Articles | Volume 10, issue 13
Atmos. Chem. Phys., 10, 6271–6282, 2010
https://doi.org/10.5194/acp-10-6271-2010
Atmos. Chem. Phys., 10, 6271–6282, 2010
https://doi.org/10.5194/acp-10-6271-2010

  09 Jul 2010

09 Jul 2010

Technical Note: Vapor pressure estimation methods applied to secondary organic aerosol constituents from α-pinene oxidation: an intercomparison study

S. Compernolle et al.

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021,https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth
Manabu Shiraiwa and Ulrich Pöschl
Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021,https://doi.org/10.5194/acp-21-1565-2021, 2021
Short summary
Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Wildfire smoke-plume rise: a simple energy balance parameterization
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 21, 1407–1425, https://doi.org/10.5194/acp-21-1407-2021,https://doi.org/10.5194/acp-21-1407-2021, 2021
Short summary
Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021,https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary

Cited articles

Ambrose, D. and Walton, J.: Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols, Pure Appl. Chem., 61, 1395–1403, https://doi.org/10.1351/pac198961081395, 1989.
Balaban, A. T., Kier, L. B., and Joshi, N.: Correlations between chemical structure and normal boiling points of acyclic ethers, peroxides, acetals, and their sulfur analogs, J. Chem. Inf. Comput. Sci., 32, 237–244, https://doi.org/10.1021/ci00007a011, 1992.
Barley, M., Topping, D. O., Jenkin, M. E., and McFiggans, G.: Sensitivities of the absorptive partitioning model of secondary organic aerosol formation to the inclusion of water, Atmos. Chem. Phys., 9, 2919–2932, https://doi.org/10.5194/acp-9-2919-2009, 2009.
Barley, M. H. and McFiggans, G.: The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol, Atmos. Chem. Phys., 10, 749–767, https://doi.org/10.5194/acp-10-749-2010, 2010.
Bruckmann, P. W. and Willner, H.: Infrared Spectroscopic Study Of Peroxyacetyl Nitrate (Pan) And Its Decomposition Products, Environ. Sci. Technol., 17, 352–357, 1983.
Download
Altmetrics
Final-revised paper
Preprint