Articles | Volume 25, issue 11
https://doi.org/10.5194/acp-25-5445-2025
https://doi.org/10.5194/acp-25-5445-2025
Research article
 | 
03 Jun 2025
Research article |  | 03 Jun 2025

Reactivity study of 3,3-dimethylbutanal and 3,3-dimethylbutanone: kinetics, reaction products, mechanisms, and atmospheric implications

Inmaculada Aranda, Sagrario Salgado, Beatriz Cabañas, Florentina Villanueva, and Pilar Martín

Related authors

Atmospheric fate of a series of saturated alcohols: kinetic and mechanistic study
Inmaculada Colmenar, Pilar Martin, Beatriz Cabañas, Sagrario Salgado, Araceli Tapia, and Inmaculada Aranda
Atmos. Chem. Phys., 20, 699–720, https://doi.org/10.5194/acp-20-699-2020,https://doi.org/10.5194/acp-20-699-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Spatially separate production of hydrogen oxides and nitric oxide in lightning
Jena M. Jenkins and William H. Brune
Atmos. Chem. Phys., 25, 5041–5052, https://doi.org/10.5194/acp-25-5041-2025,https://doi.org/10.5194/acp-25-5041-2025, 2025
Short summary
Gas-phase observations of accretion products from stabilized Criegee intermediates in terpene ozonolysis with two dicarboxylic acids
Yuanyuan Luo, Lauri Franzon, Jiangyi Zhang, Nina Sarnela, Neil M. Donahue, Theo Kurtén, and Mikael Ehn
Atmos. Chem. Phys., 25, 4655–4664, https://doi.org/10.5194/acp-25-4655-2025,https://doi.org/10.5194/acp-25-4655-2025, 2025
Short summary
Kinetics of the reactions of OH with CO, NO, and NO2 and of HO2 with NO2 in air at 1 atm pressure, room temperature, and tropospheric water vapour concentrations
Michael Rolletter, Andreas Hofzumahaus, Anna Novelli, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 25, 3481–3502, https://doi.org/10.5194/acp-25-3481-2025,https://doi.org/10.5194/acp-25-3481-2025, 2025
Short summary
Chemical characterization of organic vapors from wood, straw, cow dung, and coal burning
Tiantian Wang, Jun Zhang, Houssni Lamkaddam, Kun Li, Ka Yuen Cheung, Lisa Kattner, Erlend Gammelsæter, Michael Bauer, Zachary C. J. Decker, Deepika Bhattu, Rujin Huang, Rob L. Modini, Jay G. Slowik, Imad El Haddad, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 25, 2707–2724, https://doi.org/10.5194/acp-25-2707-2025,https://doi.org/10.5194/acp-25-2707-2025, 2025
Short summary
Quantifying primary oxidation products in the OH-initiated reaction of benzyl alcohol
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
Atmos. Chem. Phys., 25, 1883–1897, https://doi.org/10.5194/acp-25-1883-2025,https://doi.org/10.5194/acp-25-1883-2025, 2025
Short summary

Cited articles

Altshuller, A. P.: PANs in the Atmosphere, Air Waste, 43, 1221–1230, https://doi.org/10.1080/1073161X.1993.10467199, 1993. 
Aranda, I., Salgado, S., Martín, P., Villanueva, F., Martinez, E., and Cabañas, B.: Atmospheric degradation of 3-ethoxy-1-propanol by reactions with Cl, OH and NO3, Chemosphere, 281, 130755–130764, https://doi.org/10.1016/j.chemosphere.2021.130755, 2021. 
Aschmann, S. M., Arey J., and Atkinson, R.: Kinetics and Products of the Reactions of OH Radicals with 4,4-Dimethyl-1-pentene and 3,3-Dimethylbutanal at 296 ± 2 K, J. Phys. Chem. A, 114, 5810–5816, https://doi.org/10.1021/jp101893g, 2010. 
Asensio, M., Antiñolo, M., Blázquez, S., Albaladejo, J., and Jiménez, E.: Evaluation of the daytime tropospheric loss of 2-methylbutanal, Atmos. Chem. Phys., 22, 2689–2701, https://doi.org/10.5194/acp-22-2689-2022, 2022. 
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000. 
Download
Short summary
3,3-dimethylbutanal and 3,3-dimethylbutanone are compounds that might play a big role in the chemistry of the atmosphere. To better understand their effects, the rate at which these reactions happen was measured and the reaction products were identified. The results of this study show that these compounds degrade near their sources, so they do not have a direct impact on climate. However, they can contribute to the formation of tropospheric O3 and secondary organic aerosols affecting our health.
Share
Altmetrics
Final-revised paper
Preprint