Volume 14, issue 5

Volume 14, issue 5

03 Mar 2014
Atmospheric mercury speciation and mercury in snow over time at Alert, Canada
A. Steffen, J. Bottenheim, A. Cole, R. Ebinghaus, G. Lawson, and W. R. Leaitch
Atmos. Chem. Phys., 14, 2219–2231, https://doi.org/10.5194/acp-14-2219-2014,https://doi.org/10.5194/acp-14-2219-2014, 2014
03 Mar 2014
Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China
J. Zhu, T. Wang, R. Talbot, H. Mao, X. Yang, C. Fu, J. Sun, B. Zhuang, S. Li, Y. Han, and M. Xie
Atmos. Chem. Phys., 14, 2233–2244, https://doi.org/10.5194/acp-14-2233-2014,https://doi.org/10.5194/acp-14-2233-2014, 2014
04 Mar 2014
Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods
N. Niedermeier, A. Held, T. Müller, B. Heinold, K. Schepanski, I. Tegen, K. Kandler, M. Ebert, S. Weinbruch, K. Read, J. Lee, K. W. Fomba, K. Müller, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 14, 2245–2266, https://doi.org/10.5194/acp-14-2245-2014,https://doi.org/10.5194/acp-14-2245-2014, 2014
04 Mar 2014
A semi-Lagrangian view of ozone production tendency in North American outflow in the summers of 2009 and 2010
B. Zhang, R. C. Owen, J. A. Perlinger, A. Kumar, S. Wu, M. Val Martin, L. Kramer, D. Helmig, and R. E. Honrath
Atmos. Chem. Phys., 14, 2267–2287, https://doi.org/10.5194/acp-14-2267-2014,https://doi.org/10.5194/acp-14-2267-2014, 2014
04 Mar 2014
A parameterisation for the activation of cloud drops including the effects of semi-volatile organics
P. J. Connolly, D. O. Topping, F. Malavelle, and G. McFiggans
Atmos. Chem. Phys., 14, 2289–2302, https://doi.org/10.5194/acp-14-2289-2014,https://doi.org/10.5194/acp-14-2289-2014, 2014
05 Mar 2014
Towards the identification of molecular constituents associated with the surfaces of isoprene-derived secondary organic aerosol (SOA) particles
C. J. Ebben, B. F. Strick, M. A. Upshur, H. M. Chase, J. L. Achtyl, R. J. Thomson, and F. M. Geiger
Atmos. Chem. Phys., 14, 2303–2314, https://doi.org/10.5194/acp-14-2303-2014,https://doi.org/10.5194/acp-14-2303-2014, 2014
05 Mar 2014
Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles
N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Möhler
Atmos. Chem. Phys., 14, 2315–2324, https://doi.org/10.5194/acp-14-2315-2014,https://doi.org/10.5194/acp-14-2315-2014, 2014
05 Mar 2014
Meteorology during the DOMINO campaign and its connection with trace gases and aerosols
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014,https://doi.org/10.5194/acp-14-2325-2014, 2014
06 Mar 2014
Contributions of local and regional sources to fine PM in the megacity of Paris
K. Skyllakou, B. N. Murphy, A. G. Megaritis, C. Fountoukis, and S. N. Pandis
Atmos. Chem. Phys., 14, 2343–2352, https://doi.org/10.5194/acp-14-2343-2014,https://doi.org/10.5194/acp-14-2343-2014, 2014
06 Mar 2014
Measuring the Antarctic ozone hole with the new Ozone Mapping and Profiler Suite (OMPS)
N. A. Kramarova, E. R. Nash, P. A. Newman, P. K. Bhartia, R. D. McPeters, D. F. Rault, C. J. Seftor, P. Q. Xu, and G. J. Labow
Atmos. Chem. Phys., 14, 2353–2361, https://doi.org/10.5194/acp-14-2353-2014,https://doi.org/10.5194/acp-14-2353-2014, 2014
07 Mar 2014
The impact of the chemical production of methyl nitrate from the NO + CH3O2 reaction on the global distributions of alkyl nitrates, nitrogen oxides and tropospheric ozone: a global modelling study
J. E. Williams, G. Le Bras, A. Kukui, H. Ziereis, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 14, 2363–2382, https://doi.org/10.5194/acp-14-2363-2014,https://doi.org/10.5194/acp-14-2363-2014, 2014
07 Mar 2014
Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation
J. J. Ensberg, P. L. Hayes, J. L. Jimenez, J. B. Gilman, W. C. Kuster, J. A. de Gouw, J. S. Holloway, T. D. Gordon, S. Jathar, A. L. Robinson, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 2383–2397, https://doi.org/10.5194/acp-14-2383-2014,https://doi.org/10.5194/acp-14-2383-2014, 2014
07 Mar 2014
An AeroCom assessment of black carbon in Arctic snow and sea ice
C. Jiao, M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin, N. De Luca, T. Diehl, S. J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G. W. Mann, J. E. Penner, G. Pitari, M. Schulz, Ø. Seland, R. B. Skeie, S. D. Steenrod, P. Stier, T. Takemura, K. Tsigaridis, T. van Noije, Y. Yun, and K. Zhang
Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014,https://doi.org/10.5194/acp-14-2399-2014, 2014
10 Mar 2014
Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China
Y. H. Wang, B. Hu, D. S. Ji, Z. R. Liu, G. Q. Tang, J. Y. Xin, H. X. Zhang, T. Song, L. L. Wang, W. K. Gao, X. K. Wang, and Y. S. Wang
Atmos. Chem. Phys., 14, 2419–2429, https://doi.org/10.5194/acp-14-2419-2014,https://doi.org/10.5194/acp-14-2419-2014, 2014
10 Mar 2014
WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget
R. Kumar, M. C. Barth, G. G. Pfister, M. Naja, and G. P. Brasseur
Atmos. Chem. Phys., 14, 2431–2446, https://doi.org/10.5194/acp-14-2431-2014,https://doi.org/10.5194/acp-14-2431-2014, 2014
10 Mar 2014
The empirical relationship between satellite-derived tropospheric NO2 and fire radiative power and possible implications for fire emission rates of NOx
S. F. Schreier, A. Richter, J. W. Kaiser, and J. P. Burrows
Atmos. Chem. Phys., 14, 2447–2466, https://doi.org/10.5194/acp-14-2447-2014,https://doi.org/10.5194/acp-14-2447-2014, 2014
10 Mar 2014
Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories
M. S. Alam, J. M. Delgado-Saborit, C. Stark, and R. M. Harrison
Atmos. Chem. Phys., 14, 2467–2477, https://doi.org/10.5194/acp-14-2467-2014,https://doi.org/10.5194/acp-14-2467-2014, 2014
10 Mar 2014
High-resolution (375 m) cloud microstructure as seen from the NPP/VIIRS satellite imager
D. Rosenfeld, G. Liu, X. Yu, Y. Zhu, J. Dai, X. Xu, and Z. Yue
Atmos. Chem. Phys., 14, 2479–2496, https://doi.org/10.5194/acp-14-2479-2014,https://doi.org/10.5194/acp-14-2479-2014, 2014
11 Mar 2014
Fast photolysis of carbonyl nitrates from isoprene
J.-F. Müller, J. Peeters, and T. Stavrakou
Atmos. Chem. Phys., 14, 2497–2508, https://doi.org/10.5194/acp-14-2497-2014,https://doi.org/10.5194/acp-14-2497-2014, 2014
11 Mar 2014
Space-based observations of fire NOx emission coefficients: a global biome-scale comparison
A. K. Mebust and R. C. Cohen
Atmos. Chem. Phys., 14, 2509–2524, https://doi.org/10.5194/acp-14-2509-2014,https://doi.org/10.5194/acp-14-2509-2014, 2014
12 Mar 2014
Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain
H. J. Liu, C. S. Zhao, B. Nekat, N. Ma, A. Wiedensohler, D. van Pinxteren, G. Spindler, K. Müller, and H. Herrmann
Atmos. Chem. Phys., 14, 2525–2539, https://doi.org/10.5194/acp-14-2525-2014,https://doi.org/10.5194/acp-14-2525-2014, 2014
12 Mar 2014
In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China
S. X. Fang, L. X. Zhou, P. P. Tans, P. Ciais, M. Steinbacher, L. Xu, and T. Luan
Atmos. Chem. Phys., 14, 2541–2554, https://doi.org/10.5194/acp-14-2541-2014,https://doi.org/10.5194/acp-14-2541-2014, 2014
13 Mar 2014
Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor
K. C. Wells, D. B. Millet, K. E. Cady-Pereira, M. W. Shephard, D. K. Henze, N. Bousserez, E. C. Apel, J. de Gouw, C. Warneke, and H. B. Singh
Atmos. Chem. Phys., 14, 2555–2570, https://doi.org/10.5194/acp-14-2555-2014,https://doi.org/10.5194/acp-14-2555-2014, 2014
13 Mar 2014
Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements
E. Eckert, T. von Clarmann, M. Kiefer, G. P. Stiller, S. Lossow, N. Glatthor, D. A. Degenstein, L. Froidevaux, S. Godin-Beekmann, T. Leblanc, S. McDermid, M. Pastel, W. Steinbrecht, D. P. J. Swart, K. A. Walker, and P. F. Bernath
Atmos. Chem. Phys., 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014,https://doi.org/10.5194/acp-14-2571-2014, 2014
13 Mar 2014
Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions
J. C. Corbin, B. Sierau, M. Gysel, M. Laborde, A. Keller, J. Kim, A. Petzold, T. B. Onasch, U. Lohmann, and A. A. Mensah
Atmos. Chem. Phys., 14, 2591–2603, https://doi.org/10.5194/acp-14-2591-2014,https://doi.org/10.5194/acp-14-2591-2014, 2014
14 Mar 2014
The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data
C. Wesslén, M. Tjernström, D. H. Bromwich, G. de Boer, A. M. L. Ekman, L.-S. Bai, and S.-H. Wang
Atmos. Chem. Phys., 14, 2605–2624, https://doi.org/10.5194/acp-14-2605-2014,https://doi.org/10.5194/acp-14-2605-2014, 2014
14 Mar 2014
Retrieval of methane source strengths in Europe using a simple modeling approach to assess the potential of spaceborne lidar observations
C. Weaver, C. Kiemle, S. R. Kawa, T. Aalto, J. Necki, M. Steinbacher, J. Arduini, F. Apadula, H. Berkhout, and J. Hatakka
Atmos. Chem. Phys., 14, 2625–2637, https://doi.org/10.5194/acp-14-2625-2014,https://doi.org/10.5194/acp-14-2625-2014, 2014
14 Mar 2014
Cloud-scale ice-supersaturated regions spatially correlate with high water vapor heterogeneities
M. Diao, M. A. Zondlo, A. J. Heymsfield, L. M. Avallone, M. E. Paige, S. P. Beaton, T. Campos, and D. C. Rogers
Atmos. Chem. Phys., 14, 2639–2656, https://doi.org/10.5194/acp-14-2639-2014,https://doi.org/10.5194/acp-14-2639-2014, 2014
14 Mar 2014
Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado
E. J. T. Levin, A. J. Prenni, B. B. Palm, D. A. Day, P. Campuzano-Jost, P. M. Winkler, S. M. Kreidenweis, P. J. DeMott, J. L. Jimenez, and J. N. Smith
Atmos. Chem. Phys., 14, 2657–2667, https://doi.org/10.5194/acp-14-2657-2014,https://doi.org/10.5194/acp-14-2657-2014, 2014
14 Mar 2014
Observations of I2 at a remote marine site
M. J. Lawler, A. S. Mahajan, A. Saiz-Lopez, and E. S. Saltzman
Atmos. Chem. Phys., 14, 2669–2678, https://doi.org/10.5194/acp-14-2669-2014,https://doi.org/10.5194/acp-14-2669-2014, 2014
14 Mar 2014
Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution
E. V. Fischer, D. J. Jacob, R. M. Yantosca, M. P. Sulprizio, D. B. Millet, J. Mao, F. Paulot, H. B. Singh, A. Roiger, L. Ries, R.W. Talbot, K. Dzepina, and S. Pandey Deolal
Atmos. Chem. Phys., 14, 2679–2698, https://doi.org/10.5194/acp-14-2679-2014,https://doi.org/10.5194/acp-14-2679-2014, 2014
14 Mar 2014
Henry's law constants of diacids and hydroxy polyacids: recommended values
S. Compernolle and J.-F. Müller
Atmos. Chem. Phys., 14, 2699–2712, https://doi.org/10.5194/acp-14-2699-2014,https://doi.org/10.5194/acp-14-2699-2014, 2014
14 Mar 2014
Dimension of aircraft exhaust plumes at cruise conditions: effect of wake vortices
S. Unterstrasser, R. Paoli, I. Sölch, C. Kühnlein, and T. Gerz
Atmos. Chem. Phys., 14, 2713–2733, https://doi.org/10.5194/acp-14-2713-2014,https://doi.org/10.5194/acp-14-2713-2014, 2014
CC BY 4.0