine technologies and after-treatment devices can alter the chemical composition and the size of the emitted particulate matter. The condition of the diesel particle filter (DPF) plays an important role in the emitted pollutants.
Rongzhi Tang, Quanyang Lu, Song Guo, Hui Wang, Kai Song, Ying Yu, Rui Tan, Kefan Liu, Ruizhe Shen, Shiyi Chen, Limin Zeng, Spiro D. Jorga, Zhou Zhang, Wenbin Zhang, Shijin Shuai, and Allen L. Robinson
Atmos. Chem. Phys., 21, 2569–2583, https://doi.org/10.5194/acp-21-2569-2021, https://doi.org/10.5194/acp-21-2569-2021, 2021
Short summary
Short summary
We performed chassis dynamometer experiments to investigate the emissions and secondary organic aerosol (SOA) formation potential of intermediate volatility organic compounds (IVOCs) from an on-road Chinese gasoline vehicle. High IVOC emission factors (EFs) and distinct volatility distribution were recognized. Our results indicate that vehicular IVOCs contribute significantly to SOA, implying the importance of reducing IVOCs when making air pollution control policies in urban areas of China.
Gareth J. Stewart, Beth S. Nelson, W. Joe F. Acton, Adam R. Vaughan, Naomi J. Farren, James R. Hopkins, Martyn W. Ward, Stefan J. Swift, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2407–2426, https://doi.org/10.5194/acp-21-2407-2021, https://doi.org/10.5194/acp-21-2407-2021, 2021
Short summary
Short summary
Biomass burning releases many lower-molecular-weight organic species which are difficult to analyse but important for the formation of organic aerosol. This study examined a new high-resolution technique to better characterise these difficult-to-analyse organic components. Some burning sources analysed in this study, such as cow dung cake and municipal solid waste, released extremely complex mixtures containing many thousands of different lower-volatility organic compounds.
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
David R. Hanson, Seakh Menheer, Michael Wentzel, and Joan Kunz
Atmos. Chem. Phys., 21, 1987–2001, https://doi.org/10.5194/acp-21-1987-2021, https://doi.org/10.5194/acp-21-1987-2021, 2021
Short summary
Short summary
We report experimental measurements of particle formation in a flow reactor that extend the results from this experiment to a total of more than 270 runs over a time period of ~3 years. This has allowed us to detect a general increase in the cleanliness of the system and improve our knowledge of its chemistry. In-house simulations allowed us to construct phenomenological free energies of molecular clusters of sulfuric acid and ammonia that are appropriate for application to the atmosphere.
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021, https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Short summary
Atmospheric aerosols contain a large amount of organic compounds, whose oxidation affects their physical properties through a process known as ageing. We have simulated atmospheric ageing experimentally to elucidate the nature and behaviour of residual surface films. Our results show an increasing amount of residue at near-zero temperatures, demonstrating that an inert product film may build up during droplet ageing, even if only ordinarily short-lived reactive species are initially emitted.
Hao Luo, Jiangyao Chen, Guiying Li, and Taicheng An
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-29, https://doi.org/10.5194/acp-2021-29, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Formation kinetics & mechanism of O3 and SOA from different AHs are still unclear. Thus photochemical oxidation mechanism of 9 AHs with NO2 is comparably studied. Increased formation rate and yield of O3 and SOA is observed via promoting AH content. Raising number of AH's substituent enhances O3 formation, but decreases SOA yield, which is promoted by increasing methyl group number of AHs. Results are helpful to clear conversion of AHs to secondary pollutants in real atmospheric environment.
Zhaomin Yang, Li Xu, Narcisse T. Tsona, Jianlong Li, Xin Luo, and Lin Du
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-61, https://doi.org/10.5194/acp-2021-61, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
The promotion effects of SO2 and NH3 on aerosol particles and organosulfur compounds formation from 1,2,4-trimethylbenzene (TMB) photooxidation were observed for the first time. The enhanced organosulfur compounds included hitherto unidentified aromatic sulfonates and organosulfates, which were produced via acid-driven heterogeneous chemistry of hydroperoxides. The production of organosulfur compounds might provide a new pathway for the fate of TMB in regions with considerable SO2 emissions.
Yiwei Gong and Zhongming Chen
Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021, https://doi.org/10.5194/acp-21-813-2021, 2021
Short summary
Short summary
Stabilized Criegee intermediates (SCIs) are important factors in estimating aerosol formation in the atmosphere. Here the results show that SCIs account for more than 60 % of aerosol formation in limonene ozonolysis and water is an uncertainty in SCI performances. The aerosol formation potential of SCIs under high-humidity conditions is double that under dry and low-humidity conditions, suggesting SCI reactions are still important in contributing to aerosols at high relative humidity.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Ana C. Morales, Thilina Jayarathne, Jonathan H. Slade, Alexander Laskin, and Paul B. Shepson
Atmos. Chem. Phys., 21, 129–145, https://doi.org/10.5194/acp-21-129-2021, https://doi.org/10.5194/acp-21-129-2021, 2021
Short summary
Short summary
Organic nitrates formed from the oxidation of biogenic volatile organic compounds impact both ozone and particulate matter as they remove nitrogen oxides, but they represent important aerosol precursors. We conducted a series of reaction chamber experiments that quantified the total organic nitrate and secondary organic aerosol yield from the OH-radical-initiated oxidation of ocimene, and also measured their hydrolysis lifetimes in the aqueous phase, as a function of pH.
András Hoffer, Beatrix Jancsek-Turóczi, Ádám Tóth, Gyula Kiss, Anca Naghiu, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 20, 16135–16144, https://doi.org/10.5194/acp-20-16135-2020, https://doi.org/10.5194/acp-20-16135-2020, 2020
Short summary
Short summary
Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) are reported for the first time ever for the indoor combustion of 12 common types of municipal solid waste that are frequently burned in households worldwide. We have found that waste burning emits up to 40 times more PM10 and 800 times more PAHs than the combustion of dry firewood. Our finding highlights the need for coordinated actions against illegal waste combustion and the extreme health hazard associated with it.
Thomas Berkemeier, Masayuki Takeuchi, Gamze Eris, and Nga L. Ng
Atmos. Chem. Phys., 20, 15513–15535, https://doi.org/10.5194/acp-20-15513-2020, https://doi.org/10.5194/acp-20-15513-2020, 2020
Short summary
Short summary
This paper presents how environmental chamber data of secondary organic aerosol (SOA) formation can be interpreted using kinetic modeling techniques. Utilizing pure and mixed precursor experiments, we show that SOA formation and evaporation can be understood by explicitly treating gas-phase chemistry, gas–particle partitioning, and, notably, particle-phase oligomerization, but some of the non-linear, non-equilibrium effects must be accredited to diffusion limitations in the particle phase.
Roland Benoit, Nesrine Belhadj, Maxence Lailliau, and Philippe Dagaut
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1070, https://doi.org/10.5194/acp-2020-1070, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This study compares different modes of limonene oxidation (ozonolysis, photooxidation and cool flame) on the basis of review articles and experimental results. Although the oxidation conditions are totally different, the results obtained present great similarities on the nature of the products, but also specificities related to autooxidation such as the presence of ketohydroperoxides.
Eugene F. Mikhailov, Mira L. Pöhlker, Kathrin Reinmuth-Selzle, Sergey S. Vlasenko, Ovid O. Krüger, Janine Fröhlich-Nowoisky, Christopher Pöhlker, Olga A. Ivanova, Alexey A. Kiselev, Leslie A. Kremper, and Ulrich Pöschl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1224, https://doi.org/10.5194/acp-2020-1224, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Subpollen particles are a relatively new subset of atmospheric aerosol particles. When pollen grains rupture, they release cytoplasmic fragments known as subpollen particles (SPP) ranged from several nanometers to about 1 μm. It has been shown that SPP exhibit abnormally high hygroscopicity due to forming a water-rich phase that, in particular, may influence the life cycle of SPP and the related direct and indirect effects on radiation budget as well as reinforce their allergic potential.
Joanna E. Dyson, Graham A. Boustead, Lauren T. Fleming, Mark Blitz, Daniel Stone, Stephen R. Arnold, Lisa K. Whalley, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1216, https://doi.org/10.5194/acp-2020-1216, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The hydroxyl radical (OH) dominates the removal of atmospheric pollutants, with nitrous acid (HONO) recognised as a major OH source. For remote regions HONO production through the action of sunlight at aerosol surfaces can provide a source of nitrogen oxides. In this study, HONO production rates at illuminated aerosol surfaces are measured under atmospheric conditions, and a model consistent with the data is developed, and aerosol production of HONO in the atmosphere is shown to be significant.
Liqing Hao, Eetu Kari, Ari Leskinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 20, 14393–14405, https://doi.org/10.5194/acp-20-14393-2020, https://doi.org/10.5194/acp-20-14393-2020, 2020
Short summary
Short summary
Our work presents the observational results of secondary organic aerosol (SOA) formation in the presence of ammonia. The particle-phase ammonium was continuously produced even after SOA formation had ceased. The gas-phase organic acids were observed to contribute to the formed particle-phase ammonium salts. This study suggests that the presence of ammonia may change the mass and chemical composition of large-size SOA particles and can potentially alter the aerosol impact on climate change.
Li Wu, Clara Becote, Sophie Sobanska, Pierre-Marie Flaud, Emilie Perraudin, Eric Villenave, Young-Chul Song, and Chul-Un Ro
Atmos. Chem. Phys., 20, 14103–14122, https://doi.org/10.5194/acp-20-14103-2020, https://doi.org/10.5194/acp-20-14103-2020, 2020
Short summary
Short summary
MBTCA (3-methyl-1,2,3-butanetricarboxylic acid), a second-generation product of monoterpenes, is one of the most relevant tracer compounds for biogenic secondary organic aerosols (SOAs). Laboratory-generated, micrometer-sized, pure-MBTCA, mono-/di-/trisodium MBTCA salts and MBTCA–NaCl mixture aerosol particles were examined systematically to observe their hygroscopic behavior, and it was also observed that the monosodium MBTCA salt aerosols were formed through a reaction between MBTCA and NaCl.
Mingjie Xie, Zhenzhen Zhao, Amara L. Holder, Michael D. Hays, Xi Chen, Guofeng Shen, James J. Jetter, Wyatt M. Champion, and Qin'geng Wang
Atmos. Chem. Phys., 20, 14077–14090, https://doi.org/10.5194/acp-20-14077-2020, https://doi.org/10.5194/acp-20-14077-2020, 2020
Short summary
Short summary
This study investigated the composition, structures, and light absorption of N-containing aromatic compounds (NACs) in PM2.5 emitted from burning red oak and charcoal in a variety of cookstoves. The results suggest that the identified NACs might have substantial fractions remaining in the gas phase. In comparison to other sources, cookstove emissions from red oak or charcoal fuels did not exhibit unique NAC structural features but had distinct NAC composition.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1018, https://doi.org/10.5194/acp-2020-1018, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by Chemical Mass Balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Yujue Wang, Min Hu, Nan Xu, Yanhong Qin, Zhijun Wu, Liwu Zeng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 20, 13721–13734, https://doi.org/10.5194/acp-20-13721-2020, https://doi.org/10.5194/acp-20-13721-2020, 2020
Short summary
Short summary
Field straw residue burning is a widespread type of biomass burning in Asia, while its emissions are poorly understood. In this study, we designed lab-controlled experiments to comprehensively investigate the emission factors, chemical compositions and light absorption properties of both water-soluble and water-insoluble carbonaceous aerosols emitted from straw burning. The results clearly highlight the significant influences of burning conditions and combustion efficiency on the emissions.
Lanxiadi Chen, Chao Peng, Wenjun Gu, Hanjing Fu, Xing Jian, Huanhuan Zhang, Guohua Zhang, Jianxi Zhu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13611–13626, https://doi.org/10.5194/acp-20-13611-2020, https://doi.org/10.5194/acp-20-13611-2020, 2020
Short summary
Short summary
We investigated hygroscopic properties of a number of mineral dust particles in a quantitative manner, via measuring the sample mass at different relative humidities. The robust and comprehensive data obtained would significantly improve our knowledge of hygroscopicity of mineral dust and its impacts on atmospheric chemistry and climate.
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Sophia M. Charan, Reina S. Buenconsejo, and John H. Seinfeld
Atmos. Chem. Phys., 20, 13167–13190, https://doi.org/10.5194/acp-20-13167-2020, https://doi.org/10.5194/acp-20-13167-2020, 2020
Short summary
Short summary
In urban areas, the emissions from volatile chemical products may be responsible for the formation of as much particulate matter as motor vehicles. Since exposure to particulate matter is a public health crisis, understanding its formation is critical. In this work, we investigate the secondary organic aerosol formation potential of benzyl alcohol, an important compound that is representative of some of these new emission sources, and find that more particulate matter forms than is expected.
Kasper Kristensen, Louise N. Jensen, Lauriane L. J. Quéléver, Sigurd Christiansen, Bernadette Rosati, Jonas Elm, Ricky Teiwes, Henrik B. Pedersen, Marianne Glasius, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 20, 12549–12567, https://doi.org/10.5194/acp-20-12549-2020, https://doi.org/10.5194/acp-20-12549-2020, 2020
Short summary
Short summary
Atmospheric particles are important in relation to human health and the global climate. As the global temperature changes, so may the atmospheric chemistry controlling the formation of particles from reactions of naturally emitted volatile organic compounds (VOCs). In the current work, we show how temperatures influence the formation and chemical composition of atmospheric particles from α-pinene: a biogenic VOC largely emitted in high-latitude environments such as the boreal forests.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
Shunyao Wang, Tengyu Liu, Jinmyung Jang, Jonathan P. D. Abbatt, and Arthur W. H. Chan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-983, https://doi.org/10.5194/acp-2020-983, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Discrepancies between atmospheric modeling and field observation, especially in highly polluted cities, have highlighted the lack of understanding in sulfate formation mechanisms and/or kinetics. Here, we directly quantified the reactive uptake coefficient of SO2 onto organic peroxides, and study the important governing factors. The SO2 uptake rate was observed to depend on RH, peroxide amount and reactivity, pH, and ionic strength, which provides a framework to better predict sulfate formation.
Isabelle Steinke, Naruki Hiranuma, Roger Funk, Kristina Höhler, Nadine Tüllmann, Nsikanabasi Silas Umo, Peter G. Weidler, Ottmar Möhler, and Thomas Leisner
Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, https://doi.org/10.5194/acp-20-11387-2020, 2020
Short summary
Short summary
In this study, we highlight the potential impact of particles from certain terrestrial sources on the formation of ice crystals in clouds. In particular, we focus on biogenic particles consisting of various organic compounds, which makes it very difficult to predict the ice nucleation properties of complex ambient particles. We find that these ambient particles are often more ice active than individual components.
Young-Chul Song, Ariana G. Bé, Scot T. Martin, Franz M. Geiger, Allan K. Bertram, Regan J. Thomson, and Mijung Song
Atmos. Chem. Phys., 20, 11263–11273, https://doi.org/10.5194/acp-20-11263-2020, https://doi.org/10.5194/acp-20-11263-2020, 2020
Short summary
Short summary
We report the liquid–liquid phase separation (LLPS) of organic aerosol consisting of α-pinene- and β-caryophyllene-derived ozonolysis products and commercial organic compounds. As compositional complexity increased from one to two organic species, LLPS occurred over a wider range of average O : C values (increasing from 0.44 to 0.67). These results provide further evidence that LLPS is likely frequent in organic aerosol particles in the troposphere, even in the absence of inorganic salt.
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-924, https://doi.org/10.5194/acp-2020-924, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Functional group composition of primary and aged aerosols from wood burning and coal combustion sources from chamber experiments are interpreted through compounds present in the fuels and known gas-phase oxidation products. Infrared spectra of aged wood burning in the chamber and ambient biomass burning samples reveal striking similarities, and a new method for identifying burning-impacted samples in monitoring network measurements is presented.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Peng Zhang, Tianzeng Chen, Jun Liu, Guangyan Xu, Qingxin Ma, Biwu Chu, Wanqi Sun, and Hong He
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-929, https://doi.org/10.5194/acp-2020-929, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This work highlights the opposing effects of primary and secondary H2SO4 on both SOA formation and constitutes. Our findings revealed that a substantial increase in secondary H2SO4 particles promoted the SOA formation of ethyl methacrylate with increasing SO2 in the absence of seed particles. However, increased primary H2SO4 with seed acidity enhanced ethyl methacrylate uptake, but reduced its SOA formation in the presence of seed particles.
Yange Deng, Satoshi Inomata, Kei Sato, Sathiyamurthi Ramasamy, Yu Morino, Shinichi Enami, and Hiroshi Tanimoto
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-798, https://doi.org/10.5194/acp-2020-798, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The temperature and acidity dependence of yields and chemical compositions of the α-pinene ozonolysis SOA were systematically investigated using a newly developed compact chamber system. Increases of SOA yields were observed with the decrease of temperature and under acidic seed conditions. The differences in chemical compositions between acidic and neutral seed conditions were characterized and explained from the viewpoints of acid-catalyzed reactions. Some organosulfates were newly detected.
Damon M. Smith, Tianqu Cui, Marc N. Fiddler, Rudra P. Pokhrel, Jason D. Surratt, and Solomon Bililign
Atmos. Chem. Phys., 20, 10169–10191, https://doi.org/10.5194/acp-20-10169-2020, https://doi.org/10.5194/acp-20-10169-2020, 2020
Short summary
Short summary
Biomass fuels used for domestic purposes in east Africa produce a significant atmospheric burden of aerosols and volatile organic compounds. The chemical properties and composition of these aerosols have not been investigated in the laboratory. In this work methanol extracts from filter samples of aerosol collected from an indoor smog chamber were analyzed to determine the chemical composition and identify the light absorption properties of organic aerosol constituents.
Iida Pullinen, Sebastian Schmitt, Sungah Kang, Mehrnaz Sarrafzadeh, Patrick Schlag, Stefanie Andres, Einhard Kleist, Thomas F. Mentel, Franz Rohrer, Monika Springer, Ralf Tillmann, Jürgen Wildt, Cheng Wu, Defeng Zhao, Andreas Wahner, and Astrid Kiendler-Scharr
Atmos. Chem. Phys., 20, 10125–10147, https://doi.org/10.5194/acp-20-10125-2020, https://doi.org/10.5194/acp-20-10125-2020, 2020
Short summary
Short summary
Biogenic and anthropogenic air masses mix in the atmosphere, bringing plant-emitted monoterpenes and traffic-related nitrogen oxides together. There is debate whether the presence of nitrogen oxides reduces or increases secondary aerosol formation. This is important as secondary aerosols have cooling effects in the climate system but also constitute a health risk in populated areas. We show that the presence of NOx alone should not much affect the mass yields of secondary organic aerosols.
Alexis Dépée, Pascal Lemaitre, Thomas Gelain, Marie Monier, and Andrea Flossmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-832, https://doi.org/10.5194/acp-2020-832, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Present article describe a new In-Cloud Aerosol Scavenging Experiment (In-CASE) that has been conceived to measure the collection efficiency of submicron aerosol particles by cloud droplets. Present article focus on the influence of electrostatic effect on the collection efficiency.
Archit Mehra, Yuwei Wang, Jordan E. Krechmer, Andrew Lambe, Francesca Majluf, Melissa A. Morris, Michael Priestley, Thomas J. Bannan, Daniel J. Bryant, Kelly L. Pereira, Jacqueline F. Hamilton, Andrew R. Rickard, Mike J. Newland, Harald Stark, Philip Croteau, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, Lin Wang, and Hugh Coe
Atmos. Chem. Phys., 20, 9783–9803, https://doi.org/10.5194/acp-20-9783-2020, https://doi.org/10.5194/acp-20-9783-2020, 2020
Short summary
Short summary
Aromatic volatile organic compounds (VOCs) emitted from anthropogenic activity are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Here we present a detailed chemical characterisation of SOA from four C9-aromatic isomers and a polycyclic aromatic hydrocarbon (PAH). We identify and compare their oxidation products in the gas and particle phases, showing the different relative importance of oxidation pathways and proportions of highly oxygenated organic molecules.
David O. De Haan, Lelia N. Hawkins, Kevin Jansen, Hannah G. Welsh, Raunak Pednekar, Alexia de Loera, Natalie G. Jimenez, Margaret A. Tolbert, Mathieu Cazaunau, Aline Gratien, Antonin Bergé, Edouard Pangui, Paola Formenti, and Jean-François Doussin
Atmos. Chem. Phys., 20, 9581–9590, https://doi.org/10.5194/acp-20-9581-2020, https://doi.org/10.5194/acp-20-9581-2020, 2020
Short summary
Short summary
When exposed to glyoxal in chamber experiments, dry ammonium or methylammonium sulfate particles turn brown immediately and reversibly without increasing in size. Much less browning was observed on wet aerosol particles, and no browning was observed with sodium sulfate aerosol. While estimated dry aerosol light absorption caused by background glyoxal (70 ppt) is insignificant compared to that of secondary brown carbon overall, in polluted regions this process could be a source of brown carbon.
Yuwei Wang, Archit Mehra, Jordan E. Krechmer, Gan Yang, Xiaoyu Hu, Yiqun Lu, Andrew Lambe, Manjula Canagaratna, Jianmin Chen, Douglas Worsnop, Hugh Coe, and Lin Wang
Atmos. Chem. Phys., 20, 9563–9579, https://doi.org/10.5194/acp-20-9563-2020, https://doi.org/10.5194/acp-20-9563-2020, 2020
Short summary
Short summary
A series of OH-initiated oxidation experiments of trimethylbenzene were investigated in the absence and presence of NOx. Many C9 products with 1–11 oxygen atoms and C18 products presumably formed from dimerization of C9 peroxy radicals were observed, hinting at the extensive existence of autoxidation and accretion reaction pathways. The presence of NOx would suppress the formation of highly oxygenated C18 molecules and enhance the formation of organonitrates and even dinitrate compounds.
Christopher D. Cappa, Christopher Y. Lim, David H. Hagan, Matthew Coggon, Abigail Koss, Kanako Sekimoto, Joost de Gouw, Timothy B. Onasch, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 20, 8511–8532, https://doi.org/10.5194/acp-20-8511-2020, https://doi.org/10.5194/acp-20-8511-2020, 2020
Short summary
Short summary
Smoke from combustion of a wide range of biomass fuels (e.g., leaves, twigs, logs, peat, and dung) was photochemically aged in a small chamber for up to 8 d of equivalent atmospheric aging. Upon aging, the particle chemical composition and ability to absorb sunlight changed owing to reactions in both the gas and particulate phases. We developed a model to explain the observations and used this to derive insights into the aging of smoke in the atmosphere.
Petroc D. Shelley, Thomas J. Bannan, Stephen D. Worrall, M. Rami Alfarra, Ulrich K. Krieger, Carl J. Percival, Arthur Garforth, and David Topping
Atmos. Chem. Phys., 20, 8293–8314, https://doi.org/10.5194/acp-20-8293-2020, https://doi.org/10.5194/acp-20-8293-2020, 2020
Short summary
Short summary
The methods used to estimate the vapour pressures of compounds in the atmosphere typically perform poorly when applied to organic compounds found in the atmosphere. New measurements have been made and compared to previous experimental data and estimated values so that the limitations within the estimation methods can be identified and in the future be rectified.
Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller, and Andrey Y. Khlystov
Atmos. Chem. Phys., 20, 8227–8250, https://doi.org/10.5194/acp-20-8227-2020, https://doi.org/10.5194/acp-20-8227-2020, 2020
Short summary
Short summary
This paper presents important results on the atmospheric chemistry of combustion emissions. Organic compounds from these emissions can contribute significantly to chemical and physical properties of atmospheric aerosols. In this paper, a detailed chemical analysis of gas- and particle-phase polar organic compounds from the laboratory combustion of globally important fuels is presented. The aging experiments were performed to understand the fate of biomass-burning organics in the atmosphere.
Junling Li, Weigang Wang, Kun Li, Wenyu Zhang, Chao Peng, Li Zhou, Bo Shi, Yan Chen, Mingyuan Liu, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 20, 8123–8137, https://doi.org/10.5194/acp-20-8123-2020, https://doi.org/10.5194/acp-20-8123-2020, 2020
Short summary
Short summary
Long-chain alkanes (a large fraction of diesel fuel and its exhaust) are important potential contributors of SOA. Through the analysis of the components of formed SOA, we found that low-temperature conditions promote the oligomerization of n-dodecane, and the degree of oligomerization can reach tetramerization. The presence of the oligomers enhances the light extinction of the particles. UV-scattering particles in the boundary layer can accelerate photochemical reactions and haze production.
Minli Wang, Yiqun Chen, Heyun Fu, Xiaolei Qu, Bengang Li, Shu Tao, and Dongqiang Zhu
Atmos. Chem. Phys., 20, 7941–7954, https://doi.org/10.5194/acp-20-7941-2020, https://doi.org/10.5194/acp-20-7941-2020, 2020
Short summary
Short summary
The mechanism and factors controlling the hygroscopicity of black-carbon-containing particles (BCPs) from different carbon sources are not well understood. We thoroughly characterized the chemical and compositional properties of 15 samples of BCPs from different sources (wood, herb, and soot) and further investigated their hygroscopicity. Depending on the carbon source, organic carbon and dissolved mineral contents were key determinants of the equilibrium and kinetics of water uptake by BCPs.
Angela Buchholz, Arttu Ylisirniö, Wei Huang, Claudia Mohr, Manjula Canagaratna, Douglas R. Worsnop, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 20, 7693–7716, https://doi.org/10.5194/acp-20-7693-2020, https://doi.org/10.5194/acp-20-7693-2020, 2020
Short summary
Short summary
To understand the role of aerosol particles in the atmosphere, it is necessary to know their detailed chemical composition and physical properties, especially volatility. The thermal desorption data from FIGAERO–CIMS provides both but are difficult to analyse. With positive matrix factorisation, we can separate instrument background from the real signal. Compounds can be classified by their apparent volatility, and the contribution of thermal decomposition in the instrument can be identified.
Gi Young Jeong
Atmos. Chem. Phys., 20, 7411–7428, https://doi.org/10.5194/acp-20-7411-2020, https://doi.org/10.5194/acp-20-7411-2020, 2020
Short summary
Short summary
During long-range transport, mineral dust interacts with the atmosphere, biosphere, cryosphere, and pedosphere, influencing ecosystems, the atmospheric energy balance, and air quality. This study analyzed the mineral and chemical compositions of Asian dust samples collected during 14 years in Korea. The result showed mineralogical and geochemical variation depending on the dust migration path, fractionation, and atmospheric reactions as well as average properties.
Anni Hartikainen, Petri Tiitta, Mika Ihalainen, Pasi Yli-Pirilä, Jürgen Orasche, Hendryk Czech, Miika Kortelainen, Heikki Lamberg, Heikki Suhonen, Hanna Koponen, Liqing Hao, Ralf Zimmermann, Jorma Jokiniemi, Jarkko Tissari, and Olli Sippula
Atmos. Chem. Phys., 20, 6357–6378, https://doi.org/10.5194/acp-20-6357-2020, https://doi.org/10.5194/acp-20-6357-2020, 2020
Short summary
Short summary
Residential wood combustion emits large amounts of organic compounds, which are transformed in the atmosphere via photochemical ageing reactions. We assessed this organic emission at various stages of exposure with an oxidation flow reactor. Ageing led to major changes in both gaseous and particulate phases including increased acidic compounds and transformation of the polycyclic aromatic compounds. Such changes have serious implications for the health- and climate-related effects of combustion.
Cited articles
Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges, Chem. Soc. Rev., 41, 6555–6581, https://doi.org/10.1039/c2cs35052a, 2012.
Aiken, A. C. D., Peter, F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, Andre, S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O / C and OM / OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, 2008.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N2O5, J. Phys. Chem. A, 110, 10435–10443, 2006.
Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate, J. Phys. Chem. A, 110, 6986–6994, 2006.
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.
Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351–8363, https://doi.org/10.5194/acp-9-8351-2009, 2009.
Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and Coffman, D. J.: Direct observations of N2O5 reactivity on ambient aerosol particles, Geophys. Res. Lett., 36, L19803, https://doi.org/10.1029/2009GL040248, 2009.
Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, J. Geophys. Res.-Atmos., 114, D00F10, https://doi.org/10.1029/2008JD011679, 2009.
Canagaratna, M. R.: Improved calibration of O / C and H/C Ratios obtained by aerosol mass spectrometry of organic species, in preparation, 2014.
Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review, Aerosol Sci. Tech., 45, 665–695, 2011.
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.: Liquid-liquid phase separation in mixed organic/inorganic aerosol particles, J. Phys. Chem. A, 113, 10966–10978, 2009.
Cosman, L. M. and Bertram, A. K.: Reactive uptake of N2O5 on aqueous H2SO4 solutions coated with 1-component and 2-component monolayers, J. Phys. Chem. A, 112, 4625–4635, 2008.
Denkenberger, K. A., Moffet, R. C., Holecek, J. C., Rebotier, T. P., and Prather, K. A.: Real-time, single-particle measurements of oligomers in aged ambient aerosol particles, Environ. Sci. Technol., 41, 5439–5446, 2007.
Dentener, F. J. and Crutzen, P. J.: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH, J. Geophys. Res., 98, 7149–7163, 1993.
Duong, H. T., Sorooshian, A., Craven, J. S., Hersey, S. P., Metcalf, A. R., Zhang, X., Weber, R. J., Jonsson, H. H., Flagan, R. C., and Seinfeld, J. H.: Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign, J. Geophys. Res., 116, D00V04, https://doi.org/10.1029/2011JD016674, 2011.
Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral andionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005–1013, 2004.
Escorcia, E. N., Sjostedt, S. J., and Abbatt, J. P. D.: Kinetics of N2O5 hydrolysis on secondary organic aerosol and mixed ammonium bisulfate-secondary organic aerosol particles, J. Phys. Chem. A, 114, 13113–13121, 2010.
Finlayson-Pitts, B. J., Ezell, M. J., and Pitts Jr., J. N.: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and CIONO2, Nature, 337, 241–244, 1999.
Folkers, M., Mentel, T. F., and Wahner, A.: Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5, Geophys. Res. Lett., 30, 1644, https://doi.org/10.1029/2003GL017168, 2003.
Fuchs, N. A. and Sutugin, A. G.: Highly-dispersed aerosols, in: Topics in current aerosol research, edited by: Hidy, G. M. and Brock, J. R., 1–60, Pergamon Press, New York, 1971.
Griffiths, P. T., Badger, C. L., Cox, A., Folkers, M., Henk, H. H., and Mentel, T. F.: Reactive uptake of N2O5 by aerosols containing dicarboxylic acids. Effect of particle phase, composition, and nitrate content, J. Phys. Chem. A, 113, 5082–5090, 2009.
Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N2O5 on submicron sulfate aerosols, Phys. Chem. Chem. Phys., 5, 3453–3463, 2003.
Hu, J. H. and Abbatt, J. P. D.: Reaction probabilities for N2O5 hydrolysis on sulfuric acid and ammonium sulfate aerosols at room temperature, J. Phys. Chem. A, 101, 871–878, 1997.
Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A. S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and Baltensperger, U.: Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659–1662, 2004.
Kane, S. M., Caloz, F., and Leu, M.-T.: Heterogeneous uptake of gaseous N2O5 by (NH4)2SO4, NH4HSO4, and H2SO4 aerosols, J. Phys. Chem. A, 105, 6465–6470, 2001.
Kercher, J. P., Riedel, T. P., and Thornton, J. A.: Chlorine activation by N2O5: simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry, Atmos. Meas. Tech., 2, 193–204, https://doi.org/10.5194/amt-2-193-2009, 2009.
Knopf, D. A., Cosman, L. M., Mousavi, P., Mokamati, S., and Bertram, A. K.: A novel flow reactor for studying reactions on liquid surfaces coated by organic monolayers: Methods, validation, and initial results, J. Phys. Chem. A, 111, 11021–11032, 2007.
Koop, T., Bookhold, J., Shiraiwa, M., and Poschl, U.: Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere, Phys. Chem. Chem. Phys., 13, 19238–19255, 2011.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, Nature Chemistry, 3, 133–139, 2011.
Liao, H., and Seinfeld, J. H.: Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone, J. Geophys. Res., 110, D18208, https://doi.org/10.1029/2005JD005907, 2005.
Lopez-Hilfiker, F. D., Constantin, K., Kercher, J. P., and Thornton, J. A.: Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces, Atmos. Chem. Phys., 12, 5237–5247, https://doi.org/10.5194/acp-12-5237-2012, 2012.
Marcolli, C. and Krieger, U. K.: Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols, J. Phys. Chem. A, 110, 1881–1893, 2006.
Marcolli, C. and Peter, Th.: Water activity in polyol/water systems: new UNIFAC parameterization, Atmos. Chem. Phys., 5, 1545–1555, https://doi.org/10.5194/acp-5-1545-2005, 2005.
Marcolli, C., Luo, B., and Peter, T.: Mixing of the organic aerosol fractions: Liquids as the thermodynamically stable phases, J. Phys. Chem. A, 108, 2216–2224, 2004.
Martin, S. T.: Phase transitions of aqueous atmospheric particles, Chem. Rev., 100, 3403–3453, 2000.
McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A.: The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol, Atmos. Chem. Phys., 6, 1635–1644, https://doi.org/10.5194/acp-6-1635-2006, 2006.
Mentel, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols, Phys. Chem. Chem. Phys., 1, 5451–5457, 1999.
Mozurkewich, M., and Calvert, J. G.: Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res., 93, 15889–15896, 1988.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M., Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and Weber, R. J.: Single-particle mass spectrometry of tropospheric aerosol particles, J. Geophys. Res.-Atmos., 111, D23S32, https://doi.org/10.1029/2006JD007340, 2006.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Ninni, L., Camargo, M. S., and Meirelles, A. J. A.: Water activity in poly (ethylene glycol) aqueous solutions, Thermochim. Acta, 328, 169–176, 1999.
Ninni, L., Camargo, M. S., and Meirelles, A. J. A.: Water activity in polyol systems, J. Chem. Eng. Data, 45, 654–660, 2000.
Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328, 2008.
Poschl, U.: Atmospheric aerosols: Composition, transformation, climate and health effects, Angew. Chem.-Int. Edit., 44, 7520–7540, 2005.
Rahbari-Sisakht, M., Taghizadeh, M., and Eliassi, A.: Densities and viscosities of binary mixtures of poly(ethylene glycol) and poly(propylene glycol) in water and ethanol in the 293.15–338.15 K temperature range, J. Chem. Eng. Data, 48, 1221–1224, 2003.
Reid, J. P., Dennis-Smither, B. J., Kwamena, N.-O. A., Miles, R. E. H., Hanford, K. L., and Homer, C. J.: The morphology of aerosol particles consisting of hydrophobic and hydrophilic phases: Hydrocarbons, alcohols and fatty acids as the hydrophobic component, Phys. Chem. Chem. Phys., 13, 15559–15572, 2011.
Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M., Murray, B. J., Shilling, J. E., Martin, S. T., and Bertram, A. K.: Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity, P. Natl. Acad. Sci. USA, 110, 8014–8019, https://doi.org/10/1073/pnas.1219548110, 2013.
Riedel, T. P., Bertram, T. H., Ryder, O. S., Liu, S., Day, D. A., Russell, L. M., Gaston, C. J., Prather, K. A., and Thornton, J. A.: Direct N2O5 reactivity measurements at a polluted coastal site, Atmos. Chem. Phys., 12, 2959–2968, https://doi.org/10.5194/acp-12-2959-2012, 2012.
Riemer, N., Vogel, H., Vogel, B., Anttila, T., Kiendler-Scharr, A., and Mentel, T. F.: Relative importance of organic coatings for the heterogeneous hydrolysis of N2O5 during summer in Europe, J. Geophys. Res., 114, D17307, https://doi.org/10.1029/2008JD011369, 2009.
Saukko, E., Lambe, A. T., Massoli, P., Koop, T., Wright, J. P., Croasdale, D. R., Pedernera, D. A., Onasch, T. B., Laaksonen, A., Davidovits, P., Worsnop, D. R., and Virtanen, A.: Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors, Atmos. Chem. Phys., 12, 7517–7529, https://doi.org/10.5194/acp-12-7517-2012, 2012.
Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E.: Improved attribution of climate forcing to emissions, Science, 326, 716–718, 2009.
Shiraiwa, M., Ammann, M., Koop, T., and Poschl, U.: Gas uptake and chemical aging of semi-solid organic aerosol particles, P. Natl. Acad. Sci., 108, 11003–11008, 2011.
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275–316, 1999.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12, 2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012.
Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene, J. Phys. Chem. A, 110, 9665–9690, 2006.
Tang, I. N. and Munkelwitz, H. R.: Aerosol growth studies – III Ammonium bisulfate aerosols in a moist atmosphere, J. Aerosol Sci., 8, 321–330, 1977.
Tang, I. N. and Munkelwitz, H. R.: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res., 99, 18801–18808, 1994.
Thornton, J. A. and Abbatt, J. P. D.: N2O5 reaction on submicron sea salt aerosol: Kinetics, products, and the effect of surface active organics, J. Phys. Chem. A, 109, 10004–10012, 2005.
Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size, Phys. Chem. Chem. Phys., 5, 4593–4603, 2003.
Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature, 464, 271–274, 2010.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J. M., Holopainen, J. K., Poschl, U., Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824–827, 2010.
Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S., Middlebrook, A. M., Ozturk, F., Roberts, J. M., Russo, R. S., Sive, B. C., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N2O5 uptake coefficients and nocturnal NO2 removal rates determined from ambient wintertime measurements, J. Geophys. Res., 118, 9331–9350, https://doi.org/10.1002/jgrd.50653, 2013.
You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S. J., Hiranuma, N., Kamal, S., Smith, M. L., Zhang, X., Weber, R. J., Shilling, J. E., Dabdub, D., Martin, S. T., and Bertram, A. K.: Images reveal that atmospheric particles can undergo liquid-liquid phase separations, P. Natl. Acad. Sci. USA, 109, 13188–13193, https://doi.org/10.1073/pnas.1206414109, 2012.
You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid–liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride, Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, 2013.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I. M., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K. S., DeCarlo, P. F., Salcedo, D., Onasch, T. B., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007.
Zobrist, B., Marcolli, C., Pedernera, D. A., and Koop, T.: Do atmospheric aerosols form glasses?, Atmos. Chem. Phys., 8, 5221–5244, https://doi.org/10.5194/acp-8-5221-2008, 2008.
Altmetrics
Final-revised paper
Preprint