Articles | Volume 13, issue 6
https://doi.org/10.5194/acp-13-3237-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-3237-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept
P. E. Huck
Bodeker Scientific, Alexandra, New Zealand
G. E. Bodeker
Bodeker Scientific, Alexandra, New Zealand
S. Kremser
Bodeker Scientific, Alexandra, New Zealand
A. J. McDonald
Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
M. Rex
Alfred Wegener Institute, Potsdam, Germany
H. Struthers
Department of Applied Environmental Science, Stockholm University, 10691, Stockholm, Sweden
Department of Meteorology, Stockholm University, 10691, Stockholm, Sweden
Related authors
M. Rex, S. Kremser, P. Huck, G. Bodeker, I. Wohltmann, M. L. Santee, and P. Bernath
Atmos. Chem. Phys., 14, 6545–6555, https://doi.org/10.5194/acp-14-6545-2014, https://doi.org/10.5194/acp-14-6545-2014, 2014
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Owyn Aitken, Antoni Moore, Ivan Diaz-Rainey, Quyen Nguyen, Simon Cox, and Greg Bodeker
Abstr. Int. Cartogr. Assoc., 7, 4, https://doi.org/10.5194/ica-abs-7-4-2024, https://doi.org/10.5194/ica-abs-7-4-2024, 2024
Antoni Moore, Quyen Nguyen, Ivan Diaz-Rainey, Greg Bodeker, Simon Cox, and Owyn Aitken
Abstr. Int. Cartogr. Assoc., 7, 107, https://doi.org/10.5194/ica-abs-7-107-2024, https://doi.org/10.5194/ica-abs-7-107-2024, 2024
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Yusuf A. Bhatti, Laura E. Revell, Alex J. Schuddeboom, Adrian J. McDonald, Alex T. Archibald, Jonny Williams, Abhijith U. Venugopal, Catherine Hardacre, and Erik Behrens
Atmos. Chem. Phys., 23, 15181–15196, https://doi.org/10.5194/acp-23-15181-2023, https://doi.org/10.5194/acp-23-15181-2023, 2023
Short summary
Short summary
Aerosols are a large source of uncertainty over the Southern Ocean. A dominant source of sulfate aerosol in this region is dimethyl sulfide (DMS), which is poorly simulated by climate models. We show the sensitivity of simulated atmospheric DMS to the choice of oceanic DMS data set and emission scheme. We show that oceanic DMS has twice the influence on atmospheric DMS than the emission scheme. Simulating DMS more accurately in climate models will help to constrain aerosol uncertainty.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Quyen Nguyen, Antoni Moore, Ivan Diaz-Rainey, Greg Bodeker, Simon C. Cox, Murray Cadzow, and Paul Thorsnes
Abstr. Int. Cartogr. Assoc., 6, 187, https://doi.org/10.5194/ica-abs-6-187-2023, https://doi.org/10.5194/ica-abs-6-187-2023, 2023
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023, https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
Short summary
We present a machine learning method for determining cloud types in climate model output and satellite observations based on ground observations of cloud genera. We analyse cloud type biases and changes with temperature in climate models and show that the bias is anticorrelated with climate sensitivity. Models simulating decreasing stratiform and increasing cumuliform clouds with increased CO2 concentration tend to have higher climate sensitivity than models simulating the opposite tendencies.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Alex R. Aves, Laura E. Revell, Sally Gaw, Helena Ruffell, Alex Schuddeboom, Ngaire E. Wotherspoon, Michelle LaRue, and Adrian J. McDonald
The Cryosphere, 16, 2127–2145, https://doi.org/10.5194/tc-16-2127-2022, https://doi.org/10.5194/tc-16-2127-2022, 2022
Short summary
Short summary
This study confirms the presence of microplastics in Antarctic snow, highlighting the extent of plastic pollution globally. Fresh snow was collected from Ross Island, Antarctica, and subsequent analysis identified an average of 29 microplastic particles per litre of melted snow. The most likely source of these airborne microplastics is local scientific research stations; however, modelling shows their origin could have been up to 6000 km away.
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021, https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
Short summary
The MAPM project showcases a method to improve estimates of PM2.5 emissions through an advanced statistical technique that is still new to the aerosol community. Using Christchurch, NZ, as a test bed, measurements from a field campaign in winter 2019 are incorporated into this new approach. An overestimation from local inventory estimates is identified. This technique may be exported to other urban areas in need.
Greg E. Bodeker, Jan Nitzbon, Jordis S. Tradowsky, Stefanie Kremser, Alexander Schwertheim, and Jared Lewis
Earth Syst. Sci. Data, 13, 3885–3906, https://doi.org/10.5194/essd-13-3885-2021, https://doi.org/10.5194/essd-13-3885-2021, 2021
Short summary
Short summary
Ozone in Earth's atmosphere has undergone significant changes since first measured systematically from space in the late 1970s. The purpose of the paper is to present a new, spatially filled, global total column ozone climate data record spanning from October 1978 to December 2016. The database is compiled from measurements from 17 different satellite-based instruments where offsets and drifts between the instruments have been corrected using ground-based measurements.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Ethan R. Dale, Stefanie Kremser, Jordis S. Tradowsky, Greg E. Bodeker, Leroy J. Bird, Gustavo Olivares, Guy Coulson, Elizabeth Somervell, Woodrow Pattinson, Jonathan Barte, Jan-Niklas Schmidt, Nariefa Abrahim, Adrian J. McDonald, and Peter Kuma
Earth Syst. Sci. Data, 13, 2053–2075, https://doi.org/10.5194/essd-13-2053-2021, https://doi.org/10.5194/essd-13-2053-2021, 2021
Short summary
Short summary
MAPM is a project whose goal is to develop a method to infer particulate matter (PM) emissions maps from PM concentration measurements. In support of MAPM, we conducted a winter field campaign in New Zealand. In addition to two types of instruments measuring PM, an array of other meteorological sensors were deployed, measuring temperature and wind speed as well as probing the vertical structure of the lower atmosphere. In this article, we present the measurements taken during this campaign.
Greg E. Bodeker and Stefanie Kremser
Atmos. Chem. Phys., 21, 5289–5300, https://doi.org/10.5194/acp-21-5289-2021, https://doi.org/10.5194/acp-21-5289-2021, 2021
Short summary
Short summary
This paper presents measures of the severity of the Antarctic ozone hole covering the period 1979 to 2019. The paper shows that while the severity of Antarctic ozone depletion grew rapidly through the last two decades of the 20th century, the severity declined thereafter and faster than expected from declines in stratospheric concentrations of the chlorine- and bromine-containing chemical compounds that destroy ozone.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, https://doi.org/10.5194/gmd-14-43-2021, 2021
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Stefanie Kremser, Larry W. Thomason, and Leroy J. Bird
Earth Syst. Sci. Data, 12, 1419–1435, https://doi.org/10.5194/essd-12-1419-2020, https://doi.org/10.5194/essd-12-1419-2020, 2020
Short summary
Short summary
Since space-based measurements of stratospheric composition started, a plethora of
generally acceptedscreening methods have been developed and tailored to each measurement system and to each anticipated use of the data. These methods are often inconsistent, ad hoc, and untraceable and are seldom revised even after significant revisions to the data themselves. Here we developed new and simplified SAGE II ozone data usage rules that are based on how the measurements were made.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Simon P. Alexander, John J. Cassano, Sally Garrett, Jamie Halla, Sean Hartery, Mike J. Harvey, Simon Parsons, Graeme Plank, Vidya Varma, and Jonny Williams
Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020, https://doi.org/10.5194/acp-20-6607-2020, 2020
Short summary
Short summary
We evaluate clouds over the Southern Ocean in the climate model HadGEM3 and reanalysis MERRA-2 using ship-based ceilometer and radiosonde observations. We find the models underestimate cloud cover by 18–25 %, with clouds below 2 km dominant in reality but lacking in the models. We find a strong link between clouds, atmospheric stability and sea surface temperature in observations but not in the models, implying that sub-grid processes do not generate enough cloud in response to these conditions.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Meinrat O. Andreae, Kazushi Aranami, Elliot Atlas, Max Berkelhammer, Heinz Bingemer, Dennis Booge, Gregory Cutter, Pau Cortes, Stefanie Kremser, Cliff S. Law, Andrew Marriner, Rafel Simó, Birgit Quack, Günther Uher, Huixiang Xie, and Xiaobin Xu
Earth Syst. Sci. Data, 12, 591–609, https://doi.org/10.5194/essd-12-591-2020, https://doi.org/10.5194/essd-12-591-2020, 2020
Short summary
Short summary
Sulfur-containing trace gases in the atmosphere influence atmospheric chemistry and the energy budget of the Earth by forming aerosols. The ocean is an important source of the most abundant sulfur gas in the atmosphere, carbonyl sulfide (OCS) and its most important precursor carbon disulfide (CS2). In order to assess global variability of the sea surface concentrations of both gases to calculate their oceanic emissions, we have compiled a database of existing shipborne measurements.
Laura E. Revell, Stefanie Kremser, Sean Hartery, Mike Harvey, Jane P. Mulcahy, Jonny Williams, Olaf Morgenstern, Adrian J. McDonald, Vidya Varma, Leroy Bird, and Alex Schuddeboom
Atmos. Chem. Phys., 19, 15447–15466, https://doi.org/10.5194/acp-19-15447-2019, https://doi.org/10.5194/acp-19-15447-2019, 2019
Short summary
Short summary
Aerosols over the Southern Ocean consist primarily of sea salt and sulfate, yet are seasonally biased in our model. We test three sulfate chemistry schemes to investigate DMS oxidation, which forms sulfate aerosol. Simulated cloud droplet number concentrations improve using more complex sulfate chemistry. We also show that a new sea spray aerosol source function, developed from measurements made on a recent Southern Ocean research voyage, improves the model's simulation of aerosol optical depth.
Corinna Kloss, Marc von Hobe, Michael Höpfner, Kaley A. Walker, Martin Riese, Jörn Ungermann, Birgit Hassler, Stefanie Kremser, and Greg E. Bodeker
Atmos. Meas. Tech., 12, 2129–2138, https://doi.org/10.5194/amt-12-2129-2019, https://doi.org/10.5194/amt-12-2129-2019, 2019
Short summary
Short summary
Are regional and seasonal averages from only a few satellite measurements, all aligned along a specific path, representative? Probably not. We present a method to adjust for the so-called
sampling biasand investigate its influence on derived long-term trends. The method is illustrated and validated for a long-lived trace gas (carbonyl sulfide), and it is shown that the influence of the sampling bias is too small to change scientific conclusions on long-term trends.
Jordis S. Tradowsky, Gregory E. Bodeker, Richard R. Querel, Peter J. H. Builtjes, and Jürgen Fischer
Earth Syst. Sci. Data, 10, 2195–2211, https://doi.org/10.5194/essd-10-2195-2018, https://doi.org/10.5194/essd-10-2195-2018, 2018
Short summary
Short summary
A best-estimate data set of the temperature profile above the atmospheric measurement facility at Lauder, New Zealand, has been developed. This site atmospheric state best estimate (SASBE) combines atmospheric measurements made at two locations and includes an estimate of uncertainty on every data point. The SASBE enhances the value of measurements made by a reference-quality climate observing network and may be used for a variety of purposes in research and education.
Birgit Hassler, Stefanie Kremser, Greg E. Bodeker, Jared Lewis, Kage Nesbit, Sean M. Davis, Martyn P. Chipperfield, Sandip S. Dhomse, and Martin Dameris
Earth Syst. Sci. Data, 10, 1473–1490, https://doi.org/10.5194/essd-10-1473-2018, https://doi.org/10.5194/essd-10-1473-2018, 2018
Ben Jolly, Peter Kuma, Adrian McDonald, and Simon Parsons
Atmos. Chem. Phys., 18, 9723–9739, https://doi.org/10.5194/acp-18-9723-2018, https://doi.org/10.5194/acp-18-9723-2018, 2018
Short summary
Short summary
Clouds in the Ross Sea and Ross Ice Shelf regions are examined using a combination of satellite observations from the CloudSat and CALIPSO satellite datasets. We show that previous studies may have included an artefact at high altitudes which under-estimated cloud occurrence. We also find that the meteorological regime is a stronger control of cloud occurrence, cloud type and cloud top than season over this region, though season is a strong control on the phase of cloud.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Jonathan Conway, Greg Bodeker, and Chris Cameron
Atmos. Chem. Phys., 18, 8065–8077, https://doi.org/10.5194/acp-18-8065-2018, https://doi.org/10.5194/acp-18-8065-2018, 2018
Short summary
Short summary
Strong westerly winds occur in the stratosphere during winter and spring. These winds, the polar vortex, limit how much air is mixed between mid- and high-latitudes. We present a new view of the polar vortex mixing barrier in the Southern Hemisphere, revealing a frequent double-walled barrier with two distinct regions of weak mixing. This double-walled structure is expected to alter the spatial and temporal variation of trace gas concentrations (e.g. ozone) across the polar vortex.
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017, https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary
Short summary
Satellite overlap is often carried out as a check on the stability of the data collected. We looked at how length of overlap influences how much information can be derived from the overlap period. Several results surprised us: the confidence we could have in the matchup of two records was independent of the offset, and understanding of the relative drift between the two satellite data sets improved significantly with 2–3 years of overlap. Sudden jumps could easily be confused with drift.
Jared Lewis, Greg E. Bodeker, Stefanie Kremser, and Andrew Tait
Geosci. Model Dev., 10, 4563–4575, https://doi.org/10.5194/gmd-10-4563-2017, https://doi.org/10.5194/gmd-10-4563-2017, 2017
Short summary
Short summary
The Ensemble Projections Incorporating Climate model uncertainty (EPIC) method uses climate pattern scaling to expand a small number of daily maximum and minimum surface temperature projections into an ensemble that captures the structural uncertainty between climate models. The method is useful for providing projections of changes in climate to users wishing to investigate the impacts of climate change in a probabilistic and computationally efficient way.
Fraser Dennison, Adrian McDonald, and Olaf Morgenstern
Atmos. Chem. Phys., 17, 14075–14084, https://doi.org/10.5194/acp-17-14075-2017, https://doi.org/10.5194/acp-17-14075-2017, 2017
Short summary
Short summary
The Antarctic ozone is not centred directly over the pole. In this research we examine how the position and shape of the ozone hole changes using a chemistry–climate model. As ozone becomes increasingly depleted during the late 20th century the centre of the ozone hole moves toward the west and becomes more circular. As the ozone hole recovers over the course of the 21st century the ozone hole moves back towards the east.
Laura E. Revell, Andrea Stenke, Beiping Luo, Stefanie Kremser, Eugene Rozanov, Timofei Sukhodolov, and Thomas Peter
Atmos. Chem. Phys., 17, 13139–13150, https://doi.org/10.5194/acp-17-13139-2017, https://doi.org/10.5194/acp-17-13139-2017, 2017
Short summary
Short summary
Compiling stratospheric aerosol data sets after a major volcanic eruption is difficult as the stratosphere becomes too optically opaque for satellite instruments to measure accurately. We performed ensemble chemistry–climate model simulations with two stratospheric aerosol data sets compiled for two international modelling activities and compared the simulated volcanic aerosol-induced effects from the 1991 Mt Pinatubo eruption on tropical stratospheric temperature and ozone with observations.
Ethan R. Dale, Adrian J. McDonald, Jack H. J. Coggins, and Wolfgang Rack
The Cryosphere, 11, 267–280, https://doi.org/10.5194/tc-11-267-2017, https://doi.org/10.5194/tc-11-267-2017, 2017
Short summary
Short summary
This work studies the affects of strong winds on sea ice within the Ross Sea polynya. We compare both automatic weather station (AWS) and reanalysis wind data with sea ice concentration (SIC) measurements based on satellite images. Due to its low resolution, the reanalysis data were unable to reproduce several relationships found between the AWS and SIC data. We find that the strongest third of wind speeds had the most significant affect on SIC and resulting sea ice production.
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017, https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Short summary
Information from long-duration balloons flying in the Southern Hemisphere stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses. This work assesses the potential of the X Project Loon observations to validate outputs from the reanalysis models. In particular, we examined how the model winds compared with those derived from the balloon GPS information. We also examined simulated trajectories compared with the true trajectories.
Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke
Atmos. Chem. Phys., 16, 15619–15627, https://doi.org/10.5194/acp-16-15619-2016, https://doi.org/10.5194/acp-16-15619-2016, 2016
Short summary
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
Gerald E. Nedoluha, Brian J. Connor, Thomas Mooney, James W. Barrett, Alan Parrish, R. Michael Gomez, Ian Boyd, Douglas R. Allen, Michael Kotkamp, Stefanie Kremser, Terry Deshler, Paul Newman, and Michelle L. Santee
Atmos. Chem. Phys., 16, 10725–10734, https://doi.org/10.5194/acp-16-10725-2016, https://doi.org/10.5194/acp-16-10725-2016, 2016
Short summary
Short summary
Chlorine monoxide (ClO) is central to the formation of the springtime Antarctic ozone hole since it is the catalytic agent in the most important ozone-depleting chemical cycle. We present 20 years of measurements of ClO from the Chlorine monOxide Experiment at Scott Base, Antarctica, and 12 years of measurements from the Aura Microwave Limb Sounder to show that the trends in ClO during the ozone hole season are consistent with changes in stratospheric chlorine observed elsewhere.
Yuting Wang, Nicholas M. Deutscher, Mathias Palm, Thorsten Warneke, Justus Notholt, Ian Baker, Joe Berry, Parvadha Suntharalingam, Nicholas Jones, Emmanuel Mahieu, Bernard Lejeune, James Hannigan, Stephanie Conway, Joseph Mendonca, Kimberly Strong, J. Elliott Campbell, Adam Wolf, and Stefanie Kremser
Atmos. Chem. Phys., 16, 2123–2138, https://doi.org/10.5194/acp-16-2123-2016, https://doi.org/10.5194/acp-16-2123-2016, 2016
Short summary
Short summary
OCS could provide an additional constraint on the carbon cycle. The FTIR networks have existed for more than 20 years. For the first time, we used FTIR measurements of OCS and CO2 to study their relationship. We put the coupled CO2 and OCS land fluxes from the Simple Biosphere Model (SiB) into a transport model, and compared the simulations to the measurements. Looking at OCS and CO2 together inspires some new thoughts in how the biospheric models reproduce the carbon cycle in the real world.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
K. Kreher, G. E. Bodeker, and M. Sigmond
Atmos. Chem. Phys., 15, 7653–7665, https://doi.org/10.5194/acp-15-7653-2015, https://doi.org/10.5194/acp-15-7653-2015, 2015
Short summary
Short summary
This manuscript aims to answer the following question: which of the existing sites engaged in upper-air temperature measurements are best located to detect expected future trends within the shortest time possible? To do so, we explore one objective method for selecting the optimal locations for detecting projected 21st century trends and then demonstrate a similar technique for objectively selecting optimal locations for detecting expected future trends in total column ozone.
G. E. Bodeker and S. Kremser
Atmos. Meas. Tech., 8, 1673–1684, https://doi.org/10.5194/amt-8-1673-2015, https://doi.org/10.5194/amt-8-1673-2015, 2015
Short summary
Short summary
This paper discusses, and demonstrates, the methodology for reliably determining long-term trends in upper air climate data records and how measurement uncertainties should be used in trend analyses. A pedagogical approach is taken whereby numerical recipes for key parts of the trend analysis process are explored. The paper describes the construction of linear least squares regression models for trend analysis and the boot-strapping approach to determine the uncertainty on the derived trends.
F. Tummon, B. Hassler, N. R. P. Harris, J. Staehelin, W. Steinbrecht, J. Anderson, G. E. Bodeker, A. Bourassa, S. M. Davis, D. Degenstein, S. M. Frith, L. Froidevaux, E. Kyrölä, M. Laine, C. Long, A. A. Penckwitt, C. E. Sioris, K. H. Rosenlof, C. Roth, H.-J. Wang, and J. Wild
Atmos. Chem. Phys., 15, 3021–3043, https://doi.org/10.5194/acp-15-3021-2015, https://doi.org/10.5194/acp-15-3021-2015, 2015
Short summary
Short summary
Understanding ozone trends in the vertical is vital in terms of assessing the success of the Montreal Protocol. This paper compares and analyses the long-term trends in stratospheric ozone from seven new merged satellite data sets. The data sets largely agree well with each other, particularly for the negative trends seen in the early period 1984-1997. For the 1998-2011 period there is less agreement, but a clear shift from negative to mostly positive trends.
A. A. Penckwitt, G. E. Bodeker, P. Stoll, J. Lewis, T. von Clarmann, and A. Jones
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-235-2015, https://doi.org/10.5194/amtd-8-235-2015, 2015
Preprint withdrawn
A. Parrish, I. S. Boyd, G. E. Nedoluha, P. K. Bhartia, S. M. Frith, N. A. Kramarova, B. J. Connor, G. E. Bodeker, L. Froidevaux, M. Shiotani, and T. Sakazaki
Atmos. Chem. Phys., 14, 7255–7272, https://doi.org/10.5194/acp-14-7255-2014, https://doi.org/10.5194/acp-14-7255-2014, 2014
M. Rex, S. Kremser, P. Huck, G. Bodeker, I. Wohltmann, M. L. Santee, and P. Bernath
Atmos. Chem. Phys., 14, 6545–6555, https://doi.org/10.5194/acp-14-6545-2014, https://doi.org/10.5194/acp-14-6545-2014, 2014
S. Kremser, G. E. Bodeker, and J. Lewis
Geosci. Model Dev., 7, 249–266, https://doi.org/10.5194/gmd-7-249-2014, https://doi.org/10.5194/gmd-7-249-2014, 2014
V. F. Sofieva, J. Tamminen, E. Kyrölä, T. Mielonen, P. Veefkind, B. Hassler, and G.E. Bodeker
Atmos. Chem. Phys., 14, 283–299, https://doi.org/10.5194/acp-14-283-2014, https://doi.org/10.5194/acp-14-283-2014, 2014
S. Brönnimann, J. Bhend, J. Franke, S. Flückiger, A. M. Fischer, R. Bleisch, G. Bodeker, B. Hassler, E. Rozanov, and M. Schraner
Atmos. Chem. Phys., 13, 9623–9639, https://doi.org/10.5194/acp-13-9623-2013, https://doi.org/10.5194/acp-13-9623-2013, 2013
H. Garny, G. E. Bodeker, D. Smale, M. Dameris, and V. Grewe
Atmos. Chem. Phys., 13, 7279–7300, https://doi.org/10.5194/acp-13-7279-2013, https://doi.org/10.5194/acp-13-7279-2013, 2013
B. Hassler, P. J. Young, R. W. Portmann, G. E. Bodeker, J. S. Daniel, K. H. Rosenlof, and S. Solomon
Atmos. Chem. Phys., 13, 5533–5550, https://doi.org/10.5194/acp-13-5533-2013, https://doi.org/10.5194/acp-13-5533-2013, 2013
G. E. Bodeker, B. Hassler, P. J. Young, and R. W. Portmann
Earth Syst. Sci. Data, 5, 31–43, https://doi.org/10.5194/essd-5-31-2013, https://doi.org/10.5194/essd-5-31-2013, 2013
A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz
Geosci. Model Dev., 6, 207–244, https://doi.org/10.5194/gmd-6-207-2013, https://doi.org/10.5194/gmd-6-207-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Age of air from in situ trace gas measurements: insights from a new technique
Tropospheric links to uncertainty in stratospheric subseasonal predictions
The impact of El Niño–Southern Oscillation on the total column ozone over the Tibetan Plateau
Exploring ozone variability in the upper troposphere and lower stratosphere using dynamical coordinates
Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR
Quasi-biennial oscillation modulation of stratospheric water vapour in the Asian monsoon
Crucial role of obliquely propagating gravity waves in the quasi-biennial oscillation dynamics
Technical note: Multi-year changes in the Brewer–Dobson circulation from Halogen Occultation Experiment (HALOE) methane
Exploring the ENSO modulation of the QBO periods with GISS E2.2 models
The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
Stratospherically induced circulation changes under the extreme conditions of the no-Montreal-Protocol scenario
Vortex preconditioning of the 2021 sudden stratospheric warming: barotropic–baroclinic instability associated with the double westerly jets
On the pattern of interannual polar vortex–ozone co-variability during northern hemispheric winter
A mountain ridge model for quantifying oblique mountain wave propagation and distribution
Weakening of the tropical tropopause layer cold trap with global warming
On the magnitude and sensitivity of the quasi-biennial oscillation response to a tropical volcanic eruption
The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing
The Holton–Tan mechanism under stratospheric aerosol intervention
Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models
The impact of improved spatial and temporal resolution of reanalysis data on Lagrangian studies of the tropical tropopause layer
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
The semi-annual oscillation (SAO) in the upper troposphere and lower stratosphere (UTLS)
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020
Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low potential vorticity cutoffs
Long-range prediction and the stratosphere
Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: a response to sea surface temperature trends
The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends
Specified dynamics scheme impacts on wave-mean flow dynamics, convection, and tracer transport in CESM2 (WACCM6)
Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet
Observation and modeling of high-7Be concentration events at the surface in northern Europe associated with the instability of the Arctic polar vortex in early 2003
Eastward-propagating planetary waves in the polar middle atmosphere
The Brewer–Dobson circulation in CMIP6
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption
Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
The impact of increasing stratospheric radiative damping on the quasi-biennial oscillation period
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion
Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics
Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models
Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, and Colm Sweeney
Atmos. Chem. Phys., 24, 12425–12445, https://doi.org/10.5194/acp-24-12425-2024, https://doi.org/10.5194/acp-24-12425-2024, 2024
Short summary
Short summary
In this study we describe new techniques to derive age of air from multiple simultaneous measurements of long-lived trace gases in order to improve the fidelity of the age-of-air estimates and to be able to compare age of air from measurements taken from different instruments, platforms and decades. This technique also allows new transport information to be obtained from the measurements such as the primary source latitude that can also be compared to models.
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024, https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary
Short summary
Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts.
Yang Li, Wuhu Feng, Xin Zhou, Yajuan Li, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 8277–8293, https://doi.org/10.5194/acp-24-8277-2024, https://doi.org/10.5194/acp-24-8277-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP), the highest and largest plateau, experiences strong surface solar UV radiation, whose excess can cause harmful influences on local biota. Hence, it is critical to study TP ozone. We find ENSO, the strongest interannual phenomenon, tends to induce tropospheric temperature change and thus modulate tropopause variability, which in turn favours ozone change over the TP. Our results have implications for a better understanding of the interannual variability of TP ozone.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Cristina Peña-Ortiz, Nuria Pilar Plaza, David Gallego, and Felix Ploeger
Atmos. Chem. Phys., 24, 5457–5478, https://doi.org/10.5194/acp-24-5457-2024, https://doi.org/10.5194/acp-24-5457-2024, 2024
Short summary
Short summary
Although water vapour (H2O) in the lower stratosphere is only a few molecules among 1 million air molecules, atmospheric radiative forcing and surface temperature are sensitive to changes in its concentration. Monsoon regions play a key role in H2O transport and its concentration in the lower stratosphere. We show how the quasi-biennial oscillation (QBO) has a major impact on H2O over the Asian monsoon during August through changes in temperature caused by QBO modulation of tropical clouds.
Young-Ha Kim, Georg Sebastian Voelker, Gergely Bölöni, Günther Zängl, and Ulrich Achatz
Atmos. Chem. Phys., 24, 3297–3308, https://doi.org/10.5194/acp-24-3297-2024, https://doi.org/10.5194/acp-24-3297-2024, 2024
Short summary
Short summary
The quasi-biennial oscillation, which governs the tropical stratospheric circulation, is driven primarily by small-scale wave processes. We employ a novel method to realistically represent these wave processes in a global model, thereby revealing an aspect of the oscillation that has not been identified before. We find that the oblique propagation of waves, a process neglected by existing climate models, plays a pivotal role in the stratospheric circulation and its oscillation.
Ellis Remsberg
Atmos. Chem. Phys., 24, 1691–1697, https://doi.org/10.5194/acp-24-1691-2024, https://doi.org/10.5194/acp-24-1691-2024, 2024
Short summary
Short summary
CH4 data from the Halogen Occultation Experiment show clear changes in the deep and shallow branches of the Brewer–Dobson circulation (BDC) from 1992 to 2005. CH4 decreased in the upper stratosphere in the early 1990s following the Pinatubo eruption. There was also meridional transport of CH4 from the tropics to mid-latitudes in both hemispheres in the late 1990s. CH4 trends in the shallow branch agree with the tropospheric CH4 trends from 1996 to 2005.
Tiehan Zhou, Kevin J. DallaSanta, Clara Orbe, David H. Rind, Jeffrey A. Jonas, Larissa Nazarenko, Gavin A. Schmidt, and Gary Russell
Atmos. Chem. Phys., 24, 509–532, https://doi.org/10.5194/acp-24-509-2024, https://doi.org/10.5194/acp-24-509-2024, 2024
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) tends to speed up and slow down the phase speed of the Quasi-Biennial Oscillation (QBO) during El Niño and La Niña, respectively. The ENSO modulation of the QBO does not show up in the climate models with parameterized but temporally constant gravity wave sources. We show that the GISS E2.2 models can capture the observed ENSO modulation of the QBO period with a horizontal resolution of 2° by 2.5° and its gravity wave sources parameterized interactively.
Helen Weierbach, Allegra N. LeGrande, and Kostas Tsigaridis
Atmos. Chem. Phys., 23, 15491–15505, https://doi.org/10.5194/acp-23-15491-2023, https://doi.org/10.5194/acp-23-15491-2023, 2023
Short summary
Short summary
Volcanic aerosols impact global and regional climate conditions but can vary depending on pre-existing initial climate conditions. We ran an ensemble of volcanic aerosol simulations under varying ENSO and NAO initial conditions to understand how initial climate states impact the modeled response to volcanic forcing. Overall we found that initial NAO conditions can impact the strength of the first winter post-eruptive response but are also affected by the choice of anomaly and sampling routine.
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
Atmos. Chem. Phys., 23, 13387–13411, https://doi.org/10.5194/acp-23-13387-2023, https://doi.org/10.5194/acp-23-13387-2023, 2023
Short summary
Short summary
The Montreal Protocol (MP) has successfully reduced the Antarctic ozone hole by banning chlorofluorocarbons (CFCs) that destroy the ozone layer. Moreover, CFCs are strong greenhouse gases (GHGs) that would have strengthened global warming. In this study, we investigate the surface weather and climate in a world without the MP at the end of the 21st century, disentangling ozone-mediated and GHG impacts of CFCs. Overall, we avoided 1.7 K global surface warming and a poleward shift in storm tracks.
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
Atmos. Chem. Phys., 23, 10869–10881, https://doi.org/10.5194/acp-23-10869-2023, https://doi.org/10.5194/acp-23-10869-2023, 2023
Short summary
Short summary
The January 2021 sudden stratospheric warming was preceded by unusual double westerly jets with polar stratospheric and subtropical mesospheric cores. This wind structure promotes anomalous dissipation of tropospheric planetary waves between the two maxima, leading to unusually strong shear instability. Shear instability generates the westward-propagating planetary waves with zonal wavenumber 2 in situ, thereby splitting the polar vortex just before the onset.
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 23, 7447–7460, https://doi.org/10.5194/acp-23-7447-2023, https://doi.org/10.5194/acp-23-7447-2023, 2023
Short summary
Short summary
Here, we show how projected changes to tropical circulation will impact the water vapor concentration in the lower stratosphere, which has implications for surface climate and stratospheric chemistry. In our transport scenarios with slower east–west winds, air parcels ascending into the stratosphere do not experience the same cold temperatures that they would today. This effect could act in concert with previously modeled changes to stratospheric water vapor to amplify surface warming.
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Dillon Elsbury, Amy H. Butler, John R. Albers, Melissa L. Breeden, and Andrew O'Neil Langford
Atmos. Chem. Phys., 23, 5101–5117, https://doi.org/10.5194/acp-23-5101-2023, https://doi.org/10.5194/acp-23-5101-2023, 2023
Short summary
Short summary
One of the global hotspots where stratosphere-to-troposphere transport (STT) of ozone takes place is over Pacific North America (PNA). However, we do not know how or if STT over PNA will change in response to climate change. Using climate model experiments forced with
worst-casescenario Representative Concentration Pathway 8.5 climate change, we find that changes in net chemical production and transport of ozone in the lower stratosphere increase STT of ozone over PNA in the future.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023, https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
Short summary
Atmospheric oscillations with periods between 5 and more than 200 years are believed to be self-excited (internal) in the atmosphere, i.e. non-anthropogenic. They are found at all altitudes up to 110 km and at four very different geographical locations (75° N, 70° E; 75° N, 280° E; 50° N, 7° E; 50° S, 7° E). Therefore, they hint at a global-oscillation mode. Their amplitudes are on the order of present-day climate trends, and it is therefore difficult to disentangle them.
Samuel Benito-Barca, Natalia Calvo, and Marta Abalos
Atmos. Chem. Phys., 22, 15729–15745, https://doi.org/10.5194/acp-22-15729-2022, https://doi.org/10.5194/acp-22-15729-2022, 2022
Short summary
Short summary
The impact of different El Niño flavors (eastern (EP) and central (CP) Pacific El Niño) and La Niña on the stratospheric ozone is studied in a state-of-the-art chemistry–climate model. Ozone reduces in the tropics and increases in the extratropics when an EP El Niño event occurs, the opposite of La Niña. However, CP El Niño has no impact on extratropical ozone. These ozone variations are driven by changes in the stratospheric transport circulation, with an important contribution of mixing.
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022, https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
Short summary
Polar vortex extremes, particularly situations with an unusually weak cyclonic circulation in the stratosphere, can influence the surface climate in the spring–summer time in the Southern Hemisphere. Using chemistry-climate models and observations, we evaluate the robustness of the surface impacts. While models capture the general surface response, they do not show the observed climate patterns in midlatitude regions, which we trace back to biases in the models' circulations.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339, https://doi.org/10.5194/acp-22-13325-2022, https://doi.org/10.5194/acp-22-13325-2022, 2022
Short summary
Short summary
Here, we tested the impact of spatial and temporal resolution on Lagrangian trajectory studies in a key region of interest for climate feedbacks and stratospheric chemistry. Our analysis shows that new higher-resolution input data provide an opportunity for a better understanding of physical processes that control how air moves from the troposphere to the stratosphere. Future studies of how these processes will change in a warming climate will benefit from these results.
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022, https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño–Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards are assessed.
Axel Gabriel
Atmos. Chem. Phys., 22, 10425–10441, https://doi.org/10.5194/acp-22-10425-2022, https://doi.org/10.5194/acp-22-10425-2022, 2022
Short summary
Short summary
Recent measurements show some evidence that the amplitudes of atmospheric gravity waves (horizontal wavelengths of 100–2000 km), which propagate from the troposphere (0–10 km) to the stratosphere and mesosphere (10–100 km), increase more strongly with height during daytime than during nighttime. This study shows that ozone–temperature coupling in the upper stratosphere can principally produce such an amplification. The results will help to improve atmospheric circulation models.
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
Ming Shangguan and Wuke Wang
Atmos. Chem. Phys., 22, 9499–9511, https://doi.org/10.5194/acp-22-9499-2022, https://doi.org/10.5194/acp-22-9499-2022, 2022
Short summary
Short summary
Skilful predictions of weather and climate on subseasonal to seasonal scales are valuable for decision makers. Here we show the global spatiotemporal variation of the temperature SAO in the UTLS with GNSS RO and reanalysis data. The formation of the SAO is explained by an energy budget analysis. The results show that the SAO in the UTLS is partly modified by the SSTs according to model simulations. The results may provide an important source for seasonal predictions of the surface weather.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022, https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022, https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600, https://doi.org/10.5194/acp-22-1575-2022, https://doi.org/10.5194/acp-22-1575-2022, 2022
Short summary
Short summary
Antarctic stratospheric wave activities in September have been weakening significantly since the 2000s. Further analysis supports the finding that sea surface temperature (SST) trends over 20° N–70° S lead to the weakening of stratospheric wave activities, while the response of stratospheric wave activities to ozone recovery is weak. Thus, the SST trend should be taken into consideration when exploring the mechanism for the climate transition in the southern hemispheric stratosphere around 2000.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Nicholas A. Davis, Patrick Callaghan, Isla R. Simpson, and Simone Tilmes
Atmos. Chem. Phys., 22, 197–214, https://doi.org/10.5194/acp-22-197-2022, https://doi.org/10.5194/acp-22-197-2022, 2022
Short summary
Short summary
Specified dynamics schemes attempt to constrain the atmospheric circulation in a climate model to isolate the role of transport in chemical variability, evaluate model physics, and interpret field campaign observations. We show that the specified dynamics scheme in CESM2 erroneously suppresses convection and induces circulation errors that project onto errors in tracers, even using the most optimal settings. Development of a more sophisticated scheme is necessary for future progress.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Erika Brattich, Hongyu Liu, Bo Zhang, Miguel Ángel Hernández-Ceballos, Jussi Paatero, Darko Sarvan, Vladimir Djurdjevic, Laura Tositti, and Jelena Ajtić
Atmos. Chem. Phys., 21, 17927–17951, https://doi.org/10.5194/acp-21-17927-2021, https://doi.org/10.5194/acp-21-17927-2021, 2021
Short summary
Short summary
In this study we analyse the output of a chemistry and transport model together with observations of different meteorological and compositional variables to demonstrate the link between sudden stratospheric warming and transport of stratospheric air to the surface in the subpolar regions of Europe during the cold season. Our findings have particular implications for atmospheric composition since climate projections indicate more frequent sudden stratospheric warming under a warmer climate.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Short summary
The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Henning Franke, Ulrike Niemeier, and Daniele Visioni
Atmos. Chem. Phys., 21, 8615–8635, https://doi.org/10.5194/acp-21-8615-2021, https://doi.org/10.5194/acp-21-8615-2021, 2021
Short summary
Short summary
Stratospheric aerosol modification (SAM) can alter the quasi-biennial oscillation (QBO). Our simulations with two different models show that the characteristics of the QBO response are primarily determined by the meridional structure of the aerosol-induced heating. Therefore, the QBO response to SAM depends primarily on the location of injection, while injection type and rate act to scale the specific response. Our results have important implications for evaluating adverse side effects of SAM.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472, https://doi.org/10.5194/acp-21-7451-2021, https://doi.org/10.5194/acp-21-7451-2021, 2021
Short summary
Short summary
Reanalysis datasets combine observations and weather forecast simulations to create our best estimate of the state of the atmosphere and are important for climate monitoring. Differences in the technical details of these products mean that they may give different results. This study therefore examined how changes associated with the so-called Antarctic ozone hole are represented, which is one of the most important climate changes in recent decades, and showed that they were broadly consistent.
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, https://doi.org/10.5194/acp-21-6811-2021, 2021
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 21, 6627–6645, https://doi.org/10.5194/acp-21-6627-2021, https://doi.org/10.5194/acp-21-6627-2021, 2021
Short summary
Short summary
Inter-hemispheric transport is important for understanding atmospheric tracers because of the asymmetry in emissions between the Southern Hemisphere (SH) and Northern Hemisphere (NH). This study finds that the air masses from the NH extratropics to the atmosphere are about 5 times larger than those from the SH extratropics. The interplay between the Asian summer monsoon and westerly ducts triggers the cross-Equator transport from the NH to the SH in boreal summer and fall.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Short summary
We assess how consistently reanalyses represent potential vorticity (PV) among each other. PV helps describe dynamical processes in the stratosphere because it acts approximately as a tracer of the movement of air parcels; it is extensively used to identify the location of the tropopause and to identify and characterize the stratospheric polar vortex. Overall, PV from all reanalyses agrees well with the reanalysis ensemble mean.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Cited articles
Austin, J. and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, D16314, https://doi.org/10.1029/2005JD006907, 2006.
Bodeker, G. E., Struthers, H., and Connor, B. J.: Dynamical containment of A}ntarctic ozone depletion, {Geophys. Res. Lett., 29, https://doi.org/10.1029/2001GL014206, 2002.
Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615, https://doi.org/10.5194/acp-5-2603-2005, 2005.
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere, Springer, 2005.
Cariolle, D. and Teyssèdre, H.: A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations, Atmos. Chem. Phys., 7, 2183–2196, https://doi.org/10.5194/acp-7-2183-2007, 2007.
Chapman, S.: A theory of upper atmospheric ozone, Mem. Roy. Soc., 3, 103–109, 1930.
Charlton-Perez, A. J., Hawkins, E., Eyring, V., Cionni, I., Bodeker, G. E., Kinnison, D. E., Akiyoshi, H., Frith, S. M., Garcia, R., Gettelman, A., Lamarque, J. F., Nakamura, T., Pawson, S., Yamashita, Y., Bekki, S., Braesicke, P., Chipperfield, M. P., Dhomse, S., Marchand, M., Mancini, E., Morgenstern, O., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shibata, K., Shepherd, T. G., Tian, W., and Waugh, D. W.: The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century, Atmos. Chem. Phys., 10, 9473–9486, https://doi.org/10.5194/acp-10-9473-2010, 2010.
Chipperfield, M. P. and Pyle, J. A.: Model sensitivity studies of A}rctic ozone depletion, {J. Geophys. Res.-Atmos., 103, 28389–28403, 1998.
Groo{ß}, J.-U., Brautzsch, K., Pommrich, R., Solomon, S., and Müller, R.: Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?, Atmos. Chem. Phys., 11, 12217–12226, https://doi.org/10.5194/acp-11-12217-2011, 2011.
Harris, N. R. P., Lehmann, R., Rex, M., and von der Gathen, P.: A closer look at Arctic ozone loss and polar stratospheric clouds, Atmos. Chem. Phys., 10, 8499–8510, https://doi.org/10.5194/acp-10-8499-2010, 2010.
Hsu, J. and Prather, M. J.: Stratospheric variability and tropospheric ozone, J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD010942, 2009.
Huck, P. E., McDonald, A. J., Bodeker, G. E., and Struthers, H.: Interannual variability in A}ntarctic ozone depletion controlled by planetary waves and polar temperature, {Geophys. Res. Lett., 32, L13819, https://doi.org/10.1029/2005GL022943, 2005.
Huck, P., Tilmes, S., Bodeker, G., Randel, W., McDonald, A., and Nakajima, H.: An improved measure of ozone depletion in the A}ntarctic stratosphere, {J. Geophys. Res., 112, https://doi.org/10.1029/2006JD007860, 2007.
Jiang, Y. B., Yung, Y. L., and Zurek, R. W.: Decadal evolution of the A}ntarctic ozone hole, {J. Geophys. Res.-Atmos., 101, 8985–8999, 1996.
Livesey, N. J., Read, W. G., Froidevaux, L., Waters, J. W., Santee, M. L., Pumphrey, H. C., Wu, D. L., and Jarnot, R. F.: The UARS {M}icrowave L}imb {S}ounder version 5 data set: {T}heory, characterization, and validation, {J. Geophys. Res., 108, 4378, https://doi.org/10.1029/2002JD002273, 2003.
McLinden, C., Olsen, S., Hannegan, B., Wild, O., and Prather, M.: Stratospheric ozone in 3-{D} models: a simple chemistry and the cross-tropopause flux, J. Geophys. Res., 105, 14653–14665, 2000.
Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., and Schauffler, S. M.: When will the A}ntarctic ozone hole recover?, {Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL025232, 2006.
Santee, M. L., Manney, G. L., Waters, J. W., and Livesey, N. J.: Variations and climatology of C}l{O in the polar lower stratosphere from UARS {M}icrowave L}imb {S}ounder measurements, {J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002JD003335, 2003.
Sinnhuber, B.-M., Sheode, N., Sinnhuber, M., Chipperfield, M. P., and Feng, W.: The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study, Atmos. Chem. Phys., 9, 2863–2871, https://doi.org/10.5194/acp-9-2863-2009, 2009.
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999.
SPARC CCMVal: SPARC {R}eport on the Evaluation of Chemistry-Climate Models, WCRP-132, SPARC Report No. 5, 2010.
Uchino, O., Bojkov, R. D., Balis, D. S., Akagi, K., Hayashi, M., and Kajihara, R.: Essential characteristics of the A}ntarctic-spring ozone decline: {U}pdate to 1998, {Geophys. Res. Lett., 26, 1377–1380, 1999.
von Hobe, M., Groo{ß}, J.-U., Müller, R., Hrechanyy, S., Winkler, U., and Stroh, F.: A re-evaluation of the ClO/Cl2O2 equilibrium constant based on stratospheric in-situ observations, Atmos. Chem. Phys., 5, 693–702, https://doi.org/10.5194/acp-5-693-2005, 2005.
Waugh, D. W. and Randel, W. J.: Climatology of A}rctic and {A}ntarctic polar vortices using elliptical diagnostics, {J. Atmos. Sci., 56, 1594–1613, 1999.
WMO: Scientific {A}ssessment of ozone depletion: 2002, World Meteorological Organisation Global Ozone Research and Monitoring Project Report No. 47, 2003.
WMO: Scientific Assessment of Ozone Depletion: 2006, World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 50, Geneva, 2007.
WMO: Scientific Assessment of Ozone Depletion: 2010, World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 52, Geneva, 2011.
Altmetrics
Final-revised paper
Preprint