Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9765-2023
https://doi.org/10.5194/acp-23-9765-2023
Opinion
 | Highlight paper
 | 
04 Sep 2023
Opinion | Highlight paper |  | 04 Sep 2023

Opinion: Atmospheric multiphase chemistry – past, present, and future

Jonathan P. D. Abbatt and A. R. Ravishankara

Related authors

Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024,https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Characterizing the hygroscopicity of growing particles in the Canadian Arctic summer
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022,https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022,https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Heterogeneous interactions between SO2 and organic peroxides in submicron aerosol
Shunyao Wang, Tengyu Liu, Jinmyung Jang, Jonathan P. D. Abbatt, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 6647–6661, https://doi.org/10.5194/acp-21-6647-2021,https://doi.org/10.5194/acp-21-6647-2021, 2021
Short summary
Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021,https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024,https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024,https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024,https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024,https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Formation and loss of light absorbance by phenolic aqueous SOA by OH and an organic triplet excited state
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024,https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary

Cited articles

Abbatt, J. and Wang, C.: The atmospheric chemistry of indoor environments, Environ. Sci. Proc. Imp., 22, 25–48, https://doi.org/10.1039/c9em00386j, 2020. 
Abbatt, J., George, C., Melamed, M., Monks, P., Pandis, S., and Rudich, Y.: New Directions: Fundamentals of atmospheric chemistry: Keeping a three-legged stool balanced, Atmos. Environ., 84, 390–391, https://doi.org/10.1016/j.atmosenv.2013.10.025, 2014. 
Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction, Chem. Rev., 103, 4783–4800, https://doi.org/10.1021/cr0206418, 2003. 
Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges, Chem. Soc. Rev., 41, 6555–6581, https://doi.org/10.1039/c2cs35052a, 2012. 
Al-Abadleh, H. and Nizkorodov, S.: Open questions on transition metals driving secondary thermal processes in atmospheric aerosols, Commun. Chem., 4, 176, https://doi.org/10.1038/s42004-021-00616-w, 2021. 
Download
Executive editor
The role of chemical reactions within the atmospheric multiphase system, i.e. aerosol particles and cloud droplets surrounded by a gas phase, has been recognized for several decades to affect the atmospheric composition. In this article, significant advancements in measurement techniques during the past 20 years are briefly described that led to the identification of thousands of organic compounds and molecular-scale processes within the atmospheric multiphase system. Similarly, the complexity of multiphase chemistry models has been increasing to include in detail the underlying chemical processes and phase transfers between gas, aqueous, and organic phases. The authors propose how complementary techniques, such as machine learning and molecular dynamics, can be used to constrain the resulting model complexity. They also identify chemical parameters to be further constrained in lab and field studies. Overall, the article highlights the need and future directions of increasingly interdisciplinary efforts to characterize the atmospheric multiphase chemistry system and its impacts on climate-chemistry interactions, atmospheric oxidation capacity and human health.
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
Altmetrics
Final-revised paper
Preprint