Articles | Volume 14, issue 5
https://doi.org/10.5194/acp-14-2289-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-2289-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A parameterisation for the activation of cloud drops including the effects of semi-volatile organics
P. J. Connolly
School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
D. O. Topping
School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
F. Malavelle
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
G. McFiggans
School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
Related authors
Rachel L. James, Jonathan Crosier, and Paul J. Connolly
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-714, https://doi.org/10.5194/acp-2022-714, 2022
Revised manuscript under review for ACP
Short summary
Short summary
Secondary ice production (SIP) may significantly enhance the ice particle concentration in mixed-phase clouds. We present a systematic modelling study of secondary ice formation in idealised shallow convective clouds for a range of conditions. Our results suggest that the SIP mechanism, collisions of supercooled water drops with more massive ice particles, might be a significant ice formation mechanism in shallow convective clouds outside the rime-splintering temperature range (-3 °C to -8 °C).
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Kathryn Fowler, Paul Connolly, and David Topping
Atmos. Chem. Phys., 20, 683–698, https://doi.org/10.5194/acp-20-683-2020, https://doi.org/10.5194/acp-20-683-2020, 2020
Short summary
Short summary
Observations of low–temperature cirrus clouds have found unexpectedly low ice crystal numbers and high supersaturations, suggesting an incomplete understanding of the freezing mechanisms under these conditions. The existence of viscous organic aerosol has offered alternative ice nucleation pathways, which have been observed in laboratory studies. We have developed the first cloud parcel model to investigate the effect of viscosity on ice nucleation.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Matthew Crooks, Paul Connolly, and Gordon McFiggans
Geosci. Model Dev., 11, 3261–3278, https://doi.org/10.5194/gmd-11-3261-2018, https://doi.org/10.5194/gmd-11-3261-2018, 2018
Short summary
Short summary
Clouds form when water condenses onto particles in the atmosphere and the size and chemical composition of these particles can have a large influence over how much water condenses and the subsequent formation of cloud. Additional gases exist in the atmosphere that can condense onto the aerosol particles and change their composition. We present a fast and efficient method of calculating the effect of atmospheric gases on the formation of cloud that can be used in climate and weather models.
Robin G. Stevens, Katharina Loewe, Christopher Dearden, Antonios Dimitrelos, Anna Possner, Gesa K. Eirund, Tomi Raatikainen, Adrian A. Hill, Benjamin J. Shipway, Jonathan Wilkinson, Sami Romakkaniemi, Juha Tonttila, Ari Laaksonen, Hannele Korhonen, Paul Connolly, Ulrike Lohmann, Corinna Hoose, Annica M. L. Ekman, Ken S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, https://doi.org/10.5194/acp-18-11041-2018, 2018
Short summary
Short summary
We perform a model intercomparison of summertime high Arctic clouds. Observed concentrations of aerosol particles necessary for cloud formation fell to extremely low values, coincident with a transition from cloudy to nearly cloud-free conditions. Previous analyses have suggested that at these low concentrations, the radiative properties of the clouds are determined primarily by these particle concentrations. The model results strongly support this hypothesis.
Wiebke Frey, Dawei Hu, James Dorsey, M. Rami Alfarra, Aki Pajunoja, Annele Virtanen, Paul Connolly, and Gordon McFiggans
Atmos. Chem. Phys., 18, 9393–9409, https://doi.org/10.5194/acp-18-9393-2018, https://doi.org/10.5194/acp-18-9393-2018, 2018
Short summary
Short summary
The coupled system of the Manchester Aerosol Chamber and Manchester Ice Cloud Chamber was used to study the ice-forming abilities of secondary
organic aerosol particles under mixed-phase cloud conditions. Given the vast abundance of secondary organic particles in the atmosphere, they
might present an important contribution to ice-nucleating particles. However, we find that in the studied temperature range (20 to 28 °C)
the secondary organic particles do not nucleate ice particles.
Emma L. Simpson, Paul J. Connolly, and Gordon McFiggans
Atmos. Chem. Phys., 18, 7237–7250, https://doi.org/10.5194/acp-18-7237-2018, https://doi.org/10.5194/acp-18-7237-2018, 2018
Short summary
Short summary
This study explores the process of ice formation in clouds by conducting computer model simulations and laboratory experiments in a cloud chamber. We show that the formation of ice in clouds can be limited by the presence of atmospheric aerosol particles and that further research is required to identify the requirements for freezing, e.g. minimum mass of water, in order to accurately calculate ice formation and thus improve climate and weather prediction.
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O'Meara
Atmos. Chem. Phys., 18, 1629–1642, https://doi.org/10.5194/acp-18-1629-2018, https://doi.org/10.5194/acp-18-1629-2018, 2018
Short summary
Short summary
This is the first time the Maxwell–Stefan framework has been applied to an atmospheric aerosol core–shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition. Understanding aerosol composition is essential to accurately model their interactions within atmospheric systems. We use simple binary systems to demonstrate how viscosity and solubility both play a role in affecting the rate of diffusion through aerosol particles.
Gillian Young, Paul J. Connolly, Christopher Dearden, and Thomas W. Choularton
Atmos. Chem. Phys., 18, 1475–1494, https://doi.org/10.5194/acp-18-1475-2018, https://doi.org/10.5194/acp-18-1475-2018, 2018
Short summary
Short summary
Large-scale subsidence, associated with high-pressure systems, is often used in cloud-resolving models to maintain the height of boundary layer clouds; however, its influence on the small-scale interactions in mixed-phase clouds has not been previously investigated. Using large-eddy simulations, we have identified a relationship between subsidence and convection development in such clouds, with implications for mixed-phase boundary layer clouds forming in the ocean-exposed Arctic regions.
Olivia Goulden, Matthew Crooks, and Paul Connolly
Atmos. Chem. Phys., 18, 275–287, https://doi.org/10.5194/acp-18-275-2018, https://doi.org/10.5194/acp-18-275-2018, 2018
Short summary
Short summary
The formation of cloud from the condensation of water vapour in the atmosphere on aerosol particles is highly dependent of the chemical properties of the particles. The chemistry is further complicated by the presence of condensible gases in the atmosphere other than water. We provide several methods of including the complicated chemical properties of the aerosol particles and condensing gases into single parameter descriptions, which are suitable for inclusion in large-scale models.
Leonid Nichman, Emma Järvinen, James Dorsey, Paul Connolly, Jonathan Duplissy, Claudia Fuchs, Karoliina Ignatius, Kamalika Sengupta, Frank Stratmann, Ottmar Möhler, Martin Schnaiter, and Martin Gallagher
Atmos. Meas. Tech., 10, 3231–3248, https://doi.org/10.5194/amt-10-3231-2017, https://doi.org/10.5194/amt-10-3231-2017, 2017
Short summary
Short summary
Optical probes are frequently used for the detection of cloud particles. The detected microphysical properties may affect particle growth and accretion mechanisms and the light scattering properties of cirrus clouds. In the CLOUD chamber study at CERN, we compared four optical measurement techniques. We show that shape derivation alone is not sufficient to determine the phase of the small cloud particles. None of the instruments were able to unambiguously determine the phase of small particles.
Gillian Young, Paul J. Connolly, Hazel M. Jones, and Thomas W. Choularton
Atmos. Chem. Phys., 17, 4209–4227, https://doi.org/10.5194/acp-17-4209-2017, https://doi.org/10.5194/acp-17-4209-2017, 2017
Short summary
Short summary
Arctic mixed-phase clouds are poorly represented in numerical models, due in part to an overpredicted ice phase. Here, we examine the sensitivity of cloud structure, evolution, and lifetime to modelled primary ice number concentrations over three different surfaces – sea ice, marginal ice, and ocean – to investigate the dependency on both the ice phase and dynamics induced from surface fluxes.
Gillian Young, Hazel M. Jones, Thomas W. Choularton, Jonathan Crosier, Keith N. Bower, Martin W. Gallagher, Rhiannon S. Davies, Ian A. Renfrew, Andrew D. Elvidge, Eoghan Darbyshire, Franco Marenco, Philip R. A. Brown, Hugo M. A. Ricketts, Paul J. Connolly, Gary Lloyd, Paul I. Williams, James D. Allan, Jonathan W. Taylor, Dantong Liu, and Michael J. Flynn
Atmos. Chem. Phys., 16, 13945–13967, https://doi.org/10.5194/acp-16-13945-2016, https://doi.org/10.5194/acp-16-13945-2016, 2016
Short summary
Short summary
Clouds are intricately coupled to the Arctic sea ice. Our inability to accurately model cloud fractions causes large uncertainties in predicted radiative interactions in this region, therefore, affecting sea ice forecasts. Here, we present measurements of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean to improve our understanding of the relationship between the Arctic atmosphere and clouds which develop in this region.
Matthew Crooks, Paul Connolly, David Topping, and Gordon McFiggans
Geosci. Model Dev., 9, 3617–3637, https://doi.org/10.5194/gmd-9-3617-2016, https://doi.org/10.5194/gmd-9-3617-2016, 2016
Short summary
Short summary
Semi-volatile compounds, like water, can exist in both vapour phases and condensed phases within a system. This paper presents a method of calculating the condensed and vapour phases of semi-volatile compounds at equilibrium, in particular, when the condensed mass occurs within particles of different sizes and chemical composition. The applications of interest to the authors are those of atmospheric importance such as cloud droplet formation and reflection or absorption of solar radiation.
Robert J. Farrington, Paul J. Connolly, Gary Lloyd, Keith N. Bower, Michael J. Flynn, Martin W. Gallagher, Paul R. Field, Chris Dearden, and Thomas W. Choularton
Atmos. Chem. Phys., 16, 4945–4966, https://doi.org/10.5194/acp-16-4945-2016, https://doi.org/10.5194/acp-16-4945-2016, 2016
Short summary
Short summary
This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing observations with model simulations over Jungfraujoch, Switzerland. The results suggest that ice nuclei do not significantly contribute to the high concentrations and that a surface source of ice crystals is responsible for the witnessed ice number concentrations.
G. Young, H. M. Jones, E. Darbyshire, K. J. Baustian, J. B. McQuaid, K. N. Bower, P. J. Connolly, M. W. Gallagher, and T. W. Choularton
Atmos. Chem. Phys., 16, 4063–4079, https://doi.org/10.5194/acp-16-4063-2016, https://doi.org/10.5194/acp-16-4063-2016, 2016
Leonid Nichman, Claudia Fuchs, Emma Järvinen, Karoliina Ignatius, Niko Florian Höppel, Antonio Dias, Martin Heinritzi, Mario Simon, Jasmin Tröstl, Andrea Christine Wagner, Robert Wagner, Christina Williamson, Chao Yan, Paul James Connolly, James Robert Dorsey, Jonathan Duplissy, Sebastian Ehrhart, Carla Frege, Hamish Gordon, Christopher Robert Hoyle, Thomas Bjerring Kristensen, Gerhard Steiner, Neil McPherson Donahue, Richard Flagan, Martin William Gallagher, Jasper Kirkby, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Frank Stratmann, and António Tomé
Atmos. Chem. Phys., 16, 3651–3664, https://doi.org/10.5194/acp-16-3651-2016, https://doi.org/10.5194/acp-16-3651-2016, 2016
Short summary
Short summary
Processes in the atmosphere are often governed by the physical and chemical properties of small cloud particles. Ice, water, and mixed clouds, as well as viscous aerosols, were formed under controlled conditions at the CLOUD-CERN facility. The experimental results show a link between cloud particle properties and their unique optical fingerprints. The classification map presented here allows easier discrimination between various particles such as viscous organic aerosol, salt, ice, and liquid.
I. Crawford, G. Lloyd, E. Herrmann, C. R. Hoyle, K. N. Bower, P. J. Connolly, M. J. Flynn, P. H. Kaye, T. W. Choularton, and M. W. Gallagher
Atmos. Chem. Phys., 16, 2273–2284, https://doi.org/10.5194/acp-16-2273-2016, https://doi.org/10.5194/acp-16-2273-2016, 2016
Short summary
Short summary
In this manuscript we discuss observations of fluorescent aerosol and their interactions with cloud at a high-alpine site in the wintertime under background conditions. We find the majority of the fluorescent aerosol to be consistent in nature to mineral dust and no apparent trend was observed between the fluorescent aerosol fraction and meteorological or cloud microphysical parameters, suggesting that particle fluorescence does not impact cloud evolution or formation at the site.
J. Grazioli, G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne
Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015, https://doi.org/10.5194/acp-15-13787-2015, 2015
Short summary
Short summary
This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during CLACE2014. From polarimetric radar and in situ observations, riming is shown to be an important process leading to more intense snowfall. Riming is usually associated with more intense turbulence providing supercooled liquid water. Distinct features are identified in the vertical structure of polarimetric radar variables.
G. Lloyd, T. W. Choularton, K. N. Bower, M. W. Gallagher, P. J. Connolly, M. Flynn, R. Farrington, J. Crosier, O. Schlenczek, J. Fugal, and J. Henneberger
Atmos. Chem. Phys., 15, 12953–12969, https://doi.org/10.5194/acp-15-12953-2015, https://doi.org/10.5194/acp-15-12953-2015, 2015
Short summary
Short summary
The paper explores the microphysical structure of clouds at the high-alpine measurement site Jungfraujoch, Switzerland. High concentrations of ice crystals were measured by a range of instruments. The presence of these high concentrations could not be explained through conventional understanding of ice formation processes in clouds and the possibility that the surface provides a significant source of ice crystals is investigated.
C. Emersic, P. J. Connolly, S. Boult, M. Campana, and Z. Li
Atmos. Chem. Phys., 15, 11311–11326, https://doi.org/10.5194/acp-15-11311-2015, https://doi.org/10.5194/acp-15-11311-2015, 2015
I. Steinke, C. Hoose, O. Möhler, P. Connolly, and T. Leisner
Atmos. Chem. Phys., 15, 3703–3717, https://doi.org/10.5194/acp-15-3703-2015, https://doi.org/10.5194/acp-15-3703-2015, 2015
Short summary
Short summary
Ice nucleation in clouds has a significant influence on the global radiative budget and the hydrological cycle. Several studies have investigated the ice formation in droplets and parameterizations have been developed in order to include immersion freezing in climate models. In contrast, there are fewer studies regarding the conversion of water vapor into ice (so-called deposition nucleation) which is the topic of this paper which investigates deposition nucleation by Arizona Test dust in detail
G. Lloyd, T. W. Choularton, K. N. Bower, J. Crosier, H. Jones, J. R. Dorsey, M. W. Gallagher, P. Connolly, A. C. R. Kirchgaessner, and T. Lachlan-Cope
Atmos. Chem. Phys., 15, 3719–3737, https://doi.org/10.5194/acp-15-3719-2015, https://doi.org/10.5194/acp-15-3719-2015, 2015
Short summary
Short summary
Measurements of cloud microphysics are reported from the Aerosol-Cloud Coupling And Climate Interactions (ACCACIA) campaign. Concentrations of ice particles from two spring and two summer cases are compared with particular attention to the role of secondary ice in these clouds. In addition aerosol measurements were used as input to a primary ice nucleation parameterisation which was compared with observed values of primary ice in these clouds. We found higher concentrations of ice during summer.
E. Simpson, P. Connolly, and G. McFiggans
Geosci. Model Dev., 7, 1535–1542, https://doi.org/10.5194/gmd-7-1535-2014, https://doi.org/10.5194/gmd-7-1535-2014, 2014
P. J. Connolly, G. Vaughan, P. Cook, G. Allen, H. Coe, T. W. Choularton, C. Dearden, and A. Hill
Atmos. Chem. Phys., 13, 7133–7152, https://doi.org/10.5194/acp-13-7133-2013, https://doi.org/10.5194/acp-13-7133-2013, 2013
J. Skrotzki, P. Connolly, M. Schnaiter, H. Saathoff, O. Möhler, R. Wagner, M. Niemand, V. Ebert, and T. Leisner
Atmos. Chem. Phys., 13, 4451–4466, https://doi.org/10.5194/acp-13-4451-2013, https://doi.org/10.5194/acp-13-4451-2013, 2013
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
George Jordan, James Haywood, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, and Anton Laakso
EGUsphere, https://doi.org/10.5194/egusphere-2023-619, https://doi.org/10.5194/egusphere-2023-619, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The 2014−15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region providing an opportunity to study how aerosol alter cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2 where changes to cloud properties are explored.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, M. Rami Alfarra, Thomas J. Bannan, Dawei Hu, Kelly L. Pereira, Jaqueline F. Hamilton, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 22, 14147–14175, https://doi.org/10.5194/acp-22-14147-2022, https://doi.org/10.5194/acp-22-14147-2022, 2022
Short summary
Short summary
Mixing experiments are crucial and highly beneficial for our understanding of atmospheric chemical interactions. However, interpretation quickly becomes complex, and both the experimental design and evaluation need to be scrutinised carefully. Advanced online and offline compositional measurements can reveal substantial additional information to aid in the interpretation of yield data, including components uniquely found in mixtures and property changes in SOA formed from mixtures of VOCs.
Rachel L. James, Jonathan Crosier, and Paul J. Connolly
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-714, https://doi.org/10.5194/acp-2022-714, 2022
Revised manuscript under review for ACP
Short summary
Short summary
Secondary ice production (SIP) may significantly enhance the ice particle concentration in mixed-phase clouds. We present a systematic modelling study of secondary ice formation in idealised shallow convective clouds for a range of conditions. Our results suggest that the SIP mechanism, collisions of supercooled water drops with more massive ice particles, might be a significant ice formation mechanism in shallow convective clouds outside the rime-splintering temperature range (-3 °C to -8 °C).
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, Thomas J. Bannan, Michael Flynn, Spyros N. Pandis, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 13677–13693, https://doi.org/10.5194/acp-22-13677-2022, https://doi.org/10.5194/acp-22-13677-2022, 2022
Short summary
Short summary
The addition of a low-yield precursor to the reactive mixture of aVOC and bVOC can increase or decrease the SOA volatility that is system-dependent. Therefore, the SOA volatility of the mixtures cannot always be predicted based on the additivity. In complex mixtures the formation of lower-volatility products likely outweighs the formation of products with higher volatility. The unique products of each mixture contribute significantly to the signal, suggesting interactions can be important.
Yunqi Shao, Aristeidis Voliotis, Mao Du, Yu Wang, Kelly Pereira, Jacqueline Hamilton, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 9799–9826, https://doi.org/10.5194/acp-22-9799-2022, https://doi.org/10.5194/acp-22-9799-2022, 2022
Short summary
Short summary
This study explored the chemical properties of secondary organic aerosol (SOA) that formed from photo-oxidation of single and mixed biogenic and anthropogenic precursors. We showed that SOA chemical properties in a mixed vapour system are mainly affected by the
higher-yield precursor's oxidation products and products from
cross-product formation. This study also identifies potential tracer compounds in a mixed vapour system that might be used in SOA source attribution in future ambient studies.
Mao Du, Aristeidis Voliotis, Yunqi Shao, Yu Wang, Thomas J. Bannan, Kelly L. Pereira, Jacqueline F. Hamilton, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Meas. Tech., 15, 4385–4406, https://doi.org/10.5194/amt-15-4385-2022, https://doi.org/10.5194/amt-15-4385-2022, 2022
Short summary
Short summary
Atmospheric chemistry plays a key role in the understanding of aerosol formation and air pollution. We designed chamber experiments for the characterization of secondary organic aerosol (SOA) from a biogenic precursor with inorganic seed. Our results highlight the advantages of a combination of online FIGAERO-CIMS and offline LC-Orbitrap MS analytical techniques to characterize the chemical composition of SOA in chamber studies.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Jessica Slater, Hugh Coe, Gordon McFiggans, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 2937–2953, https://doi.org/10.5194/acp-22-2937-2022, https://doi.org/10.5194/acp-22-2937-2022, 2022
Short summary
Short summary
This paper shows the specific impact of black carbon (BC) on the aerosol–planetary boundary layer (PBL) feedback and its influence on a Beijing haze episode. Overall, this paper shows that strong temperature inversions prevent BC heating within the PBL from significantly increasing PBL height, while BC above the PBL suppresses PBL development significantly through the day. From this we suggest a method by which both locally and regionally emitted BC may impact urban pollution episodes.
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022, https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
Short summary
A comprehensive description and characterisation of the Manchester Aerosol Chamber (MAC) was conducted. The MAC has good temperature and relative humidity homogeneity, fast mixing times, and comparable losses of gases and particles with other chambers. The MAC's bespoke control system allows improved duty cycles and repeatable experiments. Moreover, the effect of contamination on performance was also investigated. It is highly recommended to regularly track the chamber's performance.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly
Atmos. Chem. Phys., 21, 18519–18530, https://doi.org/10.5194/acp-21-18519-2021, https://doi.org/10.5194/acp-21-18519-2021, 2021
Short summary
Short summary
Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30 % of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of −4 °C to −12 °C.
Aristeidis Voliotis, Yu Wang, Yunqi Shao, Mao Du, Thomas J. Bannan, Carl J. Percival, Spyros N. Pandis, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 14251–14273, https://doi.org/10.5194/acp-21-14251-2021, https://doi.org/10.5194/acp-21-14251-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) formation from mixtures of volatile precursors can be affected by the molecular interactions of the products. Composition and volatility measurements of SOA formed from mixtures of anthropogenic and biogenic precursors reveal processes that can increase or decrease the SOA volatility. The unique products of the mixture were more oxygenated and less volatile than those from either precursor. Analytical context is provided to explore the SOA volatility in mixtures.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Yu Wang, Aristeidis Voliotis, Yunqi Shao, Taomou Zong, Xiangxinyue Meng, Mao Du, Dawei Hu, Ying Chen, Zhijun Wu, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 11303–11316, https://doi.org/10.5194/acp-21-11303-2021, https://doi.org/10.5194/acp-21-11303-2021, 2021
Short summary
Short summary
Aerosol phase behaviour plays a profound role in atmospheric physicochemical processes. We designed dedicated chamber experiments to study the phase state of secondary organic aerosol from biogenic and anthropogenic mixed precursors. Our results highlight the key role of the organic–inorganic ratio and relative humidity in phase state, but the sources and organic composition are less important. The result provides solid laboratory evidence for understanding aerosol phase in a complex atmosphere.
Langwen Huang and David Topping
Geosci. Model Dev., 14, 2187–2203, https://doi.org/10.5194/gmd-14-2187-2021, https://doi.org/10.5194/gmd-14-2187-2021, 2021
Short summary
Short summary
As our knowledge and understanding of atmospheric aerosol particle evolution and impact grows, designing community mechanistic models requires an ability to capture increasing chemical, physical and therefore numerical complexity. As the landscape of computing software and hardware evolves, it is important to profile the usefulness of emerging platforms in tackling this complexity. With this in mind we present JlBox v1.1, written in Julia.
Michael Priestley, Thomas J. Bannan, Michael Le Breton, Stephen D. Worrall, Sungah Kang, Iida Pullinen, Sebastian Schmitt, Ralf Tillmann, Einhard Kleist, Defeng Zhao, Jürgen Wildt, Olga Garmash, Archit Mehra, Asan Bacak, Dudley E. Shallcross, Astrid Kiendler-Scharr, Åsa M. Hallquist, Mikael Ehn, Hugh Coe, Carl J. Percival, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 21, 3473–3490, https://doi.org/10.5194/acp-21-3473-2021, https://doi.org/10.5194/acp-21-3473-2021, 2021
Short summary
Short summary
A significant fraction of emissions from human activity consists of aromatic hydrocarbons, e.g. benzene, which oxidise to form new compounds important for particle growth. Characterisation of benzene oxidation products highlights the range of species produced as well as their chemical properties and contextualises them within relevant frameworks, e.g. MCM. Cluster analysis of the oxidation product time series distinguishes behaviours of CHON compounds that could aid in identifying functionality.
Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, Yunqi Shao, and Gordon McFiggans
Geosci. Model Dev., 14, 675–702, https://doi.org/10.5194/gmd-14-675-2021, https://doi.org/10.5194/gmd-14-675-2021, 2021
Short summary
Short summary
User-friendly and open-source software for simulating aerosol chambers is a valuable tool for research scientists in designing and analysing their experiments. This paper describes a new version of such software and will therefore provide a useful reference for those applying it. Central to the paper is an assessment of the software's accuracy through comparison against previously published simulations.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Douglas Morrison, Ian Crawford, Nicholas Marsden, Michael Flynn, Katie Read, Luis Neves, Virginia Foot, Paul Kaye, Warren Stanley, Hugh Coe, David Topping, and Martin Gallagher
Atmos. Chem. Phys., 20, 14473–14490, https://doi.org/10.5194/acp-20-14473-2020, https://doi.org/10.5194/acp-20-14473-2020, 2020
Short summary
Short summary
We provide conservative estimates of the concentrations of bacteria within transatlantic dust clouds, originating from the African continent. We observe significant seasonal differences in the overall concentrations of particles but no seasonal variation in the ratio between bacteria and dust. With bacteria contributing to ice formation at warmer temperatures than dust, our observations should improve the accuracy of climate models.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
David Topping, David Watts, Hugh Coe, James Evans, Thomas J. Bannan, Douglas Lowe, Caroline Jay, and Jonathan W. Taylor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-270, https://doi.org/10.5194/gmd-2020-270, 2020
Publication in GMD not foreseen
Short summary
Short summary
Time-series forecasting methods have often been used to mitigate some of the challenges associated with deploying chemical transport models. In this study we deploy and evaluate Facebook’s Prophetmodel v0.6 in predicting hourly concentrations of Nitrogen Dioxide [NO2]. et. Overall we find the Prophet model offers a relatively effective and simple way to make predictions about NO2 at local levels.
Petroc D. Shelley, Thomas J. Bannan, Stephen D. Worrall, M. Rami Alfarra, Ulrich K. Krieger, Carl J. Percival, Arthur Garforth, and David Topping
Atmos. Chem. Phys., 20, 8293–8314, https://doi.org/10.5194/acp-20-8293-2020, https://doi.org/10.5194/acp-20-8293-2020, 2020
Short summary
Short summary
The methods used to estimate the vapour pressures of compounds in the atmosphere typically perform poorly when applied to organic compounds found in the atmosphere. New measurements have been made and compared to previous experimental data and estimated values so that the limitations within the estimation methods can be identified and in the future be rectified.
Natalie R. Gervasi, David O. Topping, and Andreas Zuend
Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, https://doi.org/10.5194/acp-20-2987-2020, 2020
Short summary
Short summary
Organic aerosols have been shown to exist often in a semi-solid or amorphous, glassy state. Highly viscous particles behave differently than their well-mixed liquid analogues with consequences for a variety of aerosol processes. Here, we introduce a new predictive mixture viscosity model called AIOMFAC-VISC. It enables us to predict the viscosity of aqueous organic mixtures as a function of temperature and chemical composition, covering the full range of liquid, semi-solid, and glassy states.
Parya Broomandi, Xueyu Geng, Weisi Guo, Jong Ryeol Kim, Alessio Pagani, and David Topping
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-342, https://doi.org/10.5194/gmd-2019-342, 2020
Revised manuscript not accepted
Short summary
Short summary
As a result of our novel graph-based reduced modeling, we are able to represent high-dimensional knowledge into a causal inference and stability framework.
Yu Wang, Ying Chen, Zhijun Wu, Dongjie Shang, Yuxuan Bian, Zhuofei Du, Sebastian H. Schmitt, Rong Su, Georgios I. Gkatzelis, Patrick Schlag, Thorsten Hohaus, Aristeidis Voliotis, Keding Lu, Limin Zeng, Chunsheng Zhao, M. Rami Alfarra, Gordon McFiggans, Alfred Wiedensohler, Astrid Kiendler-Scharr, Yuanhang Zhang, and Min Hu
Atmos. Chem. Phys., 20, 2161–2175, https://doi.org/10.5194/acp-20-2161-2020, https://doi.org/10.5194/acp-20-2161-2020, 2020
Short summary
Short summary
Severe haze events, with high particulate nitrate (pNO3−) burden, frequently prevail in Beijing. In this study, we demonstrate a mutual-promotion effect between aerosol water uptake and pNO3− formation backed up by theoretical calculations and field observations throughout a typical pNO3−-dominated haze event in Beijing wintertime. This self-amplified mutual-promotion effect between aerosol water content and particulate nitrate can rapidly deteriorate air quality and degrade visibility.
Kathryn Fowler, Paul Connolly, and David Topping
Atmos. Chem. Phys., 20, 683–698, https://doi.org/10.5194/acp-20-683-2020, https://doi.org/10.5194/acp-20-683-2020, 2020
Short summary
Short summary
Observations of low–temperature cirrus clouds have found unexpectedly low ice crystal numbers and high supersaturations, suggesting an incomplete understanding of the freezing mechanisms under these conditions. The existence of viscous organic aerosol has offered alternative ice nucleation pathways, which have been observed in laboratory studies. We have developed the first cloud parcel model to investigate the effect of viscosity on ice nucleation.
Edward Gryspeerdt, Johannes Mülmenstädt, Andrew Gettelman, Florent F. Malavelle, Hugh Morrison, David Neubauer, Daniel G. Partridge, Philip Stier, Toshihiko Takemura, Hailong Wang, Minghuai Wang, and Kai Zhang
Atmos. Chem. Phys., 20, 613–623, https://doi.org/10.5194/acp-20-613-2020, https://doi.org/10.5194/acp-20-613-2020, 2020
Short summary
Short summary
Aerosol radiative forcing is a key uncertainty in our understanding of the human forcing of the climate, with much of this uncertainty coming from aerosol impacts on clouds. Observation-based estimates of the radiative forcing are typically smaller than those from global models, but it is not clear if they are more reliable. This work shows how the forcing components in global climate models can be identified, highlighting similarities between the two methods and areas for future investigation.
Olga Garmash, Matti P. Rissanen, Iida Pullinen, Sebastian Schmitt, Oskari Kausiala, Ralf Tillmann, Defeng Zhao, Carl Percival, Thomas J. Bannan, Michael Priestley, Åsa M. Hallquist, Einhard Kleist, Astrid Kiendler-Scharr, Mattias Hallquist, Torsten Berndt, Gordon McFiggans, Jürgen Wildt, Thomas F. Mentel, and Mikael Ehn
Atmos. Chem. Phys., 20, 515–537, https://doi.org/10.5194/acp-20-515-2020, https://doi.org/10.5194/acp-20-515-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) facilitate aerosol formation in the atmosphere. Using NO3− chemical ionization mass spectrometry we investigated HOM composition and yield in oxidation of aromatic compounds at different reactant concentrations, in the presence of NOx and seed aerosol. Higher OH concentrations increased HOM yield, suggesting multiple oxidation steps, and affected HOM composition, potentially explaining in part discrepancies in published secondary organic aerosol yields.
Ying Chen, Oliver Wild, Edmund Ryan, Saroj Kumar Sahu, Douglas Lowe, Scott Archer-Nicholls, Yu Wang, Gordon McFiggans, Tabish Ansari, Vikas Singh, Ranjeet S. Sokhi, Alex Archibald, and Gufran Beig
Atmos. Chem. Phys., 20, 499–514, https://doi.org/10.5194/acp-20-499-2020, https://doi.org/10.5194/acp-20-499-2020, 2020
Short summary
Short summary
PM2.5 and O3 are two major air pollutants. Some mitigation strategies focusing on reducing PM2.5 may lead to substantial increase in O3. We use statistical emulation combined with atmospheric transport model to perform thousands of sensitivity numerical studies to identify the major sources of PM2.5 and O3 and to develop strategies targeted at both pollutants. Our scientific evidence suggests that regional coordinated emission control is required to mitigate PM2.5 whilst preventing O3 increase.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Martin Osborne, Florent F. Malavelle, Mariana Adam, Joelle Buxmann, Jaqueline Sugier, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 19, 3557–3578, https://doi.org/10.5194/acp-19-3557-2019, https://doi.org/10.5194/acp-19-3557-2019, 2019
Short summary
Short summary
In this paper we present an analysis of the unusual
red skyevent that occurred over the UK on 15 and 16 October 2017. We use measurements from the Met Office operational lidar and sun-photometer network, as well as other data and model output, to show that the event was caused by the passage of ex-hurricane Ophelia which transported unusual amounts of dust from the Sahara to the UK as well as smoke from forest fires in Portugal.
Thomas J. Bannan, Michael Le Breton, Michael Priestley, Stephen D. Worrall, Asan Bacak, Nicholas A. Marsden, Archit Mehra, Julia Hammes, Mattias Hallquist, M. Rami Alfarra, Ulrich K. Krieger, Jonathan P. Reid, John Jayne, Wade Robinson, Gordon McFiggans, Hugh Coe, Carl J. Percival, and Dave Topping
Atmos. Meas. Tech., 12, 1429–1439, https://doi.org/10.5194/amt-12-1429-2019, https://doi.org/10.5194/amt-12-1429-2019, 2019
Short summary
Short summary
The Filter Inlet for Gases and AEROsols (FIGAERO) is an inlet designed to be coupled with a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) and provides simultaneous molecular information relating to both the gas- and particle-phase samples. This method has been used to extract vapour pressures of compounds whilst giving quantitative concentrations in the particle phase. Here we detail an ideal set of benchmark compounds for characterization of the FIGAERO.
Elizabeth Forde, Martin Gallagher, Virginia Foot, Roland Sarda-Esteve, Ian Crawford, Paul Kaye, Warren Stanley, and David Topping
Atmos. Chem. Phys., 19, 1665–1684, https://doi.org/10.5194/acp-19-1665-2019, https://doi.org/10.5194/acp-19-1665-2019, 2019
Short summary
Short summary
The abundance and diversity of airborne biological particles in different environments remains poorly constrained. Measurements of such particles were conducted at four sites in the United Kingdom, using real-time fluorescence instrumentation. Using local land cover types, sources of suspected particle types were identified and compared. Most sites exhibited a wet-discharged fungal spore dominance, with the exception of one site, which was inferred to be influenced by a local dairy farm.
Florent F. Malavelle, Jim M. Haywood, Lina M. Mercado, Gerd A. Folberth, Nicolas Bellouin, Stephen Sitch, and Paulo Artaxo
Atmos. Chem. Phys., 19, 1301–1326, https://doi.org/10.5194/acp-19-1301-2019, https://doi.org/10.5194/acp-19-1301-2019, 2019
Short summary
Short summary
Diffuse light can increase the efficiency of vegetation photosynthesis. Diffuse light results from scattering by either clouds or aerosols in the atmosphere. During the dry season biomass burning (BB) on the edges of the Amazon rainforest contributes significantly to the aerosol burden over the entire region. We show that despite a modest effect of change in light conditions, the overall impact of BB aerosols on the vegetation is still important when indirect climate feedbacks are considered.
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 11, 6203–6230, https://doi.org/10.5194/amt-11-6203-2018, https://doi.org/10.5194/amt-11-6203-2018, 2018
Short summary
Short summary
Pollen, bacteria and fungal spores are common in the environment, can have very important implications for public health and may influence the weather. Biological sensors potentially could be used to monitor quantities of these types of particles. However, it is important to transform the measurements from these instruments into counts of these biological particles. The paper tests a variety of approaches for achieving this aim on data collected in a laboratory.
Dawei Hu, David Topping, and Gordon McFiggans
Atmos. Chem. Phys., 18, 14925–14937, https://doi.org/10.5194/acp-18-14925-2018, https://doi.org/10.5194/acp-18-14925-2018, 2018
Short summary
Short summary
Co-condensation of inorganic or organic vapours on growing droplets could significantly enhance both CCN and cloud droplet number concentration, thereby influencing climate. Until now, there has been very few direct observational evidence of this process. We exposed involatile inorganic particles to a moist atmosphere containing a controlled amount of an organic semi-volatile vapour. We measured a much greater growth of the particles than if they had only been exposed to water vapour.
Matthew Crooks, Paul Connolly, and Gordon McFiggans
Geosci. Model Dev., 11, 3261–3278, https://doi.org/10.5194/gmd-11-3261-2018, https://doi.org/10.5194/gmd-11-3261-2018, 2018
Short summary
Short summary
Clouds form when water condenses onto particles in the atmosphere and the size and chemical composition of these particles can have a large influence over how much water condenses and the subsequent formation of cloud. Additional gases exist in the atmosphere that can condense onto the aerosol particles and change their composition. We present a fast and efficient method of calculating the effect of atmospheric gases on the formation of cloud that can be used in climate and weather models.
Kelly L. Pereira, Rachel Dunmore, James Whitehead, M. Rami Alfarra, James D. Allan, Mohammed S. Alam, Roy M. Harrison, Gordon McFiggans, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 18, 11073–11096, https://doi.org/10.5194/acp-18-11073-2018, https://doi.org/10.5194/acp-18-11073-2018, 2018
Short summary
Short summary
Exhaust emissions from a light-duty diesel engine were introduced into an atmospheric simulation chamber which was used as a holding-cell for sampling, allowing instruments capable of providing detailed chemical speciation of exhaust gas emissions to be used. The effect of different engine conditions on the exhaust gas composition was investigated. The exhaust composition changed considerably due to two influencing factors, engine combustion and diesel oxidative catalyst efficiency.
Robin G. Stevens, Katharina Loewe, Christopher Dearden, Antonios Dimitrelos, Anna Possner, Gesa K. Eirund, Tomi Raatikainen, Adrian A. Hill, Benjamin J. Shipway, Jonathan Wilkinson, Sami Romakkaniemi, Juha Tonttila, Ari Laaksonen, Hannele Korhonen, Paul Connolly, Ulrike Lohmann, Corinna Hoose, Annica M. L. Ekman, Ken S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, https://doi.org/10.5194/acp-18-11041-2018, 2018
Short summary
Short summary
We perform a model intercomparison of summertime high Arctic clouds. Observed concentrations of aerosol particles necessary for cloud formation fell to extremely low values, coincident with a transition from cloudy to nearly cloud-free conditions. Previous analyses have suggested that at these low concentrations, the radiative properties of the clouds are determined primarily by these particle concentrations. The model results strongly support this hypothesis.
Michael Le Breton, Yujue Wang, Åsa M. Hallquist, Ravi Kant Pathak, Jing Zheng, Yudong Yang, Dongjie Shang, Marianne Glasius, Thomas J. Bannan, Qianyun Liu, Chak K. Chan, Carl J. Percival, Wenfei Zhu, Shengrong Lou, David Topping, Yuchen Wang, Jianzhen Yu, Keding Lu, Song Guo, Min Hu, and Mattias Hallquist
Atmos. Chem. Phys., 18, 10355–10371, https://doi.org/10.5194/acp-18-10355-2018, https://doi.org/10.5194/acp-18-10355-2018, 2018
Short summary
Short summary
This paper utilizes a chemical ionisation mass spectrometer measuring gas and particle-phase organosulfates (OS) simultaneously during a field campaign in Beijing, China, and highlights how high time frequency online measurements enable a detailed analysis of dominant production mechanisms. We find that high aerosol acidity, organic precursor concentration and relative humidity promote the production of OS. The thermogram desorption reveals the potential for semi-volatile gas-phase OS.
Wiebke Frey, Dawei Hu, James Dorsey, M. Rami Alfarra, Aki Pajunoja, Annele Virtanen, Paul Connolly, and Gordon McFiggans
Atmos. Chem. Phys., 18, 9393–9409, https://doi.org/10.5194/acp-18-9393-2018, https://doi.org/10.5194/acp-18-9393-2018, 2018
Short summary
Short summary
The coupled system of the Manchester Aerosol Chamber and Manchester Ice Cloud Chamber was used to study the ice-forming abilities of secondary
organic aerosol particles under mixed-phase cloud conditions. Given the vast abundance of secondary organic particles in the atmosphere, they
might present an important contribution to ice-nucleating particles. However, we find that in the studied temperature range (20 to 28 °C)
the secondary organic particles do not nucleate ice particles.
Emma L. Simpson, Paul J. Connolly, and Gordon McFiggans
Atmos. Chem. Phys., 18, 7237–7250, https://doi.org/10.5194/acp-18-7237-2018, https://doi.org/10.5194/acp-18-7237-2018, 2018
Short summary
Short summary
This study explores the process of ice formation in clouds by conducting computer model simulations and laboratory experiments in a cloud chamber. We show that the formation of ice in clouds can be limited by the presence of atmospheric aerosol particles and that further research is required to identify the requirements for freezing, e.g. minimum mass of water, in order to accurately calculate ice formation and thus improve climate and weather prediction.
Stefano Decesari, Simona Kovarich, Manuela Pavan, Arianna Bassan, Andrea Ciacci, and David Topping
Atmos. Chem. Phys., 18, 2329–2340, https://doi.org/10.5194/acp-18-2329-2018, https://doi.org/10.5194/acp-18-2329-2018, 2018
Short summary
Short summary
Particulate matter (PM) chemical composition includes thousands of individual organic compounds that have never been tested for their toxicological potential. Computational (in silico) screenings represent a promising approach to identify new target compounds for more in-depth toxicological analyses. We provide here a proof-of-concept evaluation based on ca. 100 aerosol organic compounds. Reliable toxicological predictions were obtained for more than 80 % of them.
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O'Meara
Atmos. Chem. Phys., 18, 1629–1642, https://doi.org/10.5194/acp-18-1629-2018, https://doi.org/10.5194/acp-18-1629-2018, 2018
Short summary
Short summary
This is the first time the Maxwell–Stefan framework has been applied to an atmospheric aerosol core–shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition. Understanding aerosol composition is essential to accurately model their interactions within atmospheric systems. We use simple binary systems to demonstrate how viscosity and solubility both play a role in affecting the rate of diffusion through aerosol particles.
Gillian Young, Paul J. Connolly, Christopher Dearden, and Thomas W. Choularton
Atmos. Chem. Phys., 18, 1475–1494, https://doi.org/10.5194/acp-18-1475-2018, https://doi.org/10.5194/acp-18-1475-2018, 2018
Short summary
Short summary
Large-scale subsidence, associated with high-pressure systems, is often used in cloud-resolving models to maintain the height of boundary layer clouds; however, its influence on the small-scale interactions in mixed-phase clouds has not been previously investigated. Using large-eddy simulations, we have identified a relationship between subsidence and convection development in such clouds, with implications for mixed-phase boundary layer clouds forming in the ocean-exposed Arctic regions.
Olivia Goulden, Matthew Crooks, and Paul Connolly
Atmos. Chem. Phys., 18, 275–287, https://doi.org/10.5194/acp-18-275-2018, https://doi.org/10.5194/acp-18-275-2018, 2018
Short summary
Short summary
The formation of cloud from the condensation of water vapour in the atmosphere on aerosol particles is highly dependent of the chemical properties of the particles. The chemistry is further complicated by the presence of condensible gases in the atmosphere other than water. We provide several methods of including the complicated chemical properties of the aerosol particles and condensing gases into single parameter descriptions, which are suitable for inclusion in large-scale models.
Ulrich K. Krieger, Franziska Siegrist, Claudia Marcolli, Eva U. Emanuelsson, Freya M. Gøbel, Merete Bilde, Aleksandra Marsh, Jonathan P. Reid, Andrew J. Huisman, Ilona Riipinen, Noora Hyttinen, Nanna Myllys, Theo Kurtén, Thomas Bannan, Carl J. Percival, and David Topping
Atmos. Meas. Tech., 11, 49–63, https://doi.org/10.5194/amt-11-49-2018, https://doi.org/10.5194/amt-11-49-2018, 2018
Short summary
Short summary
Vapor pressures of low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique, which is generally reported to be smaller than a factor of 2. We determined saturation vapor pressures for the homologous series of polyethylene glycols ranging in vapor pressure at 298 K from 1E−7 Pa to 5E−2 Pa as a reference set.
Simon O'Meara, David O. Topping, Rahul A. Zaveri, and Gordon McFiggans
Atmos. Chem. Phys., 17, 10477–10494, https://doi.org/10.5194/acp-17-10477-2017, https://doi.org/10.5194/acp-17-10477-2017, 2017
Short summary
Short summary
To simulate particle-phase diffusion, an analytical expression is desired because it takes less calculation time than a differential equation. Here a correction is found for the analytical solution for when diffusivity is dependent on composition, thereby making it more widely applicable than before. Consequently, we are able to more realistically evaluate the rate limitation (if any) imposed by particle-phase diffusion on component partitioning between the gas and particle phase.
Leonid Nichman, Emma Järvinen, James Dorsey, Paul Connolly, Jonathan Duplissy, Claudia Fuchs, Karoliina Ignatius, Kamalika Sengupta, Frank Stratmann, Ottmar Möhler, Martin Schnaiter, and Martin Gallagher
Atmos. Meas. Tech., 10, 3231–3248, https://doi.org/10.5194/amt-10-3231-2017, https://doi.org/10.5194/amt-10-3231-2017, 2017
Short summary
Short summary
Optical probes are frequently used for the detection of cloud particles. The detected microphysical properties may affect particle growth and accretion mechanisms and the light scattering properties of cirrus clouds. In the CLOUD chamber study at CERN, we compared four optical measurement techniques. We show that shape derivation alone is not sufficient to determine the phase of the small cloud particles. None of the instruments were able to unambiguously determine the phase of small particles.
David O. Topping, James Allan, M. Rami Alfarra, and Bernard Aumont
Geosci. Model Dev., 10, 2365–2377, https://doi.org/10.5194/gmd-10-2365-2017, https://doi.org/10.5194/gmd-10-2365-2017, 2017
Short summary
Short summary
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated to facilitate improved model evaluation. The study demonstrates the use of a methodology that would be improved with more training data and data from simple mixed systems.
Huan Yao, Yu Song, Mingxu Liu, Scott Archer-Nicholls, Douglas Lowe, Gordon McFiggans, Tingting Xu, Pin Du, Jianfeng Li, Yusheng Wu, Min Hu, Chun Zhao, and Tong Zhu
Atmos. Chem. Phys., 17, 5205–5219, https://doi.org/10.5194/acp-17-5205-2017, https://doi.org/10.5194/acp-17-5205-2017, 2017
Gillian Young, Paul J. Connolly, Hazel M. Jones, and Thomas W. Choularton
Atmos. Chem. Phys., 17, 4209–4227, https://doi.org/10.5194/acp-17-4209-2017, https://doi.org/10.5194/acp-17-4209-2017, 2017
Short summary
Short summary
Arctic mixed-phase clouds are poorly represented in numerical models, due in part to an overpredicted ice phase. Here, we examine the sensitivity of cloud structure, evolution, and lifetime to modelled primary ice number concentrations over three different surfaces – sea ice, marginal ice, and ocean – to investigate the dependency on both the ice phase and dynamics induced from surface fluxes.
Simon Ruske, David O. Topping, Virginia E. Foot, Paul H. Kaye, Warren R. Stanley, Ian Crawford, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 10, 695–708, https://doi.org/10.5194/amt-10-695-2017, https://doi.org/10.5194/amt-10-695-2017, 2017
Short summary
Short summary
Particles such as bacteria, pollen and fungal spores have important implications within the environment and public health sectors. Here we evaluate the performance of various different methods for distinguishing between these different types of particles using a new instrument. We demonstrate that there may be better alternatives to the currently used methods which can be further investigated in future research.
Gillian Young, Hazel M. Jones, Thomas W. Choularton, Jonathan Crosier, Keith N. Bower, Martin W. Gallagher, Rhiannon S. Davies, Ian A. Renfrew, Andrew D. Elvidge, Eoghan Darbyshire, Franco Marenco, Philip R. A. Brown, Hugo M. A. Ricketts, Paul J. Connolly, Gary Lloyd, Paul I. Williams, James D. Allan, Jonathan W. Taylor, Dantong Liu, and Michael J. Flynn
Atmos. Chem. Phys., 16, 13945–13967, https://doi.org/10.5194/acp-16-13945-2016, https://doi.org/10.5194/acp-16-13945-2016, 2016
Short summary
Short summary
Clouds are intricately coupled to the Arctic sea ice. Our inability to accurately model cloud fractions causes large uncertainties in predicted radiative interactions in this region, therefore, affecting sea ice forecasts. Here, we present measurements of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean to improve our understanding of the relationship between the Arctic atmosphere and clouds which develop in this region.
François Benduhn, Graham W. Mann, Kirsty J. Pringle, David O. Topping, Gordon McFiggans, and Kenneth S. Carslaw
Geosci. Model Dev., 9, 3875–3906, https://doi.org/10.5194/gmd-9-3875-2016, https://doi.org/10.5194/gmd-9-3875-2016, 2016
Short summary
Short summary
We present a new mathematical formalism that serves to represent exchanges of inorganic matter between the atmosphere gas phase and the aerosol aqueous phase. In a global modelling framework, taking into account these processes may help represent many important features more accurately, such as the formation of cloud droplets or the radiative properties of the atmosphere. The formalism strives to keep an appropriate balance between accuracy and computation efficiency requirements.
Matthew Crooks, Paul Connolly, David Topping, and Gordon McFiggans
Geosci. Model Dev., 9, 3617–3637, https://doi.org/10.5194/gmd-9-3617-2016, https://doi.org/10.5194/gmd-9-3617-2016, 2016
Short summary
Short summary
Semi-volatile compounds, like water, can exist in both vapour phases and condensed phases within a system. This paper presents a method of calculating the condensed and vapour phases of semi-volatile compounds at equilibrium, in particular, when the condensed mass occurs within particles of different sizes and chemical composition. The applications of interest to the authors are those of atmospheric importance such as cloud droplet formation and reflection or absorption of solar radiation.
Samuel Lowe, Daniel G. Partridge, David Topping, and Philip Stier
Atmos. Chem. Phys., 16, 10941–10963, https://doi.org/10.5194/acp-16-10941-2016, https://doi.org/10.5194/acp-16-10941-2016, 2016
Short summary
Short summary
A novel inverse modelling framework is developed for analysing the sensitivity of cloud condensation nuclei (CCN) concentrations to simultaneous perturbations in multiple model parameters at atmospherically relevant humidities. Many parameter interactions are identified and CCN concentrations are found to be relatively insensitive to bulk–surface partitioning, while aerosol concentration, surface tension, composition and solution ideality exhibit a higher degree of sensitivity.
James D. Whitehead, Eoghan Darbyshire, Joel Brito, Henrique M. J. Barbosa, Ian Crawford, Rafael Stern, Martin W. Gallagher, Paul H. Kaye, James D. Allan, Hugh Coe, Paulo Artaxo, and Gordon McFiggans
Atmos. Chem. Phys., 16, 9727–9743, https://doi.org/10.5194/acp-16-9727-2016, https://doi.org/10.5194/acp-16-9727-2016, 2016
Short summary
Short summary
We present measurements of aerosols during the transition from wet to dry seasons at a pristine rainforest site in central Amazonia. By excluding pollution episodes, we focus on natural biogenic aerosols. Submicron aerosols are dominated by organic material, similar to previous wet season measurements. Larger particles are dominated by biological material, mostly fungal spores, with higher concentrations at night. This study provides important data on the nature of particles above the Amazon.
Scott Archer-Nicholls, Douglas Lowe, David M. Schultz, and Gordon McFiggans
Atmos. Chem. Phys., 16, 5573–5594, https://doi.org/10.5194/acp-16-5573-2016, https://doi.org/10.5194/acp-16-5573-2016, 2016
Short summary
Short summary
The response of the Weather Research and Forecasting model with Chemistry to forcings by biomass burning aerosol were investigated in high-resolution nested domains over Brazil. The aerosol-layer was found to have a negative direct effect at the top of the atmosphere, but this was largely cancelled by a semi-direct effect which inhibited afternoon cloud formation. The cloud response to the aerosol was found to be highly sensitive to model resolution and the use of convective parameterisation.
Simon O'Meara, David O. Topping, and Gordon McFiggans
Atmos. Chem. Phys., 16, 5299–5313, https://doi.org/10.5194/acp-16-5299-2016, https://doi.org/10.5194/acp-16-5299-2016, 2016
Short summary
Short summary
To understand the effect of atmospheric particulate matter on climate and human health we need to know how it evolves. We investigate how best to estimate diffusion of components through particles by comparing diffusion times from three approaches to solving Fick's Law and find that they agree. This means that scientists can simulate Fickian diffusion through atmospheric particles using the approach best suited to their requirements and have confidence that their model is mathematically sound.
Robert J. Farrington, Paul J. Connolly, Gary Lloyd, Keith N. Bower, Michael J. Flynn, Martin W. Gallagher, Paul R. Field, Chris Dearden, and Thomas W. Choularton
Atmos. Chem. Phys., 16, 4945–4966, https://doi.org/10.5194/acp-16-4945-2016, https://doi.org/10.5194/acp-16-4945-2016, 2016
Short summary
Short summary
This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing observations with model simulations over Jungfraujoch, Switzerland. The results suggest that ice nuclei do not significantly contribute to the high concentrations and that a surface source of ice crystals is responsible for the witnessed ice number concentrations.
G. Young, H. M. Jones, E. Darbyshire, K. J. Baustian, J. B. McQuaid, K. N. Bower, P. J. Connolly, M. W. Gallagher, and T. W. Choularton
Atmos. Chem. Phys., 16, 4063–4079, https://doi.org/10.5194/acp-16-4063-2016, https://doi.org/10.5194/acp-16-4063-2016, 2016
Leonid Nichman, Claudia Fuchs, Emma Järvinen, Karoliina Ignatius, Niko Florian Höppel, Antonio Dias, Martin Heinritzi, Mario Simon, Jasmin Tröstl, Andrea Christine Wagner, Robert Wagner, Christina Williamson, Chao Yan, Paul James Connolly, James Robert Dorsey, Jonathan Duplissy, Sebastian Ehrhart, Carla Frege, Hamish Gordon, Christopher Robert Hoyle, Thomas Bjerring Kristensen, Gerhard Steiner, Neil McPherson Donahue, Richard Flagan, Martin William Gallagher, Jasper Kirkby, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Frank Stratmann, and António Tomé
Atmos. Chem. Phys., 16, 3651–3664, https://doi.org/10.5194/acp-16-3651-2016, https://doi.org/10.5194/acp-16-3651-2016, 2016
Short summary
Short summary
Processes in the atmosphere are often governed by the physical and chemical properties of small cloud particles. Ice, water, and mixed clouds, as well as viscous aerosols, were formed under controlled conditions at the CLOUD-CERN facility. The experimental results show a link between cloud particle properties and their unique optical fingerprints. The classification map presented here allows easier discrimination between various particles such as viscous organic aerosol, salt, ice, and liquid.
David Topping, Mark Barley, Michael K. Bane, Nicholas Higham, Bernard Aumont, Nicholas Dingle, and Gordon McFiggans
Geosci. Model Dev., 9, 899–914, https://doi.org/10.5194/gmd-9-899-2016, https://doi.org/10.5194/gmd-9-899-2016, 2016
Short summary
Short summary
In this paper we describe the development and application of a new web-based and open-source facility, UManSysProp (http://umansysprop .seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include pure component vapour pressures, critical properties, and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential.
I. Crawford, G. Lloyd, E. Herrmann, C. R. Hoyle, K. N. Bower, P. J. Connolly, M. J. Flynn, P. H. Kaye, T. W. Choularton, and M. W. Gallagher
Atmos. Chem. Phys., 16, 2273–2284, https://doi.org/10.5194/acp-16-2273-2016, https://doi.org/10.5194/acp-16-2273-2016, 2016
Short summary
Short summary
In this manuscript we discuss observations of fluorescent aerosol and their interactions with cloud at a high-alpine site in the wintertime under background conditions. We find the majority of the fluorescent aerosol to be consistent in nature to mineral dust and no apparent trend was observed between the fluorescent aerosol fraction and meteorological or cloud microphysical parameters, suggesting that particle fluorescence does not impact cloud evolution or formation at the site.
J. Grazioli, G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne
Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015, https://doi.org/10.5194/acp-15-13787-2015, 2015
Short summary
Short summary
This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during CLACE2014. From polarimetric radar and in situ observations, riming is shown to be an important process leading to more intense snowfall. Riming is usually associated with more intense turbulence providing supercooled liquid water. Distinct features are identified in the vertical structure of polarimetric radar variables.
I. Crawford, S. Ruske, D. O. Topping, and M. W. Gallagher
Atmos. Meas. Tech., 8, 4979–4991, https://doi.org/10.5194/amt-8-4979-2015, https://doi.org/10.5194/amt-8-4979-2015, 2015
Short summary
Short summary
HCA analysis methods were evaluated for the purpose of identifying primary biological aerosol sampled with a WIBS. The ward linkage with z-score normalisation could discriminate between five test particles with 98% accuracy. We applied these methods to a previously studied ambient data set, where both methods produced similar results with some minor differences in cluster partitioning. Finally we compared to previous approaches and found our new method offered improved quantification of PBA.
G. Lloyd, T. W. Choularton, K. N. Bower, M. W. Gallagher, P. J. Connolly, M. Flynn, R. Farrington, J. Crosier, O. Schlenczek, J. Fugal, and J. Henneberger
Atmos. Chem. Phys., 15, 12953–12969, https://doi.org/10.5194/acp-15-12953-2015, https://doi.org/10.5194/acp-15-12953-2015, 2015
Short summary
Short summary
The paper explores the microphysical structure of clouds at the high-alpine measurement site Jungfraujoch, Switzerland. High concentrations of ice crystals were measured by a range of instruments. The presence of these high concentrations could not be explained through conventional understanding of ice formation processes in clouds and the possibility that the surface provides a significant source of ice crystals is investigated.
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
C. Emersic, P. J. Connolly, S. Boult, M. Campana, and Z. Li
Atmos. Chem. Phys., 15, 11311–11326, https://doi.org/10.5194/acp-15-11311-2015, https://doi.org/10.5194/acp-15-11311-2015, 2015
J. D. Allan, P. I. Williams, J. Najera, J. D. Whitehead, M. J. Flynn, J. W. Taylor, D. Liu, E. Darbyshire, L. J. Carpenter, R. Chance, S. J. Andrews, S. C. Hackenberg, and G. McFiggans
Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, https://doi.org/10.5194/acp-15-5599-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important contributor to aerosol number concentrations in the Arctic and thus has a major role in dictating cloud properties and climate in this region. Here we present direct evidence that the oxidation of iodine in the atmosphere causes NPF in the Greenland Sea. This is important because this is a NPF mechanism that has not previously been considered in modelling studies at these latitudes.
I. Steinke, C. Hoose, O. Möhler, P. Connolly, and T. Leisner
Atmos. Chem. Phys., 15, 3703–3717, https://doi.org/10.5194/acp-15-3703-2015, https://doi.org/10.5194/acp-15-3703-2015, 2015
Short summary
Short summary
Ice nucleation in clouds has a significant influence on the global radiative budget and the hydrological cycle. Several studies have investigated the ice formation in droplets and parameterizations have been developed in order to include immersion freezing in climate models. In contrast, there are fewer studies regarding the conversion of water vapor into ice (so-called deposition nucleation) which is the topic of this paper which investigates deposition nucleation by Arizona Test dust in detail
G. Lloyd, T. W. Choularton, K. N. Bower, J. Crosier, H. Jones, J. R. Dorsey, M. W. Gallagher, P. Connolly, A. C. R. Kirchgaessner, and T. Lachlan-Cope
Atmos. Chem. Phys., 15, 3719–3737, https://doi.org/10.5194/acp-15-3719-2015, https://doi.org/10.5194/acp-15-3719-2015, 2015
Short summary
Short summary
Measurements of cloud microphysics are reported from the Aerosol-Cloud Coupling And Climate Interactions (ACCACIA) campaign. Concentrations of ice particles from two spring and two summer cases are compared with particular attention to the role of secondary ice in these clouds. In addition aerosol measurements were used as input to a primary ice nucleation parameterisation which was compared with observed values of primary ice in these clouds. We found higher concentrations of ice during summer.
M. D. Jolleys, H. Coe, G. McFiggans, J. W. Taylor, S. J. O'Shea, M. Le Breton, S. J.-B. Bauguitte, S. Moller, P. Di Carlo, E. Aruffo, P. I. Palmer, J. D. Lee, C. J. Percival, and M. W. Gallagher
Atmos. Chem. Phys., 15, 3077–3095, https://doi.org/10.5194/acp-15-3077-2015, https://doi.org/10.5194/acp-15-3077-2015, 2015
Short summary
Short summary
Particulate emissions in the form of organic aerosol from boreal forest fires in Canada have been measured during an aircraft measurement campaign. Ratios of the amount of aerosol emitted relative to gas species such as CO were calculated and show high levels of variability throughout the campaign. This variability is affected by both changes in fire conditions, as fires tended to die down later in the measurement period, and by changes to the aerosol due to chemical reactions in the atmosphere.
S. Archer-Nicholls, D. Lowe, E. Darbyshire, W. T. Morgan, M. M. Bela, G. Pereira, J. Trembath, J. W. Kaiser, K. M. Longo, S. R. Freitas, H. Coe, and G. McFiggans
Geosci. Model Dev., 8, 549–577, https://doi.org/10.5194/gmd-8-549-2015, https://doi.org/10.5194/gmd-8-549-2015, 2015
Short summary
Short summary
The regional WRF-Chem model was used to study aerosol particles from biomass burning in South America. The modelled estimates of fire plume injection heights were found to be too high, with serious implications for modelled aerosol vertical distribution, transport and impacts on local climate. A modified emission scenario was developed which improved the predicted injection height. Model results were compared and evaluated against in situ measurements from the 2012 SAMBBA flight campaign.
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
D. Lowe, S. Archer-Nicholls, W. Morgan, J. Allan, S. Utembe, B. Ouyang, E. Aruffo, M. Le Breton, R. A. Zaveri, P. Di Carlo, C. Percival, H. Coe, R. Jones, and G. McFiggans
Atmos. Chem. Phys., 15, 1385–1409, https://doi.org/10.5194/acp-15-1385-2015, https://doi.org/10.5194/acp-15-1385-2015, 2015
J. D. Whitehead, M. Irwin, J. D. Allan, N. Good, and G. McFiggans
Atmos. Chem. Phys., 14, 11833–11841, https://doi.org/10.5194/acp-14-11833-2014, https://doi.org/10.5194/acp-14-11833-2014, 2014
Short summary
Short summary
Water uptake of ambient particles was measured by 2 independent techniques at a wide range of locations between 2007 and 2013. The agreement between the techniques was mixed and hence the number of potential cloud seeds calculated from the measurements frequently showed discrepancies. Whilst there is sensitivity to how well we measure the size of the particles, much of the difference depends on how the particles behave when exposed to moisture in the different techniques (and in the atmosphere).
S. Archer-Nicholls, D. Lowe, S. Utembe, J. Allan, R. A. Zaveri, J. D. Fast, Ø. Hodnebrog, H. Denier van der Gon, and G. McFiggans
Geosci. Model Dev., 7, 2557–2579, https://doi.org/10.5194/gmd-7-2557-2014, https://doi.org/10.5194/gmd-7-2557-2014, 2014
M. J. Lawler, J. Whitehead, C. O'Dowd, C. Monahan, G. McFiggans, and J. N. Smith
Atmos. Chem. Phys., 14, 11557–11569, https://doi.org/10.5194/acp-14-11557-2014, https://doi.org/10.5194/acp-14-11557-2014, 2014
Short summary
Short summary
This work describes the chemical and physical characterization of very small (< 100 nm diameter) particles in the marine atmosphere. We show that sea salt is present even at very small sizes and present evidence that organic species are important contributors to apparent new particle formation events over the ocean.
E. Simpson, P. Connolly, and G. McFiggans
Geosci. Model Dev., 7, 1535–1542, https://doi.org/10.5194/gmd-7-1535-2014, https://doi.org/10.5194/gmd-7-1535-2014, 2014
M. R. Alfarra, N. Good, K. P. Wyche, J. F. Hamilton, P. S. Monks, A. C. Lewis, and G. McFiggans
Atmos. Chem. Phys., 13, 11769–11789, https://doi.org/10.5194/acp-13-11769-2013, https://doi.org/10.5194/acp-13-11769-2013, 2013
J. F. Hamilton, M. R. Alfarra, N. Robinson, M. W. Ward, A. C. Lewis, G. B. McFiggans, H. Coe, and J. D. Allan
Atmos. Chem. Phys., 13, 11295–11305, https://doi.org/10.5194/acp-13-11295-2013, https://doi.org/10.5194/acp-13-11295-2013, 2013
P. J. Connolly, G. Vaughan, P. Cook, G. Allen, H. Coe, T. W. Choularton, C. Dearden, and A. Hill
Atmos. Chem. Phys., 13, 7133–7152, https://doi.org/10.5194/acp-13-7133-2013, https://doi.org/10.5194/acp-13-7133-2013, 2013
J. Skrotzki, P. Connolly, M. Schnaiter, H. Saathoff, O. Möhler, R. Wagner, M. Niemand, V. Ebert, and T. Leisner
Atmos. Chem. Phys., 13, 4451–4466, https://doi.org/10.5194/acp-13-4451-2013, https://doi.org/10.5194/acp-13-4451-2013, 2013
D. Liu, J. Allan, J. Whitehead, D. Young, M. Flynn, H. Coe, G. McFiggans, Z. L. Fleming, and B. Bandy
Atmos. Chem. Phys., 13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013, https://doi.org/10.5194/acp-13-2015-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–cloud impacts on aerosol detrainment and rainout in shallow maritime tropical clouds
Mixed-phase direct numerical simulation: ice growth in cloud-top generating cells
Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water
Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood
Aerosol–precipitation elevation dependence over the central Himalayas using cloud-resolving WRF-Chem numerical modeling
Machine learning of cloud types in satellite observations and climate models
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations
Large-eddy simulation of a two-layer boundary-layer cloud system from the Arctic Ocean 2018 expedition
Opposing trends of cloud coverage over land and ocean under global warming
Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency
Does prognostic seeding along flight tracks produce the desired effects of cirrus cloud thinning?
Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?
Aerosol-cloud-radiation interaction during Saharan dust episodes: The dusty cirrus puzzle
Aerosol characteristics and polarimetric signatures for a deep convective storm over the northwestern part of Europe – modeling and observations
Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records
Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations
The impacts of secondary ice production on microphysics and dynamics in tropical convection
Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition
The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E
Quantifying vertical wind shear effects in shallow cumulus clouds over Amazonia
Cirrus cloud thinning using a more physically based ice microphysics scheme in the ECHAM-HAM general circulation model
Impacts of combined microphysical and land-surface uncertainties on convective clouds and precipitation in different weather regimes
Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture
Sensitivity analysis of an aerosol-aware microphysics scheme in Weather Research and Forecasting (WRF) during case studies of fog in Namibia
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Impact of Holuhraun volcano aerosols on clouds in cloud-system-resolving simulations
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Convective updrafts near sea-breeze fronts
Evaluation of modelled summertime convective storms using polarimetric radar observations
Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic
Modeling impacts of ice-nucleating particles from marine aerosols on mixed-phase orographic clouds during 2015 ACAPEX field campaign
Influences of an entrainment–mixing parameterization on numerical simulations of cumulus and stratocumulus clouds
Investigation of ice cloud modeling capabilities for the irregularly shaped Voronoi ice scattering models in climate simulations
Assessing the potential for simplification in global climate model cloud microphysics
Technical note: Parameterising cloud base updraft velocity of marine stratocumuli
Radiative and microphysical responses of clouds to an anomalous increase in fire particles over the Maritime Continent in 2015
Intricate relations among particle collision, relative motion and clustering in turbulent clouds: computational observation and theory
The effect of marine ice-nucleating particles on mixed-phase clouds
A strong statistical link between aerosol indirect effects and the self-similarity of rainfall distributions
Quantifying albedo susceptibility biases in shallow clouds
Primary and secondary ice production: interactions and their relative importance
Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: dominant role of secondary ice production
Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation
Secondary ice production processes in wintertime alpine mixed-phase clouds
Multi-thermals and high concentrations of secondary ice: a modelling study of convective clouds during the Ice in Clouds Experiment – Dust (ICE-D) campaign
Gabrielle R. Leung, Stephen M. Saleeby, G. Alexander Sokolowsky, Sean W. Freeman, and Susan C. van den Heever
Atmos. Chem. Phys., 23, 5263–5278, https://doi.org/10.5194/acp-23-5263-2023, https://doi.org/10.5194/acp-23-5263-2023, 2023
Short summary
Short summary
This study uses a suite of high-resolution simulations to explore how the concentration and type of aerosol particles impact shallow tropical clouds and the overall aerosol budget. Under more-polluted conditions, there are more aerosol particles present, but we also find that clouds are less able to remove those aerosol particles via rainout. Instead, those aerosol particles are more likely to be detrained aloft and remain in the atmosphere for further aerosol–cloud interactions.
Sisi Chen, Lulin Xue, Sarah Tessendorf, Kyoko Ikeda, Courtney Weeks, Roy Rasmussen, Melvin Kunkel, Derek Blestrud, Shaun Parkinson, Melinda Meadows, and Nick Dawson
Atmos. Chem. Phys., 23, 5217–5231, https://doi.org/10.5194/acp-23-5217-2023, https://doi.org/10.5194/acp-23-5217-2023, 2023
Short summary
Short summary
The possible mechanism of effective ice growth in the cloud-top generating cells in winter orographic clouds is explored using a newly developed ultra-high-resolution cloud microphysics model. Simulations demonstrate that a high availability of moisture and liquid water is critical for producing large ice particles. Fluctuations in temperature and moisture down to millimeter scales due to cloud turbulence can substantially affect the growth history of the individual cloud particles.
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023, https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Short summary
Arctic low-level clouds play an important role in the ongoing warming of the Arctic. Unfortunately, these clouds are not properly represented in weather forecast and climate models. This study tries to cover this gap by focusing on clouds over open water during the spring, observed by research aircraft near Svalbard. The study combines the high-resolution model with sets of observational data. The results show the importance of processes that involve both ice and the liquid water in the clouds.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023, https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Short summary
An increase in aerosol concentration (tiny airborne particles) is shown to suppress rainfall and increase the abundance of droplets in clouds passing over Graciosa Island in the Azores. Cloud drops remain affected by aerosol for several days across thousands of kilometers in satellite data. Simulations from an Earth system model show good agreement, but differences in the amount of cloud water and its extent remain despite modifications to model parameters that control the warm-rain process.
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060, https://doi.org/10.5194/acp-23-2035-2023, https://doi.org/10.5194/acp-23-2035-2023, 2023
Short summary
Short summary
We investigate the impact of the homogeneous nucleation rate on nucleation events in cirrus. As long as the slope of the rate is represented sufficiently well, the resulting ice crystal number concentrations are not crucially affected. Even a change in the prefactor over orders of magnitude does not change the results. However, the maximum supersaturation during nucleation events shows strong changes. This quantity should be used for diagnostics instead of the popular nucleation threshold.
Julia Thomas, Andrew Barrett, and Corinna Hoose
Atmos. Chem. Phys., 23, 1987–2002, https://doi.org/10.5194/acp-23-1987-2023, https://doi.org/10.5194/acp-23-1987-2023, 2023
Short summary
Short summary
We study the sensitivity of rain formation processes during a heavy-rainfall event over mountains to changes in temperature and pollution. Total rainfall increases by 2 % K−1, and a 6 % K−1 increase is found at the highest altitudes, caused by a mixed-phase seeder–feeder mechanism (frozen cloud particles melt and grow further as they fall through a liquid cloud layer). In a cleaner atmosphere this process is enhanced. Thus the risk of severe rainfall in mountains may increase in the future.
Pramod Adhikari and John F. Mejia
Atmos. Chem. Phys., 23, 1019–1042, https://doi.org/10.5194/acp-23-1019-2023, https://doi.org/10.5194/acp-23-1019-2023, 2023
Short summary
Short summary
We used an atmospheric model to assess the impact of aerosols through radiation and cloud interaction on elevation-dependent precipitation and surface temperature over the central Himalayan region. Results showed contrasting altitudinal precipitation responses to the increased aerosol concentration, which can significantly impact the hydroclimate of the central Himalayas, increasing the risk for extreme events and influencing the regional supply of water resources.
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023, https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
Short summary
We present a machine learning method for determining cloud types in climate model output and satellite observations based on ground observations of cloud genera. We analyse cloud type biases and changes with temperature in climate models and show that the bias is anticorrelated with climate sensitivity. Models simulating decreasing stratiform and increasing cumuliform clouds with increased CO2 concentration tend to have higher climate sensitivity than models simulating the opposite tendencies.
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023, https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Short summary
The extreme rainfall event (645 mm in 24 h) at the northern coast of Taiwan on 2 June 2017 is studied using a cloud model. Two 1 km experiments with peak amounts of 541 and 400 mm are compared to isolate the reasons for such a difference. It is found that the frontal rainband remains fixed in location for a longer period in the former run due to a low disturbance that acts to focus the near-surface convergence. Therefore, the rainfall is more concentrated and there is a higher total amount.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 287–309, https://doi.org/10.5194/acp-23-287-2023, https://doi.org/10.5194/acp-23-287-2023, 2023
Short summary
Short summary
Recent studies estimate the radiative impact of contrails to be similar to or larger than that of emitted CO2; thus, contrail mitigation might be an opportunity to reduce the climate effects of aviation. A radiosonde data set is analyzed in terms of the vertical distribution of potential contrails, contrail mitigation by flight altitude changes, and linkages with the tropopause and jet stream. The effect of prospective jet engine developments and alternative fuels are estimated.
Ines Bulatovic, Julien Savre, Michael Tjernström, Caroline Leck, and Annica M. L. Ekman
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-809, https://doi.org/10.5194/acp-2022-809, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We use numerical modelling with detailed cloud microphysics to investigate a low-altitude cloud system consisting of two cloud layers – a type of cloud situation which was commonly observed during the summer of 2018 in the central Arctic (north of 80 degrees N). The model generally reproduces the observed cloud layers and the thermodynamic structure of the lower atmosphere well. The cloud system is maintained unless there are low aerosol number concentrations or high large-scale wind speeds.
Huan Liu, Ilan Koren, Orit Altaratz, and Mickael D. Chekroun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-817, https://doi.org/10.5194/acp-2022-817, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Clouds' response to global warming contributes the largest uncertainty to climate prediction. Here, we analyze 42 years of global cloud cover data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Guy Dagan
Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022, https://doi.org/10.5194/acp-22-15767-2022, 2022
Short summary
Short summary
Using idealized simulations we demonstrate that the equilibrium climate sensitivity (ECS), i.e. the increase in surface temperature under equilibrium conditions due to doubling of the CO2 concentration, increases with the aerosol concentration. The ECS increase is explained by a faster increase in precipitation efficiency with warming under high aerosol concentrations, which more efficiently depletes the water from the cloud and thus is manifested as an increase in the cloud feedback parameter.
Colin Tully, David Neubauer, Diego Villanueva, and Ulrike Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2022-1238, https://doi.org/10.5194/egusphere-2022-1238, 2022
Short summary
Short summary
This study details the first attempt with a GCM to simulate a fully prognostic aerosol species specifically for cirrus climate intervention. The new approach is in line with the real-world delivery mechanism via aircraft. However, to achieve an appreciable signal from seeding, smaller particles were needed, and their mass emissions needed to be scaled by at least a factor of 100. These biases contributed to either overseeding, or small and insignificant effects in response to seeding cirrus.
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022, https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary
Short summary
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight reaches the surface. We use machine learning to group different cloud types observed from satellites and simulated in a climate model. We find the model does a poor job of simulating the same cloud type as what the satellite shows and, even when it does, the cloud properties and amount of reflected sunlight are incorrect. We have a lot of work to do to model clouds correctly over the Southern Ocean.
Axel Seifert, Vanessa Bachmann, Florian Filipitsch, Jochen Förstner, Christian Grams, Gholam Ali Hoshyaripour, Julian Quinting, Anika Rohde, Heike Vogel, Annette Wagner, and Bernhard Vogel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-746, https://doi.org/10.5194/acp-2022-746, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We investigate how mineral dust can lead to the formation of cirrus clouds. Dusty cirrus clouds lead to a reduction in solar radiation at the surface and, hence, a reduced photovoltaic power generation. Current weather prediction systems are not able to predict this interaction of mineral dust and cirrus clouds. We have developed a new physical description of the formation of dusty cirrus clouds. Overall, we can show a considerable improvement in forecast quality of clouds and radiation.
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117, https://doi.org/10.5194/acp-22-14095-2022, https://doi.org/10.5194/acp-22-14095-2022, 2022
Short summary
Short summary
The study extends the Terrestrial Systems Modeling Platform with gas-phase chemistry aerosol dynamics and a radar forward operator to enable detailed studies of aerosol–cloud–precipitation interactions. This is demonstrated using a case study of a deep convective storm, which showed that the strong updraft in the convective core of the storm produced aerosol-tower-like features, which affected the size of the hydrometeors and the simulated polarimetric features (e.g., ZDR and KDP columns).
Jia He, Helene Brogniez, and Laurence Picon
Atmos. Chem. Phys., 22, 12591–12606, https://doi.org/10.5194/acp-22-12591-2022, https://doi.org/10.5194/acp-22-12591-2022, 2022
Short summary
Short summary
A 2003–2017 satellite-based atmospheric water vapour climate data record is used to assess climate models and reanalyses. The focus is on the tropical belt, whose regional variations in the hydrological cycle are related to the tropospheric overturning circulation. While there are similarities in the interannual variability, the major discrepancies can be explained by the presence of clouds, the representation of moisture fluxes at the surface and cloud processes in the models.
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022, https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Zhipeng Qu, Alexei Korolev, Jason A. Milbrandt, Ivan Heckman, Yongjie Huang, Greg M. McFarquhar, Hugh Morrison, Mengistu Wolde, and Cuong Nguyen
Atmos. Chem. Phys., 22, 12287–12310, https://doi.org/10.5194/acp-22-12287-2022, https://doi.org/10.5194/acp-22-12287-2022, 2022
Short summary
Short summary
Secondary ice production (SIP) is an important physical phenomenon that results in an increase in the cloud ice particle concentration and can have a significant impact on the evolution of clouds. Here, idealized simulations of a tropical convective system were conducted. Agreement between the simulations and observations highlights the impacts of SIP on the maintenance of tropical convection in nature and the importance of including the modelling of SIP in numerical weather prediction models.
Michael S. Diamond, Pablo E. Saide, Paquita Zuidema, Andrew S. Ackerman, Sarah J. Doherty, Ann M. Fridlind, Hamish Gordon, Calvin Howes, Jan Kazil, Takanobu Yamaguchi, Jianhao Zhang, Graham Feingold, and Robert Wood
Atmos. Chem. Phys., 22, 12113–12151, https://doi.org/10.5194/acp-22-12113-2022, https://doi.org/10.5194/acp-22-12113-2022, 2022
Short summary
Short summary
Smoke from southern Africa blankets the southeast Atlantic from June-October, overlying a major transition region between overcast and scattered clouds. The smoke affects Earth's radiation budget by absorbing sunlight and changing cloud properties. We investigate these effects in regional climate and large eddy simulation models based on international field campaigns. We find that large-scale circulation changes more strongly affect cloud transitions than smoke microphysical effects in our case.
Sachin Patade, Deepak Waman, Akash Deshmukh, Ashok Kumar Gupta, Arti Jadav, Vaughan T. J. Phillips, Aaron Bansemer, Jacob Carlin, and Alexander Ryzhkov
Atmos. Chem. Phys., 22, 12055–12075, https://doi.org/10.5194/acp-22-12055-2022, https://doi.org/10.5194/acp-22-12055-2022, 2022
Short summary
Short summary
This modeling study focuses on the role of multiple groups of primary biological aerosol particles as ice nuclei on cloud properties and precipitation. This was done by implementing a more realistic scheme for biological ice nucleating particles in the aerosol–cloud model. Results show that biological ice nucleating particles have a limited role in altering the ice phase and precipitation in deep convective clouds.
Micael Amore Cecchini, Marco de Bruine, Jordi Vilà-Guerau de Arellano, and Paulo Artaxo
Atmos. Chem. Phys., 22, 11867–11888, https://doi.org/10.5194/acp-22-11867-2022, https://doi.org/10.5194/acp-22-11867-2022, 2022
Short summary
Short summary
Shallow clouds (vertical extent up to 3 km height) are ubiquitous throughout the Amazon and are responsible for redistributing the solar heat and moisture vertically and horizontally. They are a key component of the water cycle because they can grow past the shallow phase to contribute significantly to the precipitation formation. However, they need favourable environmental conditions to grow. In this study, we analyse how changing wind patterns affect the development of such shallow clouds.
Colin Tully, David Neubauer, Nadja Omanovic, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 11455–11484, https://doi.org/10.5194/acp-22-11455-2022, https://doi.org/10.5194/acp-22-11455-2022, 2022
Short summary
Short summary
The proposed geoengineering method, cirrus cloud thinning, was evaluated using a more physically based microphysics scheme coupled to a more realistic approach for calculating ice cloud fractions in the ECHAM-HAM GCM. Sensitivity tests reveal that using the new ice cloud fraction approach and increasing the critical ice saturation ratio for ice nucleation on seeding particles reduces warming from overseeding. However, this geoengineering method is unlikely to be feasible on a global scale.
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 10841–10860, https://doi.org/10.5194/acp-22-10841-2022, https://doi.org/10.5194/acp-22-10841-2022, 2022
Short summary
Short summary
The relevance of microphysical and land-surface uncertainties for convective-scale predictability is evaluated with a combined-perturbation strategy in realistic convection-resolving simulations. We find a large ensemble spread which demonstrates that the uncertainties investigated here and, in particular, their collective effect are highly relevant for quantitative precipitation forecasting of summertime convection in central Europe.
J. Minnie Park and Susan C. van den Heever
Atmos. Chem. Phys., 22, 10527–10549, https://doi.org/10.5194/acp-22-10527-2022, https://doi.org/10.5194/acp-22-10527-2022, 2022
Short summary
Short summary
This study explores how increased aerosol particles impact tropical sea breeze cloud systems under different environments and how a range of environments modulate these cloud responses. Overall, sea breeze flows and clouds that develop therein become weaker due to interactions between aerosols, sunlight, and land surface. In addition, surface rainfall also decreases with more aerosol particles. Weakening of cloud and rain with more aerosols is found irrespective of 130 different environments.
Michael John Weston, Stuart John Piketh, Frédéric Burnet, Stephen Broccardo, Cyrielle Denjean, Thierry Bourrianne, and Paola Formenti
Atmos. Chem. Phys., 22, 10221–10245, https://doi.org/10.5194/acp-22-10221-2022, https://doi.org/10.5194/acp-22-10221-2022, 2022
Short summary
Short summary
An aerosol-aware microphysics scheme is evaluated for fog cases in Namibia. AEROCLO-sA campaign observations are used to access and parameterise the model. The model cloud condensation nuclei activation is lower than the observations. The scheme is designed for clouds with updrafts, while fog typically forms in stable conditions. A pseudo updraft speed assigned to the lowest model levels helps achieve more realistic cloud droplet number concentration and size distribution in the model.
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022, https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Short summary
Aerosol particles are required for cloud droplets to form, and the Arctic atmosphere often has much fewer aerosols than at lower latitudes. In this study, we investigate whether aerosol concentrations can drop so low as to no longer support a cloud. We use observations to initialize idealized model simulations to investigate a worst-case scenario where all aerosol is removed from the environment instantaneously. We find that this mechanism is possible in two cases and is unlikely in the third.
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842, https://doi.org/10.5194/acp-22-8819-2022, https://doi.org/10.5194/acp-22-8819-2022, 2022
Short summary
Short summary
This paper investigates contrail ice formation within cirrus and the impact of natural cirrus on the contrail ice formation in the high-resolution ICON-LEM simulations over Germany. Contrail formation often leads to increases in cirrus ice crystal number concentration by a few orders of magnitude. Contrail formation is affected by pre-existing cirrus, leading to changes in contrail formation conditions and ice nucleation rates that can be significant in optically thick cirrus.
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472, https://doi.org/10.5194/acp-22-8457-2022, https://doi.org/10.5194/acp-22-8457-2022, 2022
Short summary
Short summary
The impact of aerosols emitted by the Holuhraun volcanic eruption on liquid clouds was assessed from a pair of cloud-system-resolving simulations along with satellite retrievals. Inside and outside the plume were compared in terms of their statistical distributions. Analyses indicated enhancement for cloud droplet number concentration inside the volcano plume in model simulations and satellite retrievals, while there was on average a small effect on both liquid water path and cloud fraction.
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022, https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Short summary
In winter when solar radiation is absent in the Arctic, the poleward transport of heat and moisture into the high Arctic becomes the main contribution of Arctic warming. Over completely frozen ocean sectors, total surface energy budget is dominated by net long-wave heat, while over the Barents Sea, with an open ocean to the south, total net surface energy budget is dominated by the surface turbulent heat.
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022, https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary
Short summary
The convective updrafts near the sea-breeze fronts (SBFs) play important roles in initiating deep convection, but their characteristics are not well understood. By performing large-eddy simulations, we explain why the updrafts near the SBF are larger than but have similar strength to the updrafts ahead of the SBF. The results should also apply to other boundary-layer convergence zones similar to the SBF.
Prabhakar Shrestha, Silke Trömel, Raquel Evaristo, and Clemens Simmer
Atmos. Chem. Phys., 22, 7593–7618, https://doi.org/10.5194/acp-22-7593-2022, https://doi.org/10.5194/acp-22-7593-2022, 2022
Short summary
Short summary
The study makes use of ensemble numerical simulations with forward operator to evaluate the simulated cloud and precipitation processes with radar observations. While comparing model data with radar has its own challenges due to errors in the forward operator and processed radar measurements, the model was generally found to underestimate the high reflectivity, width/magnitude (value) of ZDR columns and high precipitation.
Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022, https://doi.org/10.5194/acp-22-7287-2022, 2022
Short summary
Short summary
Snowfall is an important climate indicator. However, microphysical snowfall processes are challenging for atmospheric models. In this study, the performance of a regional climate model is evaluated in modeling the spatial and temporal distribution of Arctic snowfall when compared to CloudSat satellite observations. Excellent agreement in averaged annual snowfall rates is found, and the shown methodology offers a promising diagnostic tool to investigate the shown differences further.
Yun Lin, Jiwen Fan, Pengfei Li, Lai-yung Ruby Leung, Paul J. DeMott, Lexie Goldberger, Jennifer Comstock, Ying Liu, Jong-Hoon Jeong, and Jason Tomlinson
Atmos. Chem. Phys., 22, 6749–6771, https://doi.org/10.5194/acp-22-6749-2022, https://doi.org/10.5194/acp-22-6749-2022, 2022
Short summary
Short summary
How sea spray aerosols may affect cloud and precipitation over the region by acting as ice-nucleating particles (INPs) is unknown. We explored the effects of INPs from marine aerosols on orographic cloud and precipitation for an atmospheric river event observed during the 2015 ACAPEX field campaign. The marine INPs enhance the formation of ice and snow, leading to less shallow warm clouds but more mixed-phase and deep clouds. This work suggests models need to consider the impacts of marine INPs.
Xiaoqi Xu, Chunsong Lu, Yangang Liu, Shi Luo, Xin Zhou, Satoshi Endo, Lei Zhu, and Yuan Wang
Atmos. Chem. Phys., 22, 5459–5475, https://doi.org/10.5194/acp-22-5459-2022, https://doi.org/10.5194/acp-22-5459-2022, 2022
Short summary
Short summary
A new entrainment–mixing parameterization which can be directly implemented in microphysics schemes without requiring the relative humidity of the entrained air is proposed based on the explicit mixing parcel model. The parameterization is implemented in the two-moment microphysics scheme and exhibits different effects on different types of clouds and even on different stages of stratocumulus clouds, which are affected by turbulent dissipation rate and aerosol concentration.
Ming Li, Husi Letu, Yiran Peng, Hiroshi Ishimoto, Yanluan Lin, Takashi Y. Nakajima, Anthony J. Baran, Zengyuan Guo, Yonghui Lei, and Jiancheng Shi
Atmos. Chem. Phys., 22, 4809–4825, https://doi.org/10.5194/acp-22-4809-2022, https://doi.org/10.5194/acp-22-4809-2022, 2022
Short summary
Short summary
To build on the previous investigations of the Voronoi model in the remote sensing retrievals of ice cloud products, this paper developed an ice cloud parameterization scheme based on the single-scattering properties of the Voronoi model and evaluate it through simulations with the Community Integrated Earth System Model (CIESM). Compared with four representative ice cloud schemes, results show that the Voronoi model has good capabilities of ice cloud modeling in the climate model.
Ulrike Proske, Sylvaine Ferrachat, David Neubauer, Martin Staab, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 4737–4762, https://doi.org/10.5194/acp-22-4737-2022, https://doi.org/10.5194/acp-22-4737-2022, 2022
Short summary
Short summary
Cloud microphysical processes shape cloud properties and are therefore important to represent in climate models. Their parameterization has grown more complex, making the model results more difficult to interpret. Using sensitivity analysis we test how the global aerosol–climate model ECHAM-HAM reacts to changes to these parameterizations. The model is sensitive to the parameterization of ice crystal autoconversion but not to, e.g., self-collection, suggesting that it may be simplified.
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022, https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Short summary
Clouds are important for the climate, and cloud droplets have a significant role in cloud properties. Cloud droplets form when air rises and cools and water vapour condenses on small particles that can be natural or of anthropogenic origin. Currently, the updraft velocity, meaning how fast the air rises, is poorly represented in global climate models. In our study, we show three methods that will improve the depiction of updraft velocity and which properties are vital to updrafts.
Azusa Takeishi and Chien Wang
Atmos. Chem. Phys., 22, 4129–4147, https://doi.org/10.5194/acp-22-4129-2022, https://doi.org/10.5194/acp-22-4129-2022, 2022
Short summary
Short summary
Nanometer- to micrometer-sized particles in the atmosphere, namely aerosols, play a crucial role in cloud formation as cloud droplets form on aerosols. This study uses a weather forecasting model to examine the impacts of a large emission of aerosol particles from biomass burning activities over Southeast Asia. We find that additional cloud droplets brought by fire-emitted particles can lead to taller and more reflective convective clouds with increased rainfall.
Ewe-Wei Saw and Xiaohui Meng
Atmos. Chem. Phys., 22, 3779–3788, https://doi.org/10.5194/acp-22-3779-2022, https://doi.org/10.5194/acp-22-3779-2022, 2022
Short summary
Short summary
Collision–coagulation of small droplets in turbulent clouds leads to the production of rain. Turbulence causes droplet clustering and higher relative droplet velocities, and these should enhance the collision–coagulation rate. We find, surprisingly, that collision–coagulation starkly diminishes clustering and strongly alters relative velocities. We provide a theory that explains this result. Our results call for a new perspective on how we understand particle/droplet collision in clouds.
Tomi Raatikainen, Marje Prank, Jaakko Ahola, Harri Kokkola, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 3763–3778, https://doi.org/10.5194/acp-22-3763-2022, https://doi.org/10.5194/acp-22-3763-2022, 2022
Short summary
Short summary
Mineral dust or similar ice-nucleating particles (INPs) are needed to initiate cloud droplet freezing at temperatures common in shallow clouds. In this work we examine how INPs that are released from the sea surface impact marine clouds. Our high-resolution simulations show that turbulent updraughts carry these particles effectively up to the clouds, where they initiate cloud droplet freezing. Sea surface INP emissions become more important with decreasing background dust INP concentrations.
Kalli Furtado and Paul Field
Atmos. Chem. Phys., 22, 3391–3407, https://doi.org/10.5194/acp-22-3391-2022, https://doi.org/10.5194/acp-22-3391-2022, 2022
Short summary
Short summary
The complex processes involved mean that no simple answer to this
question has so far been discovered: do aerosols increase or decrease precipitation? Using high-resolution weather simulations, we find a self-similar property of rainfall that is not affected by aerosols. Using this invariant, we can collapse all our simulations to a single curve. So, although aerosol effects on rain are many, there may be a universal constraint on the number of degrees of freedom needed to represent them.
Graham Feingold, Tom Goren, and Takanobu Yamaguchi
Atmos. Chem. Phys., 22, 3303–3319, https://doi.org/10.5194/acp-22-3303-2022, https://doi.org/10.5194/acp-22-3303-2022, 2022
Short summary
Short summary
The evaluation of radiative forcing associated with aerosol–cloud interactions remains a significant source of uncertainty in future climate projections. Using high-resolution numerical model output, we mimic typical satellite retrieval methodologies to show that data aggregation can introduce significant error (hundreds of percent) in the cloud albedo susceptibility metric. Spatial aggregation errors tend to be countered by temporal aggregation errors.
Xi Zhao and Xiaohong Liu
Atmos. Chem. Phys., 22, 2585–2600, https://doi.org/10.5194/acp-22-2585-2022, https://doi.org/10.5194/acp-22-2585-2022, 2022
Short summary
Short summary
The goal of this study is to investigate the relative importance and interactions of primary and secondary ice production in the Arctic mixed-phase clouds. Our results show that the SIP is not only a result of ice crystals produced from ice nucleation, but also competes with the ice production; conversely, strong ice nucleation also suppresses SIP.
Yongjie Huang, Wei Wu, Greg M. McFarquhar, Ming Xue, Hugh Morrison, Jason Milbrandt, Alexei V. Korolev, Yachao Hu, Zhipeng Qu, Mengistu Wolde, Cuong Nguyen, Alfons Schwarzenboeck, and Ivan Heckman
Atmos. Chem. Phys., 22, 2365–2384, https://doi.org/10.5194/acp-22-2365-2022, https://doi.org/10.5194/acp-22-2365-2022, 2022
Short summary
Short summary
Numerous small ice crystals in tropical convective storms are difficult to detect and could be potentially hazardous for commercial aircraft. Previous numerical simulations failed to reproduce this phenomenon and hypothesized that key microphysical processes are still lacking in current models to realistically simulate the phenomenon. This study uses numerical experiments to confirm the dominant role of secondary ice production in the formation of these large numbers of small ice crystals.
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 2153–2172, https://doi.org/10.5194/acp-22-2153-2022, https://doi.org/10.5194/acp-22-2153-2022, 2022
Short summary
Short summary
The relative impact of cloud condensation nuclei (CCN) concentrations and the shape parameter of the cloud droplet size distribution is evaluated in realistic convection-resolving simulations. We find that an increase in the shape parameter can produce almost as large a variation in precipitation as a CCN increase from maritime to polluted conditions. The choice of the shape parameter may be more important than previously thought for determining cloud radiative characteristics.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Zhiqiang Cui, Alan Blyth, Yahui Huang, Gary Lloyd, Thomas Choularton, Keith Bower, Paul Field, Rachel Hawker, and Lindsay Bennett
Atmos. Chem. Phys., 22, 1649–1667, https://doi.org/10.5194/acp-22-1649-2022, https://doi.org/10.5194/acp-22-1649-2022, 2022
Short summary
Short summary
High concentrations of ice particles were observed at temperatures greater than about –8 C. The default scheme of the secondary ice production cannot explain the high concentrations. Relaxing the conditions for secondary ice production or considering dust aerosol alone is insufficient to produce the observed amount of ice particles. It is likely that multi-thermals play an important role in producing very high concentrations of secondary ice particles in some tropical clouds.
Cited articles
Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C.: A parameterization of aerosol activation. 1. Single aerosol type, J. Geophys. Res., 103, 6123–6131, 1998.
Albrecht, B. A.: Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, 1989.
Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of ambient organic aerosol, Atmos. Chem. Phys., 10, 5409–5424, https://doi.org/10.5194/acp-10-5409-2010, 2010.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Ocean phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987.
Fountoukis, C. and Nenes, A.: Continued development of a cloud droplet formation parameterization for global climate models, J. Geophys. Res., 110, https://doi.org/10.1029/2004JD005591, 2005.
Ghan, S. J., Abdul-Razzak, H., Nenes, A., Ming, Y., Xiaohong, L., Ovchinnikov, M., Shipway, B., Meskhidze, N., Xu, J., and Shi, X.: Droplet nucleation: Physically-based parameterizations and comparative evaluation, J. Adv. Model. Earth Syst., 3, M10001, https://doi.org/10.1029/2011MS000074, 2011.
Kulmala, M., Suni, T., Lehtinen, K. E. J., Dal Maso, M., Boy, M., Reissell, A., Rannik, Ü., Aalto, P., Keronen, P., Hakola, H., Bäck, J., Hoffmann, T., Vesala, T., and Hari, P.: A new feedback mechanism linking forests, aerosols, and climate, Atmos. Chem. Phys., 4, 557–562, https://doi.org/10.5194/acp-4-557-2004, 2004.
McFiggans, G. B., Topping, D. O., and Barley, M. H.: The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties – Part 1: A systematic evaluation of some available estimation techniques, Atmos. Chem. and Phys., 10, 10255–10272, https://doi.org/10.5194/acp-10-10255-2010, 2010.
Romakkaniemi, S., Kokkola, H., and Laaksonen, A.: Parameterisation of the nitric acid effect on CCN activation, Atmos. Chem. Phys., 5, 879–885, https://doi.org/10.5194/acp-5-879-2005, 2005.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.: IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf, 2007.
Topping, D. O. and McFiggans, G. B.: Tight coupling of particle size, number and composition in atmospheric cloud droplet activation, Atmos. Chem. Phys., 12, 3253–3260, https://doi.org/10.5194/acp-12-3253-2012, 2012.
Topping, D. O., Connolly, P. J., and McFiggans, G. B.: Cloud droplet number enhanced by co-condensation of organic vapours, Nature Geosci., 6, 443–446, https://doi.org/10.1038/NGEO1809, 2013.
Twomey, S.: The nuclei of natural cloud formation: the supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis pura et appl., 43, 243–249, 1959.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, 1977.
vanZanten, M. C., Stevens, B. B., Nuijens, L., Siebesma, A. P., Ackermann, A. S., Burnet, F., Cheng, A., Couvreux, F., Jiang, H., Khairoutdinov, M., Kogan, Y. L., Lewellen, D. C., Mechem, D., Nakamura, K., Noda, A., Shipway, B. J., Slawinska, J., Wang, S., and Wyszogrodzki, A.: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO, J. Adv. Model. Earth Syst., 3, M060001, https://doi.org/10.1029/2011MS000056, 2011.
Xu, L. and Penner, J. E.: Global simulations of nitrate and ammonium aerosols and their radiative effects, Atmos. Chem. Phys., 12, 9479–9504, https://doi.org/10.5194/acp-12-9479-2012, 2012.
Altmetrics
Final-revised paper
Preprint