08 Feb 2010
08 Feb 2010
Quantitative assessment of Southern Hemisphere ozone in chemistry-climate model simulations
A. Yu. Karpechko et al.
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean
Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere
Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence
Inconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998
Reformulating the bromine alpha factor and equivalent effective stratospheric chlorine (EESC): evolution of ozone destruction rates of bromine and chlorine in future climate scenarios
Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979–2017
Seasonal impact of biogenic very short-lived bromocarbons on lowermost stratospheric ozone between 60° N and 60° S during the 21st century
Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery
The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate
Technical note: Intermittent reduction of the stratospheric ozone over northern Europe caused by a storm in the Atlantic Ocean
Evaluating stratospheric ozone and water vapor changes in CMIP6 models from 1850–2100
Possible implications of enhanced chlorofluorocarbon-11 concentrations on ozone
Technical note: Reanalysis of Aura MLS chemical observations
Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the amplitude of the 11-year solar cycle forcing
Reactive nitrogen (NOy) and ozone responses to energetic electron precipitation during Southern Hemisphere winter
Implication of strongly increased atmospheric methane concentrations for chemistry–climate connections
Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products
How robust are stratospheric age of air trends from different reanalyses?
Evaluation of CESM1 (WACCM) free-running and specified dynamics atmospheric composition simulations using global multispecies satellite data records
Chlorine nitrate in the atmosphere
Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour
Importance of seasonally resolved oceanic emissions for bromoform delivery from the tropical Indian Ocean and west Pacific to the stratosphere
The representation of solar cycle signals in stratospheric ozone – Part 2: Analysis of global models
Investigating the yield of H2O and H2 from methane oxidation in the stratosphere
Comparison of ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations of the Arctic winter 2009/2010 and 2010/2011 with Envisat/MIPAS and Aura/MLS observations
On the discrepancy of HCl processing in the core of the wintertime polar vortices
Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
Trend differences in lower stratospheric water vapour between Boulder and the zonal mean and their role in understanding fundamental observational discrepancies
On ozone trend detection: using coupled chemistry–climate simulations to investigate early signs of total column ozone recovery
Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery
The maintenance of elevated active chlorine levels in the Antarctic lower stratosphere through HCl null cycles
Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century
Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations
Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry–climate model
Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter
Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP
A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core
An assessment of ozone mini-hole representation in reanalyses over the Northern Hemisphere
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry–climate model simulations
Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
Antarctic ozone depletion between 1960 and 1980 in observations and chemistry–climate model simulations
Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations
The role of methane in projections of 21st century stratospheric water vapour
Future Arctic ozone recovery: the importance of chemistry and dynamics
Atmospheric changes caused by galactic cosmic rays over the period 1960–2010
Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality
Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere
Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble
Comparison of the CMAM30 data set with ACE-FTS and OSIRIS: polar regions
Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, Michael Ponater, and Markus Kunze
Atmos. Chem. Phys., 21, 731–754, https://doi.org/10.5194/acp-21-731-2021, https://doi.org/10.5194/acp-21-731-2021, 2021
Short summary
Short summary
This study investigates the impact of strongly increased atmospheric methane mixing ratios on the Earth's climate. An interactive model system including atmospheric dynamics, chemistry, and a mixed-layer ocean model is used to analyse the effect of doubled and quintupled methane mixing ratios. We assess feedbacks on atmospheric chemistry and changes in the stratospheric circulation, focusing on the impact of tropospheric warming, and their relevance for the model's climate sensitivity.
Markus Kilian, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 20, 11697–11715, https://doi.org/10.5194/acp-20-11697-2020, https://doi.org/10.5194/acp-20-11697-2020, 2020
Short summary
Short summary
After the volcanic eruption of Mt Pinatubo in 1991, ozone decreased in the tropics and increased in the midlatitudes and polar regions for 1 year. The change in the ozone column is solely a result of the volcanic heating, followed by an ozone decrease in the higher latitudes. This is caused by the volcanic aerosol, which changes the heterogeneous chemistry and thus the catalytic ozone loss cycles. Vertical transport of water vapour is enhanced by volcanic heating and increases methane.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
William T. Ball, Gabriel Chiodo, Marta Abalos, Justin Alsing, and Andrea Stenke
Atmos. Chem. Phys., 20, 9737–9752, https://doi.org/10.5194/acp-20-9737-2020, https://doi.org/10.5194/acp-20-9737-2020, 2020
Short summary
Short summary
Recent lower stratospheric ozone decreases remain unexplained. We show that chemistry–climate models are not generally able to reproduce mid-latitude ozone and water vapour changes. Our analysis of observations provides evidence that climate change may be responsible for the ozone trends. While model projections suggest that extratropical ozone should recover by 2100, our study raises questions about their efficacy in simulating lower stratospheric changes in this region.
J. Eric Klobas, Debra K. Weisenstein, Ross J. Salawitch, and David M. Wilmouth
Atmos. Chem. Phys., 20, 9459–9471, https://doi.org/10.5194/acp-20-9459-2020, https://doi.org/10.5194/acp-20-9459-2020, 2020
Short summary
Short summary
The rates of important ozone-destroying chemical reactions in the stratosphere are likely to change in the future. We employ a computer model to evaluate how the rates of ozone destruction by chlorine and bromine may evolve in four climate change scenarios with the introduction of the eta factor. We then show how these changing rates will impact the ozone-depleting power of the stratosphere with a new metric known as Equivalent Effective Stratospheric Benchmark-normalized Chlorine (EESBnC).
Yajuan Li, Martyn P. Chipperfield, Wuhu Feng, Sandip S. Dhomse, Richard J. Pope, Faquan Li, and Dong Guo
Atmos. Chem. Phys., 20, 8627–8639, https://doi.org/10.5194/acp-20-8627-2020, https://doi.org/10.5194/acp-20-8627-2020, 2020
Short summary
Short summary
The Tibetan Plateau (TP) exerts important thermal and dynamical effects on atmospheric circulation, climate change as well as the ozone distribution. In this study, we use updated observations and model simulations to investigate the ozone trends and variations over the TP. Wintertime TP ozone variations are largely controlled by tropical to high-latitude transport processes, whereas summertime concentrations are a combined effect of photochemical decay and tropical processes.
Javier Alejandro Barrera, Rafael Pedro Fernandez, Fernando Iglesias-Suarez, Carlos Alberto Cuevas, Jean-Francois Lamarque, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 8083–8102, https://doi.org/10.5194/acp-20-8083-2020, https://doi.org/10.5194/acp-20-8083-2020, 2020
Short summary
Short summary
The inclusion of biogenic very short-lived bromocarbons (VSLBr) in the CAM-chem model improves the model–satellite agreement of the total ozone columns at mid-latitudes and drives a persistent hemispheric asymmetry in lowermost stratospheric ozone loss. The seasonal VSLBr impact on mid-latitude lowermost stratospheric ozone is influenced by the heterogeneous reactivation processes of inorganic chlorine on ice crystals, with a clear increase in ozone destruction during spring and winter.
James Keeble, N. Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Paul T. Griffiths, and John A. Pyle
Atmos. Chem. Phys., 20, 7153–7166, https://doi.org/10.5194/acp-20-7153-2020, https://doi.org/10.5194/acp-20-7153-2020, 2020
Short summary
Short summary
The Montreal Protocol was agreed in 1987 to limit and then stop the production of man-made CFCs, which destroy stratospheric ozone. As a result, the atmospheric abundances of CFCs are now declining in the atmosphere. However, the atmospheric abundance of CFC-11 is not declining as expected under complete compliance with the Montreal Protocol. Using the UM-UKCA chemistry–climate model, we explore the impact of future unregulated production of CFC-11 on ozone recovery.
Hans Brenna, Steffen Kutterolf, Michael J. Mills, and Kirstin Krüger
Atmos. Chem. Phys., 20, 6521–6539, https://doi.org/10.5194/acp-20-6521-2020, https://doi.org/10.5194/acp-20-6521-2020, 2020
Short summary
Short summary
The Los Chocoyos supereruption (84 000 years ago) in Guatemala was one of the largest volcanic events of the last 100 000 years. This eruption released enormous amounts of sulfur, which cooled the climate, as well as chlorine and bromine, which destroyed the ozone in the stratosphere. We have simulated this eruption by using an advanced chemistry–climate model. We found a collapse in the ozone layer lasting more than 10 years, increased surface–UV radiation, and a 30-year climate-cooling period.
Mikhail Sofiev, Rostislav Kouznetsov, Risto Hänninen, and Viktoria F. Sofieva
Atmos. Chem. Phys., 20, 1839–1847, https://doi.org/10.5194/acp-20-1839-2020, https://doi.org/10.5194/acp-20-1839-2020, 2020
Short summary
Short summary
An episode of anomalously low ozone concentrations in the stratosphere over northern Europe occurred on 3–5 November 2018. The 30 % reduction of the ozone layer was predicted by the global chemistry-transport model of the Finnish Meteorological Institute driven by weather forecasts of ECMWF. The reduction was subsequently observed by ozone monitoring satellites. The episode was caused by a storm in the northern Atlantic, which uplifted air from the troposphere to stratosphere.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, David Cugnet, Gokhan Danabasoglu, Makoto Deushi, Larry W. Horowitz, Lijuan Li, Martine Michou, Michael J. Mills, Pierre Nabat, Sungsu Park, and Tongwen Wu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1202, https://doi.org/10.5194/acp-2019-1202, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system, and changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850-2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Martin Dameris, Patrick Jöckel, and Matthias Nützel
Atmos. Chem. Phys., 19, 13759–13771, https://doi.org/10.5194/acp-19-13759-2019, https://doi.org/10.5194/acp-19-13759-2019, 2019
Short summary
Short summary
A chemistry–climate model (CCM) study is performed, investigating the consequences of a constant CFC-11 surface mixing ratio for stratospheric ozone in the future. The total column ozone is particularly affected in both polar regions in winter and spring. It turns out that the calculated ozone changes, especially in the upper stratosphere, are smaller than expected. In this attitudinal region the additional ozone depletion due to the catalysis by reactive chlorine is partly compensated for.
Quentin Errera, Simon Chabrillat, Yves Christophe, Jonas Debosscher, Daan Hubert, William Lahoz, Michelle L. Santee, Masato Shiotani, Sergey Skachko, Thomas von Clarmann, and Kaley Walker
Atmos. Chem. Phys., 19, 13647–13679, https://doi.org/10.5194/acp-19-13647-2019, https://doi.org/10.5194/acp-19-13647-2019, 2019
Short summary
Short summary
BRAM2 is a 13-year reanalysis of the chemical composition from the upper troposphere to the lower mesosphere based on the assimilation of the Microwave Limb Sounder observations where eight species are assimilated: O3, H2O, N2O, HNO3, HCl, ClO, CH3Cl and CO. BRAM2 agrees generally well with independent observations in the middle stratosphere, the polar vortex and the upper troposphere–lower stratosphere but also shows several issues in the model and in the observations.
Ewa M. Bednarz, Amanda C. Maycock, Peter Braesicke, Paul J. Telford, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 9833–9846, https://doi.org/10.5194/acp-19-9833-2019, https://doi.org/10.5194/acp-19-9833-2019, 2019
Short summary
Short summary
The atmospheric response to the amplitude of 11-year solar cycle in UM-UKCA is separated into the contributions from changes in direct radiative heating and photolysis rates, and the results compared with a control case with both effects included. We find that while the tropical responses are largely additive, this is not necessarily the case in the high latitudes. We suggest that solar-induced changes in ozone are important for modulating the SH dynamical response to the 11-year solar cycle.
Pavle Arsenovic, Alessandro Damiani, Eugene Rozanov, Bernd Funke, Andrea Stenke, and Thomas Peter
Atmos. Chem. Phys., 19, 9485–9494, https://doi.org/10.5194/acp-19-9485-2019, https://doi.org/10.5194/acp-19-9485-2019, 2019
Short summary
Short summary
Low-energy electrons (LEE) are the dominant source of odd nitrogen, which destroys ozone, in the mesosphere and stratosphere in polar winter in the geomagnetically active periods. However, the observed stratospheric ozone anomalies can be reproduced only when accounting for both low- and middle-range energy electrons (MEE) in the chemistry-climate model. Ozone changes may induce further dynamical and thermal changes in the atmosphere. We recommend including both LEE and MEE in climate models.
Franziska Winterstein, Fabian Tanalski, Patrick Jöckel, Martin Dameris, and Michael Ponater
Atmos. Chem. Phys., 19, 7151–7163, https://doi.org/10.5194/acp-19-7151-2019, https://doi.org/10.5194/acp-19-7151-2019, 2019
Short summary
Short summary
The atmospheric concentrations of the anthropogenic greenhouse gas methane are predicted to rise in the future. In this paper we investigate how very strong methane concentrations will impact the atmosphere. We analyse two experiments, one with doubled and one with quintupled methane concentrations and focus on the rapid atmospheric changes before the ocean adjusts to the induced
forcing. In particular these are changes in temperature, ozone, the hydroxyl radical and stratospheric water vapour.
Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese
Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, https://doi.org/10.5194/acp-19-6509-2019, 2019
Short summary
Short summary
This paper examines the annual and interannual variations as well as long-term trend of modeled stratospheric water vapor with a Lagrangian chemical transport model driven by ERA-I, MERRA-2 and JRA-55. We find reasonable consistency among the annual cycle, QBO and the variabilities induced by ENSO and volcanic aerosols. The main discrepancies are linked to the differences in reanalysis upwelling rates in the lower stratosphere. The trends are sensitive to the reanalyses that drives the model.
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary
Short summary
We analyse the change in the circulation of the middle atmosphere based on current generation meteorological reanalysis data sets. We find that long-term changes from 1989 to 2015 are similar for the chosen reanalyses, mainly resembling the forced response in climate model simulations to climate change. For shorter periods circulation changes are less robust, and the representation of decadal variability appears to be a major uncertainty for modelling the circulation of the middle atmosphere.
Lucien Froidevaux, Douglas E. Kinnison, Ray Wang, John Anderson, and Ryan A. Fuller
Atmos. Chem. Phys., 19, 4783–4821, https://doi.org/10.5194/acp-19-4783-2019, https://doi.org/10.5194/acp-19-4783-2019, 2019
Short summary
Short summary
This work evaluates two versions of a 3-D global model of upper-atmospheric composition for recent decades. The two versions differ mainly in their dynamical (wind) constraints. Model–data differences, variability, and trends in five gases (ozone, H2O, HCl, HNO3, and N2O) are compared. While the match between models and observations is impressive, a few areas of discrepancy are noted. This work also updates trends in composition based on recent satellite-based measurements (through 2018).
Thomas von Clarmann and Sören Johansson
Atmos. Chem. Phys., 18, 15363–15386, https://doi.org/10.5194/acp-18-15363-2018, https://doi.org/10.5194/acp-18-15363-2018, 2018
Short summary
Short summary
This review article compiles the characteristics of the gas chlorine nitrate and discusses its role in atmospheric chemistry. Chlorine nitrate is a reservoir of both stratospheric chlorine and nitrogen. Formation and sink processes are discussed, as well as spectral features and spectroscopic studies. Remote sensing, fluorescence, and mass spectroscopic measurement techniques are introduced, and global distributions and the annual cycle are discussed in the context of chlorine de-/activation.
Laura Thölix, Alexey Karpechko, Leif Backman, and Rigel Kivi
Atmos. Chem. Phys., 18, 15047–15067, https://doi.org/10.5194/acp-18-15047-2018, https://doi.org/10.5194/acp-18-15047-2018, 2018
Short summary
Short summary
We analyse the impact of water vapour (WV) on Arctic ozone loss and find the strongest impact during intermediately cold stratospheric winters when chlorine activation increases with increasing PSCs and WV. In colder winters the impact is limited because chlorine activation becomes complete at relatively low WV values, so further addition of WV does not affect ozone loss. Our results imply that improved simulations of WV are needed for more reliable projections of ozone layer recovery.
Alina Fiehn, Birgit Quack, Irene Stemmler, Franziska Ziska, and Kirstin Krüger
Atmos. Chem. Phys., 18, 11973–11990, https://doi.org/10.5194/acp-18-11973-2018, https://doi.org/10.5194/acp-18-11973-2018, 2018
Short summary
Short summary
Oceanic very short-lived substances, VSLS, contribute to stratospheric halogen loading and ozone depletion. We created bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific and modeled the atmospheric transport of bromoform with the particle dispersion model FLEXPART/ERA-Interim. Results underline that the seasonal and regional stratospheric bromine entrainment critically depends on the seasonality and spatial distribution of the VSLS emissions.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Franziska Frank, Patrick Jöckel, Sergey Gromov, and Martin Dameris
Atmos. Chem. Phys., 18, 9955–9973, https://doi.org/10.5194/acp-18-9955-2018, https://doi.org/10.5194/acp-18-9955-2018, 2018
Short summary
Short summary
It is frequently assumed that one methane molecule produces two water molecules. Applying various modeling concepts, we find that the yield of water from methane is vertically not constantly 2. In the upper stratosphere and lower mesosphere, transport of intermediate H2 molecules even led to a yield greater than 2. We conclude that for a realistic chemical source of stratospheric water vapor, one must also take other sources (H2), intermediates and the chemical removal of water into account.
Farahnaz Khosrawi, Oliver Kirner, Gabriele Stiller, Michael Höpfner, Michelle L. Santee, Sylvia Kellmann, and Peter Braesicke
Atmos. Chem. Phys., 18, 8873–8892, https://doi.org/10.5194/acp-18-8873-2018, https://doi.org/10.5194/acp-18-8873-2018, 2018
Short summary
Short summary
An extensive assessment of the performance of the chemistry–climate model EMAC is given for Arctic winters 2009/2010 and 2010/2011. The EMAC simulations are compared to satellite observations. The comparisons between EMAC simulations and satellite observations show that model and measurements compare well for these two Arctic winters. However, differences between model and observations are found that need improvements in the model in the future.
Jens-Uwe Grooß, Rolf Müller, Reinhold Spang, Ines Tritscher, Tobias Wegner, Martyn P. Chipperfield, Wuhu Feng, Douglas E. Kinnison, and Sasha Madronich
Atmos. Chem. Phys., 18, 8647–8666, https://doi.org/10.5194/acp-18-8647-2018, https://doi.org/10.5194/acp-18-8647-2018, 2018
Short summary
Short summary
We investigate a discrepancy between model simulations and observations of HCl in the dark polar stratosphere. In early winter, the less-well-studied period of the onset of chlorine activation, observations show a much faster depletion of HCl than simulations of three models. This points to some unknown process that is currently not represented in the models. Various hypotheses for potential causes are investigated that partly reduce the discrepancy. The impact on polar ozone depletion is low.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Stefan Lossow, Dale F. Hurst, Karen H. Rosenlof, Gabriele P. Stiller, Thomas von Clarmann, Sabine Brinkop, Martin Dameris, Patrick Jöckel, Doug E. Kinnison, Johannes Plieninger, David A. Plummer, Felix Ploeger, William G. Read, Ellis E. Remsberg, James M. Russell, and Mengchu Tao
Atmos. Chem. Phys., 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018, https://doi.org/10.5194/acp-18-8331-2018, 2018
Short summary
Short summary
Trend estimates of lower stratospheric H2O derived from the FPH observations at Boulder and a merged zonal mean satellite data set clearly differ for the time period from the late 1980s to 2010. We investigate if a sampling bias between Boulder and the zonal mean around the Boulder latitude can explain these trend discrepancies. Typically they are small and not sufficient to explain the trend discrepancies in the observational database.
James Keeble, Hannah Brown, N. Luke Abraham, Neil R. P. Harris, and John A. Pyle
Atmos. Chem. Phys., 18, 7625–7637, https://doi.org/10.5194/acp-18-7625-2018, https://doi.org/10.5194/acp-18-7625-2018, 2018
Short summary
Short summary
2017 marks the 30th anniversary of the Montreal Protocol, which was implemented to protect the stratospheric ozone layer from the harmful effects of synthetic ozone depleting substances. Since the late 1990s atmospheric concentrations of these species have begun to decline, and as a result ozone concentrations are expected to increase. In this study we use an ensemble of chemistry–climate simulations to investigate recent ozone trends and search for early signs of ozone recovery.
Stefanie Meul, Ulrike Langematz, Philipp Kröger, Sophie Oberländer-Hayn, and Patrick Jöckel
Atmos. Chem. Phys., 18, 7721–7738, https://doi.org/10.5194/acp-18-7721-2018, https://doi.org/10.5194/acp-18-7721-2018, 2018
Short summary
Short summary
Using a chemistry--climate model future changes in the stratosphere-to-troposphere ozone mass flux, their drivers, and the future distribution of stratospheric ozone in the troposphere are investigated. In an extreme greenhouse gas (GHG) scenario, the global influx of stratospheric ozone into the troposphere is projected to grow between 2000 and 2100 by 53%. The increase is due to the recovery of stratospheric ozone owing to declining halogens and GHG induced circulation and temperature changes.
Rolf Müller, Jens-Uwe Grooß, Abdul Mannan Zafar, Sabine Robrecht, and Ralph Lehmann
Atmos. Chem. Phys., 18, 2985–2997, https://doi.org/10.5194/acp-18-2985-2018, https://doi.org/10.5194/acp-18-2985-2018, 2018
Short summary
Short summary
This paper revisits the chemistry leading to strong ozone depletion in the Antarctic. We focus on the heart of the ozone layer in the lowermost stratosphere in the core of the vortex. We argue that chemical cycles (referred to as HCl null cycles) that have hitherto been largely neglected counteract the deactivation of chlorine and are therefore key to ozone depletion in the core of the Antarctic vortex. The key process to full activation of chlorine is the photolysis of formaldehyde.
Antara Banerjee, Amanda C. Maycock, and John A. Pyle
Atmos. Chem. Phys., 18, 2899–2911, https://doi.org/10.5194/acp-18-2899-2018, https://doi.org/10.5194/acp-18-2899-2018, 2018
Short summary
Short summary
This study quantifies the radiative forcing (RF) of future ozone changes. Under climate change, even the sign of the ozone RF can change depending on the greenhouse gas emissions scenario followed. Stratosphere–troposphere exchange plays an important role in driving ozone RF due to reductions in ozone-depleting substances (ODSs) and increases in methane abundance. These could negate the ozone-derived climate benefits of air-quality controls on non-methane ozone precursor emissions.
Olaf Morgenstern, Kane A. Stone, Robyn Schofield, Hideharu Akiyoshi, Yousuke Yamashita, Douglas E. Kinnison, Rolando R. Garcia, Kengo Sudo, David A. Plummer, John Scinocca, Luke D. Oman, Michael E. Manyin, Guang Zeng, Eugene Rozanov, Andrea Stenke, Laura E. Revell, Giovanni Pitari, Eva Mancini, Glauco Di Genova, Daniele Visioni, Sandip S. Dhomse, and Martyn P. Chipperfield
Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018, https://doi.org/10.5194/acp-18-1091-2018, 2018
Short summary
Short summary
We assess how ozone as simulated by a group of chemistry–climate models responds to variations in man-made climate gases and ozone-depleting substances. We find some agreement, particularly in the middle and upper stratosphere, but also considerable disagreement elsewhere. Such disagreement affects the reliability of future ozone projections based on these models, and also constitutes a source of uncertainty in climate projections using prescribed ozone derived from these simulations.
James Keeble, Ewa M. Bednarz, Antara Banerjee, N. Luke Abraham, Neil R. P. Harris, Amanda C. Maycock, and John A. Pyle
Atmos. Chem. Phys., 17, 13801–13818, https://doi.org/10.5194/acp-17-13801-2017, https://doi.org/10.5194/acp-17-13801-2017, 2017
Short summary
Short summary
In this study we explore the chemical and transport processes controlling ozone abundances in different altitude regions in the tropics for the present day and how these processes may change in the future in order to determine when total-column ozone values in the tropics will recover to pre-1980s values following the implementation of the Montreal Protocol and its subsequent amendments, which imposed bans on the use and emissions of CFCs.
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Ingo Wohltmann, Ralph Lehmann, and Markus Rex
Atmos. Chem. Phys., 17, 10535–10563, https://doi.org/10.5194/acp-17-10535-2017, https://doi.org/10.5194/acp-17-10535-2017, 2017
Short summary
Short summary
We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere, and of the relevant reaction pathways and cycles. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.
Luis F. Millán and Gloria L. Manney
Atmos. Chem. Phys., 17, 9277–9289, https://doi.org/10.5194/acp-17-9277-2017, https://doi.org/10.5194/acp-17-9277-2017, 2017
Short summary
Short summary
An ozone mini-hole is a synoptic-scale region with strongly decreased total column ozone resulting from dynamical processes. Using total column measurements from the Ozone Monitoring Instrument and ozone profile measurements from the Microwave Limb Sounder, we evaluate the accuracy of mini-hole representation in five reanalyses.
Rafael P. Fernandez, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 17, 1673–1688, https://doi.org/10.5194/acp-17-1673-2017, https://doi.org/10.5194/acp-17-1673-2017, 2017
Short summary
Short summary
The inclusion of biogenic very-short lived bromine (VSLBr) in a chemistry-climate model produces an expansion of the ozone hole area of ~ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the reduction of anthropogenic CFCs and halons. The maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, but does not introduce a significant delay of the modelled ozone return date to 1980 October levels.
Chaitri Roy, Suvarna Fadnavis, Rolf Müller, D. C. Ayantika, Felix Ploeger, and Alexandru Rap
Atmos. Chem. Phys., 17, 1297–1311, https://doi.org/10.5194/acp-17-1297-2017, https://doi.org/10.5194/acp-17-1297-2017, 2017
Short summary
Short summary
In the monsoon season, Asian NOx emissions are rapidly transported to the UTLS and can impact ozone in the UTLS. From chemistry–climate model simulations, we show that increasing Asian NOx emissions have enhanced ozone radiative forcing over Southeast Asia, which leads to significant warming over the Tibetan Plateau and increase precipitation over India. However, a further increase in NOx emissions elicited negative precipitation due to reversal of monsoon Hadley circulation.
Tamás Kovács, Wuhu Feng, Anna Totterdill, John M. C. Plane, Sandip Dhomse, Juan Carlos Gómez-Martín, Gabriele P. Stiller, Florian J. Haenel, Christopher Smith, Piers M. Forster, Rolando R. García, Daniel R. Marsh, and Martyn P. Chipperfield
Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, https://doi.org/10.5194/acp-17-883-2017, 2017
Short summary
Short summary
Sulfur hexafluoride (SF6) is a very potent greenhouse gas, which is present in the atmosphere only through its industrial use, for example as an electrical insulator. To estimate accurately the impact of SF6 emissions on climate we need to know how long it persists in the atmosphere before being removed. Previous estimates of the SF6 lifetime indicate a large degree of uncertainty. Here we use a detailed atmospheric model to calculate a current best estimate of the SF6 lifetime.
Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke
Atmos. Chem. Phys., 16, 15619–15627, https://doi.org/10.5194/acp-16-15619-2016, https://doi.org/10.5194/acp-16-15619-2016, 2016
Short summary
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
Katherine M. Saad, Debra Wunch, Nicholas M. Deutscher, David W. T. Griffith, Frank Hase, Martine De Mazière, Justus Notholt, David F. Pollard, Coleen M. Roehl, Matthias Schneider, Ralf Sussmann, Thorsten Warneke, and Paul O. Wennberg
Atmos. Chem. Phys., 16, 14003–14024, https://doi.org/10.5194/acp-16-14003-2016, https://doi.org/10.5194/acp-16-14003-2016, 2016
Short summary
Short summary
Current approaches to constrain the global methane budget assimilate total column measurements into models, but model biases can impact results. We use tropospheric methane columns to evaluate model transport errors and identify a seasonal time lag in the Northern Hemisphere troposphere masked by stratospheric compensating effects. We find systematic biases in the stratosphere will alias into model-derived emissions estimates, especially those in the high Northern latitudes that vary seasonally.
Laura E. Revell, Andrea Stenke, Eugene Rozanov, William Ball, Stefan Lossow, and Thomas Peter
Atmos. Chem. Phys., 16, 13067–13080, https://doi.org/10.5194/acp-16-13067-2016, https://doi.org/10.5194/acp-16-13067-2016, 2016
Short summary
Short summary
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the Earth's radiative balance. We have analysed trends in stratospheric water vapour through the 21st century as simulated by a coupled chemistry–climate model following a range of greenhouse gas emission scenarios. We have also quantified the contribution that methane oxidation in the stratosphere makes to projected water vapour trends.
Ewa M. Bednarz, Amanda C. Maycock, N. Luke Abraham, Peter Braesicke, Olivier Dessens, and John A. Pyle
Atmos. Chem. Phys., 16, 12159–12176, https://doi.org/10.5194/acp-16-12159-2016, https://doi.org/10.5194/acp-16-12159-2016, 2016
Short summary
Short summary
Future trends in springtime Arctic ozone, and its chemical dynamical and radiative drivers, are analysed using a 7-member ensemble of chemistry–climate model integrations, allowing for a detailed assessment of interannual variability. Despite the future long-term recovery of Arctic ozone, there is large interannual variability and episodic reductions in springtime Arctic column ozone. Halogen chemistry will become a smaller but non-negligible driver of Arctic ozone variability over the century.
Charles H. Jackman, Daniel R. Marsh, Douglas E. Kinnison, Christopher J. Mertens, and Eric L. Fleming
Atmos. Chem. Phys., 16, 5853–5866, https://doi.org/10.5194/acp-16-5853-2016, https://doi.org/10.5194/acp-16-5853-2016, 2016
Short summary
Short summary
Two global models were used to investigate the impact of galactic cosmic ray (GCRs) on the atmosphere over the 1960-2010 time period. The primary impact of the naturally occurring GCRs on ozone was found to be due to their production of NOx and this impact varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. GCR-caused decreases of annual average global total ozone were computed to be 0.2 % or less.
Peer Johannes Nowack, Nathan Luke Abraham, Peter Braesicke, and John Adrian Pyle
Atmos. Chem. Phys., 16, 4191–4203, https://doi.org/10.5194/acp-16-4191-2016, https://doi.org/10.5194/acp-16-4191-2016, 2016
Short summary
Short summary
Various forms of solar radiation management (SRM) have been proposed to counteract man-made climate change. However, all these countermeasures could have unintended side-effects. We add a novel perspective to this discussion by showing how atmospheric ozone changes under solar geoengineering could affect UV exposure and air pollution. This would have implications for human health and ecology. Atmospheric composition changes are therefore important to consider in the evaluation of any SRM scheme.
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016, https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary
Short summary
This paper describes the set-up and evaluation of the Australian Community Climate and Earth System Simulator – chemistry-climate model.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
F. Iglesias-Suarez, P. J. Young, and O. Wild
Atmos. Chem. Phys., 16, 343–363, https://doi.org/10.5194/acp-16-343-2016, https://doi.org/10.5194/acp-16-343-2016, 2016
D. Pendlebury, D. Plummer, J. Scinocca, P. Sheese, K. Strong, K. Walker, and D. Degenstein
Atmos. Chem. Phys., 15, 12465–12485, https://doi.org/10.5194/acp-15-12465-2015, https://doi.org/10.5194/acp-15-12465-2015, 2015
Short summary
Short summary
The CMAM30 data set takes a chemistry-climate model and relaxes the dynamics to reanalysis, which can then provide chemistry fields not available from the reanalysis data set. This paper addresses this gap by comparing temperature, water vapour, ozone and methane to satellite data to determine and document any biases in the model fields. The lack of ozone destruction and dehydration in the SH polar vortex is shown to be due to the treatment of polar stratosphere clouds in the model.
Cited articles
Akiyoshi, H., Sugita, T., Kanzawa, H., and Kawamoto, N.: Ozone perturbations in the Arctic summer lower stratosphere as a reflection of NOx chemistry and planetary scale wave activity, J. Geophys. Res., 109, D03304, https://doi.org/10.1029/2003JD003632, 2004.
Austin, J., Wilson, R. J., Li, F., and Vomel, H.: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations, J. Atmos. Sci., 64, 905–921, 2006.
Bracegirdle, T. J., Connolley, W. M., and Turner J.: Antarctic climate change over the twenty first century, J. Geophys. Res., 113, D03103, https://doi.org/10.1029/2007JD008933, 2008.
Brühl, C., Crutzen, P. J., and Groo{ß}, J. U.: High-latitude, summertime NOx activation and seasonal ozone decline in the lower stratosphere: Model calculations based on observations by HALOE on UARS, J. Geophys. Res., 103, 3587–3597, 1998.
Cai, W., Shi, G., and Li, Y.: Multidecadal fluctuations of winter rainfall over southwest Western Australia simulated in the CSIRO Mark 3 coupled model. Geophys. Res. Lett., 32, L12701, https://doi.org/10.1029/2005GL022712, 2005.
Connolley, W. M. and Bracegirdle, T. J.: An Antarctic assessment of IPCC AR4 climate models, Geophys. Res. Lett., 34, L22505, https://doi.org/10.1029/2007GL031648, 2007.
Dall'Amico, M., Gray, L. J., Rosenlof, K. H., Scaife, A. A., Shine, K. P., and Stott, P. A.: Stratospheric temperature trends: impact of ozone variability and the QBO, Clim. Dynam., 34(2–3), 381–398, https://doi.org/10.1007/s00382-009-0604-x, 2010.
Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt, C., Stenke, A., Steil, B., Brühl, C., and Giorgetta, M.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcings, Atmos. Chem. Phys., 5, 2121–2145, 2005.
Egorova, T., Rozanov, E., Zubov, V., Manzini, E., Schmutz, W., and Peter, T.: Chemistry-climate model SOCOL: a validation of the present-day climatology, Atmos. Chem. Phys., 5, 1557–1576, 2005.
Eyring, V., Butchart, N., Waugh, D. W., et al.: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, https://doi.org/10.1029/2006JD007327, 2006.
Eyring, V., Waugh, D. W., Bodeker, G. E., et al.: Multimodel projections of stratospheric ozone in the 21st century, J. Geophys. Res., 112, D16303, https://doi.org/10.1029/2006JD008332, 2007.
Fomichev, V. I., Jonsson, A. I., de Grandpr'e, J., et al.: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model, J. Climate, 20, 1121–1144, 2007.
Fyfe, J. C., Boer, G., and Flato, G.: The Arctic and Antarctic Oscillations and their projected changes under global warming, Geophys. Res. Lett., 26, 1601–1604, 1999.
Garcia, R. R., Marsh, D., Kinnison, D., Boville, B., and Sassi, F.: Simulations of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485, 2007.
Gillett, N. P. and Thompson, D. W. J.: Simulation of recent Southern Hemisphere climate change, Science, 302, 273–275, 2003.
Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res., 113, D06104, https://doi.org/10.1029/2007JD008972, 2008.
Hassler, B., Bodeker, G. E., and Dameris, M.: Technical Note: A new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements, Atmos. Chem. Phys., 8, 5403–5421, 2008
Hassler, B., Bodeker, G. E., Cionni, I., and Dameris, M.: A vertically resolved, monthly mean, ozone database from 1979 to 2100 for constraining global climate model simulations, International Journal of Remote Sensing, Int. J. Remote Sens., 30(15), 4009-4018, https://doi.org/10.1080/01431160902821874, 2009.
Hu, Y. and Tung, K. K.: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode, J. Climate, 15, 1659–1673, 2002.
Hu, Y., Tung, K. K., and Liu, J.: A Closer Comparison of Early and Late-Winter Atmospheric Trends in the Northern Hemisphere, J. Climate, 18, 3204–3216, 2005.
Jourdain, L., Bekki, S., Lott, F., and Lefèvre, F.: The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999, Ann. Geophys., 26, 1391–1413, 2008.
Karpetchko, A. and Nikulin, G.: Influence of early winter upward wave activity flux on midwinter circulation in the stratosphere and troposphere, J. Climate, 17, 4443–4452, 2004.
Marshall, G. J., Orr, A., van Lipzig, N. P. M., and King, J. C.: The Impact of a Changing Southern Hemisphere Annular Mode on Antarctic Peninsula Summer Temperatures, J. Climate, 19, 5388–5404, 2006.
Miller, R. L., Schmidt, G. A., and Shindell, D. T.: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models, J. Geophys. Res., 111, D18101, https://doi.org/10.1029/2005JD006323, 2006.
Pawson, S., Stolarski, R. S., Douglass, A. R., Newman, P. A., Nielsen, J. E., Frith, S. M., and Gupta, M. L.: Goddard Earth Observing System Chemistry-ClimateModel Simulations of Stratospheric Ozone-Temperature Coupling Between 1950 and 2005, J. Geophys. Res., 113, D12103, https://doi.org/10.1029/2007JD009511, 2008.
Pitari, G., Mancini, E., Rizi, V., and Shindell, D.: Feedback of future climate and sulfur emission changes an stratospheric aerosols and ozone, J. Atmos. Sci., 59, 414–440, 2002.
Perlwitz, J., Pawson, S., Fogt, R. L., Nielsen, J. E., and Neff, W. D.: Impact of stratospheric ozone hole recovery on Antarctic climate, Geophys. Res. Lett., 35, L08714, https://doi.org/10.1029/2008GL033317, 2008.
Randel, W. J. and Wu F.: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion, J. Climate, 12, 1467–1479, 1999.
Randel, W. J. and Wu F.: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data, J. Geophys. Res., 112, D06313, https://doi.org/10.1029/2006JD007339, 2007.
Reichler, T. and Kim, J.: How well do coupled models simulate today's climate?, B. Am. Meteorol. Soc., 89, 303–311, 2008.
Schraner, M., Rozanov, E., Schnadt Poberaj, C., Kenzelmann, P., Fischer, A. M., Zubov, V., Luo, B. P., Hoyle, C. R., Egorova, T., Fueglistaler, S., Bronnimann, S., Schmutz, W., and Peter, T.: Technical Note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes, Atmos. Chem. Phys., 8, 5957–5974, 2008.
Shibata, K. and Deushi, M.: Partitioning between resolved wave forcing and unresolved gravity wave forcing to the quasi-biennial oscillation as revealed with a coupled chemistry-climate model, Geophys. Res. Lett., L12820, https://doi.org/10.1029/2005GL022885, 2005.
Son, S.-W., Polvani, L. M., Waugh, D. W., Akiyoshi, H., Garcia, R., Kinnison, D., Pawson, S., Rozanov, E., Shepherd, T. G., and Shibata, K.: The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet, Science, 320, 1486–1489, 2008.
Son, S.-W., Tandon, N. F., Polvani, L. M., and Waugh, D. W.: Ozone hole and Southern Hemisphere climate change, Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671, 2009.
Steil, B., Brühl, C., Manzini, E., Crutzen, P. J., Lelieveld, J., Rasch, P. J., Roeckner, E., and Krüger, K.: A new interactive chemistry climate model, 1: Present day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data, J. Geophys. Res., 108, 4290, https://doi.org/10.1029/2002JD002971, 2003.
Stolarski, R. S. and Frith, S.: Search for evidence of trend slowdown in the long-term TOMS/SBUV total ozone data record: The importance of instrument drift uncertainty, Atmos. Chem. Phys., 6, 4057–4065, 2006.
Tian, W. and Chipperfield, M. P.: A new coupled chemistry-climate model for the stratosphere: The importance of coupling for future O3-climate predictions, Q. J. Roy. Meteor. Soc., 131, 281–304, 2005.
Waugh, D. W. and Eyring, V.: Quantitative performance metrics for stratospheric-resolving chemistry-climate models, Atmos. Chem. Phys., 8, 5699–5713, 2008.
World Meteorological Organization (WMO)/United Nations Environment Programme (UNEP): Scientific Assessment of Ozone Depletion: 2006, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 50, Geneva, Switzerland, 2007.
Zhou, S. T., Gelman, M. E., Miller, A. J., and McCormack J. P.: An inter-hemisphere comparison of the persistent stratospheric polar vortex, Geophys. Res. Lett., 27, 1123–1126, 2000.
Altmetrics
Final-revised paper
Preprint