Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-9765-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-9765-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opinion: Atmospheric multiphase chemistry – past, present, and future
Jonathan P. D. Abbatt
CORRESPONDING AUTHOR
Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
A. R. Ravishankara
CORRESPONDING AUTHOR
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
Related authors
Timothy A. Sipkens, Joel C. Corbin, Kerry Chen, Laura-Helena Rivellini, Jonathan Abbatt, and Jason S. Olfert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4209, https://doi.org/10.5194/egusphere-2025-4209, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Aethalometers measure black carbon mass concentrations using light attenuation through a filter capturing particles. This work compares five micro-aethalometers using known mass concentrations of laboratory-generated soot. Uncertainties were found to scale with mass concentration, and an expression is given for the uncertainty as a function of mass concentration, sampling interval, and flow rate. An open-source algorithm is provided for the reanalysis of aethalometer data.
This article is included in the Encyclopedia of Geosciences
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
Atmos. Meas. Tech., 18, 1013–1038, https://doi.org/10.5194/amt-18-1013-2025, https://doi.org/10.5194/amt-18-1013-2025, 2025
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
This article is included in the Encyclopedia of Geosciences
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
This article is included in the Encyclopedia of Geosciences
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022, https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Short summary
During summer 2016, the ability of newly formed particles to turn into droplets was measured in the Canadian Arctic. Our observations suggest that these small particles were growing by the condensation of organic vapours likely coming from the surrounding open waters. These particles grew large enough that they could form cloud droplets and therefore affect the earth’s radiation budget. These results are relevant as the Arctic summer rapidly warms with climate change.
This article is included in the Encyclopedia of Geosciences
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
This article is included in the Encyclopedia of Geosciences
Shunyao Wang, Tengyu Liu, Jinmyung Jang, Jonathan P. D. Abbatt, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 6647–6661, https://doi.org/10.5194/acp-21-6647-2021, https://doi.org/10.5194/acp-21-6647-2021, 2021
Short summary
Short summary
Discrepancies between atmospheric modeling and field observations, especially in highly polluted cities, have highlighted the lack of understanding of sulfate formation mechanisms and kinetics. Here, we directly quantify the reactive uptake coefficient of SO2 onto organic peroxides and study the important governing factors. The SO2 uptake rate was observed to depend on RH, peroxide amount and reactivity, pH, and ionic strength, which provides a framework to better predict sulfate formation.
This article is included in the Encyclopedia of Geosciences
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
This article is included in the Encyclopedia of Geosciences
Mutian Ma, Laura-Hélèna Rivellini, YuXi Cui, Megan D. Willis, Rio Wilkie, Jonathan P. D. Abbatt, Manjula R. Canagaratna, Junfeng Wang, Xinlei Ge, and Alex K. Y. Lee
Atmos. Meas. Tech., 14, 2799–2812, https://doi.org/10.5194/amt-14-2799-2021, https://doi.org/10.5194/amt-14-2799-2021, 2021
Short summary
Short summary
Chemical characterization of organic coatings is important to advance our understanding of the physio-chemical properties and atmospheric processing of black carbon (BC) particles. This work develops two approaches to improve the elemental analysis of oxygenated organic coatings using a soot-particle aerosol mass spectrometer. Analyzing ambient data with the new approaches indicated that secondary organics that coated on BC were likely less oxygenated compared to those externally mixed with BC.
This article is included in the Encyclopedia of Geosciences
Timothy A. Sipkens, Joel C. Corbin, Kerry Chen, Laura-Helena Rivellini, Jonathan Abbatt, and Jason S. Olfert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4209, https://doi.org/10.5194/egusphere-2025-4209, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Aethalometers measure black carbon mass concentrations using light attenuation through a filter capturing particles. This work compares five micro-aethalometers using known mass concentrations of laboratory-generated soot. Uncertainties were found to scale with mass concentration, and an expression is given for the uncertainty as a function of mass concentration, sampling interval, and flow rate. An open-source algorithm is provided for the reanalysis of aethalometer data.
This article is included in the Encyclopedia of Geosciences
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
Atmos. Meas. Tech., 18, 1013–1038, https://doi.org/10.5194/amt-18-1013-2025, https://doi.org/10.5194/amt-18-1013-2025, 2025
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
This article is included in the Encyclopedia of Geosciences
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
This article is included in the Encyclopedia of Geosciences
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022, https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Short summary
During summer 2016, the ability of newly formed particles to turn into droplets was measured in the Canadian Arctic. Our observations suggest that these small particles were growing by the condensation of organic vapours likely coming from the surrounding open waters. These particles grew large enough that they could form cloud droplets and therefore affect the earth’s radiation budget. These results are relevant as the Arctic summer rapidly warms with climate change.
This article is included in the Encyclopedia of Geosciences
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
This article is included in the Encyclopedia of Geosciences
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
This article is included in the Encyclopedia of Geosciences
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
This article is included in the Encyclopedia of Geosciences
Paul S. Monks, A. R. Ravishankara, Erika von Schneidemesser, and Roberto Sommariva
Atmos. Chem. Phys., 21, 12909–12948, https://doi.org/10.5194/acp-21-12909-2021, https://doi.org/10.5194/acp-21-12909-2021, 2021
Short summary
Short summary
Which published papers have transformed our understanding of the chemical processes in the troposphere and shaped the field of atmospheric chemistry? We explore how these papers have shaped the development of the field of atmospheric chemistry and identify the major landmarks in the field of atmospheric chemistry through the lens of those papers' impact on science, legislation and environmental events.
This article is included in the Encyclopedia of Geosciences
Shunyao Wang, Tengyu Liu, Jinmyung Jang, Jonathan P. D. Abbatt, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 6647–6661, https://doi.org/10.5194/acp-21-6647-2021, https://doi.org/10.5194/acp-21-6647-2021, 2021
Short summary
Short summary
Discrepancies between atmospheric modeling and field observations, especially in highly polluted cities, have highlighted the lack of understanding of sulfate formation mechanisms and kinetics. Here, we directly quantify the reactive uptake coefficient of SO2 onto organic peroxides and study the important governing factors. The SO2 uptake rate was observed to depend on RH, peroxide amount and reactivity, pH, and ionic strength, which provides a framework to better predict sulfate formation.
This article is included in the Encyclopedia of Geosciences
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
This article is included in the Encyclopedia of Geosciences
Mutian Ma, Laura-Hélèna Rivellini, YuXi Cui, Megan D. Willis, Rio Wilkie, Jonathan P. D. Abbatt, Manjula R. Canagaratna, Junfeng Wang, Xinlei Ge, and Alex K. Y. Lee
Atmos. Meas. Tech., 14, 2799–2812, https://doi.org/10.5194/amt-14-2799-2021, https://doi.org/10.5194/amt-14-2799-2021, 2021
Short summary
Short summary
Chemical characterization of organic coatings is important to advance our understanding of the physio-chemical properties and atmospheric processing of black carbon (BC) particles. This work develops two approaches to improve the elemental analysis of oxygenated organic coatings using a soot-particle aerosol mass spectrometer. Analyzing ambient data with the new approaches indicated that secondary organics that coated on BC were likely less oxygenated compared to those externally mixed with BC.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abbatt, J. and Wang, C.: The atmospheric chemistry of indoor environments,
Environ. Sci. Proc. Imp., 22, 25–48, https://doi.org/10.1039/c9em00386j, 2020.
Abbatt, J., George, C., Melamed, M., Monks, P., Pandis, S., and Rudich, Y.:
New Directions: Fundamentals of atmospheric chemistry: Keeping a three-legged stool balanced, Atmos. Environ., 84, 390–391, https://doi.org/10.1016/j.atmosenv.2013.10.025, 2014.
Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces:
Adsorption and reaction, Chem. Rev., 103, 4783–4800, https://doi.org/10.1021/cr0206418, 2003.
Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas
uptake to tropospheric aerosol: recent advances and remaining challenges,
Chem. Soc. Rev., 41, 6555–6581, https://doi.org/10.1039/c2cs35052a, 2012.
Al-Abadleh, H. and Nizkorodov, S.: Open questions on transition metals
driving secondary thermal processes in atmospheric aerosols, Commun. Chem.,
4, 176, https://doi.org/10.1038/s42004-021-00616-w, 2021.
Ault, A., Grassian, V., Carslaw, N., Collins, D., Destaillats, H.,
Donaldson, D., Farmer, D., Jimenez, J., McNeill, V., Morrison, G., O'Brien,
R., Shiraiwa, M., Vance, M., Wells, J., and Xiong, W.: Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces,
Chem, 6, 3203–3218, https://doi.org/10.1016/j.chempr.2020.08.023, 2020.
Benedict, K., McFall, A., and Anastasio, C.: Quantum Yield of Nitrite from
the Photolysis of Aqueous Nitrate above 300 nm, Environ. Sci. Technol., 51,
4387–4395, https://doi.org/10.1021/acs.est.6b06370, 2017.
Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and Coffman, D. J.: Direct observations of N2O5 reactivity on ambient aerosol particles, Geophys. Res. Lett., 36, L19803, https://doi.org/10.1029/2009gl040248, 2009.
Bianchi, F., Kurten, T., Riva, M., Mohr, C., Rissanen, M., Roldin, P.,
Berndt, T., Crounse, J., Wennberg, P., Mentel, T., Wildt, J., Junninen, H.,
Jokinen, T., Kulmala, M., Worsnop, D., Thornton, J., Donahue, N., Kjaergaard, H., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, Chem. Rev., 119, 3472–3509, https://doi.org/10.1021/acs.chemrev.8b00395, 2019.
Bianco, R. and Hynes, J.: A theoretical study of the reaction of ClONO2 with HCl on ice, J. Phys. Chem. A, 103, 3797–3801, https://doi.org/10.1021/jp990471b, 1999.
Bianco, R. and Hynes, J. T.: Heterogeneous reactions important in atmospheric ozone depletion: A theoretical perspective, Acc. Chem. Res., 39, 159–165, https://doi.org/10.1021/ar040197q, 2006.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623–1632, https://doi.org/10.1016/S1352-2310(99)00392-1, 2000.
Brook, R., Brook, J., and Rajagopalan, S.: Air pollution: The “heart” of
the problem, Curr. Hypertens. Rep., 5, 32–39, https://doi.org/10.1007/s11906-003-0008-y, 2003.
Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R.,
Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F.,
Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67–70, https://doi.org/10.1126/science.1120120, 2006.
Burkholder, J. B., Abbatt, J. P. D., Barnes, I., Roberts, J. M., Melamed, M.
L., Ammann, M., Bertram, A. K., Cappa, C. D., Carlton, A. G., Carpenter, L.
J., Crowley, J. N., Dubowski, Y., George, C., Heard, D. E., Herrmann, H.,
Keutsch, F. N., Kroll, J. H., McNeill, V. F., Ng, N. L., Nizkorodov, S. A.,
Orlando, J. J., Percival, C. J., Picquet-Varrault, B., Rudich, Y., Seakins,
P. W., Surratt, J. D., Tanimoto, H., Thornton, J. A., Tong, Z., Tyndall, G.
S., Wahner, A., Weschler, C. J., Wilson, K. R., and Ziemann, P. J.: The
Essential Role for Laboratory Studies in Atmospheric Chemistry, Environ.
Sci. Technol., 51, 2519–2528, https://doi.org/10.1021/acs.est.6b04947, 2017.
Burkholder, J. B., Abbatt, J. P. D., Cappa, C. D., Dibble, T. S., Kolb, C.
E., Orkin, V. L., Wilmouth, D. M., Sander, S. P., Barker, J. R., Crounse, J.
D., Huie, R. E., Kurylo, M. J., Percival, C. J., and Wine, P. H.: Chemical
kinetics and photochemical data for use in atmospheric studies, NASA – JPL,
Pasadena, CA, Evaluation No. 19, JPL Publication 19-5, https://jpldataeval.jpl.nasa.gov/ (last access: 29 August 2023), 2020.
Calvert, J., Lazrus, A., Kok, G., Heikes, B., Walega, J., Lind, J., and Cantrell, C.: Chemical mechanisms of acid generation in the troposphere,
Nature, 317, 27–35, https://doi.org/10.1038/317027a0, 1985.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M.
R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia,
A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb,
C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
characterization of ambient aerosols with the Aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185–222, 2007.
Canonica, S., Jans, U., Stemmler, K., and Hoigne, J.: Transformation kinetics of phenols in water – photosensitization by dissolved natural organic matter and aromatic ketones, Environ. Sci. Technol., 29, 1822–1831,
https://doi.org/10.1021/es00007a020, 1995.
Cappa, C. D., Che, D. L., Kessler, S. H., Kroll, J. H., and Wilson, K. R.:
Variations in organic aerosol optical and hygroscopic properties upon
heterogeneous OH oxidation, J. Geophys. Res.-Atmos., 116, D15204, https://doi.org/10.1029/2011jd015918, 2011.
Carpenter, L., MacDonald, S., Shaw, M., Kumar, R., Saunders, R., Parthipan,
R., Wilson, J., and Plane, J.: Atmospheric iodine levels influenced by sea
surface emissions of inorganic iodine, Nat. Geosci., 6, 108–111,
https://doi.org/10.1038/NGEO1687, 2013.
Chameides, W. and Davis, D.: The free-radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res., 87, 4863–4877, https://doi.org/10.1029/JC087iC07p04863, 1982.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang,
Q., He, K., Carmichael, G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Sci. Adv., 2, e1601530, https://doi.org/10.1126/sciadv.1601530, 2016.
Choularton, T., Colvile, R., Bower, K., Gallagher, M., Wells, M., Beswick,
K., Arends, B., Mols, J., Kos, G., Fuzzi, S., Lind, J., Orsi, G., Facchini,
M., Laj, P., Gieray, R., Wieser, P., Engelhardt, T., Berner, A., Kruisz, C.,
Moller, D., Acker, K., Wieprecht, W., Luttke, J., Levsen, K., Bizjak, M.,
Hansson, H., Cederfelt, S., Frank, G., Mentes, B., Martinsson, B., Orsini,
D., Svenningsson, B., Swietlicki, E., Wiedensohler, A., Noone, K., Pahl, S.,
Winkler, P., Seyffer, E., Helas, G., Jaeschke, W., Georgii, H., Wobrock, W.,
Preiss, M., Maser, R., Schell, D., Dollard, G., Jones, B., Davies, T., Sedlak, D., David, M., Wendisch, M., Cape, J., Hargreaves, K., Sutton, M.,
StoretonWest, R., Fowler, D., Hallberg, A., Harrison, R., and Peak, J.: The
Great Dun Fell Cloud Experiment 1993: An overview, Atmos. Environ., 31,
2393–2405, https://doi.org/10.1016/S1352-2310(96)00316-0, 1997.
Ciuraru, R., Fine, L., van Pinxteren, M., D'Anna, B., Herrmann, H., and George, C.: Photosensitized production of functionalized and unsaturated
organic compounds at the air-sea interface, Sci. Rep., 5,
12741, https://doi.org/10.1038/srep12741, 2015.
Claflin, M., Pagonis, D., Finewax, Z., Handschy, A., Day, D., Brown, W.,
Jayne, J., Worsnop, D., Jimenez, J., Ziemann, P., de Gouw, J., and Lerner, B.: An in situ gas chromatograph with automatic detector switching between
PTR- and EI-TOF-MS: isomer-resolved measurements of indoor air, Atmos. Meas.
Tech., 14, 133–152, https://doi.org/10.5194/amt-14-133-2021, 2021.
Clegg, S. M. and Abbatt, J. P. D.: Oxidation of SO2 by H2O2 on ice surfaces at 228 K: a sink for SO2 in ice clouds, Atmos. Chem. Phys., 1, 73–78, https://doi.org/10.5194/acp-1-73-2001, 2001.
Collins, D. and Farmer, D.: Unintended Consequences of Air Cleaning Chemistry, Environ. Sci. Technol., 55, 12172–12179, https://doi.org/10.1021/acs.est.1c02582, 2021.
Cox, R., Ammann, M., Crowley, J., Griffiths, P., Herrmann, H., Hoffmann, E.,
Jenkin, M., McNeill, V., Mellouki, A., Penkett, C., Tilgner, A., and Wallington, T.: Opinion: The germicidal effect of ambient air (open-air
factor) revisited, Atmos. Chem. Phys., 21, 13011–13018,
https://doi.org/10.5194/acp-21-13011-2021, 2021.
Cox, R. A.: Evaluation of laboratory kinetics and photochemical data for
atmospheric chemistry applications, Chem. Soc. Rev., 41, 6231–6246,
https://doi.org/10.1039/c2cs35092k, 2012.
Croft, B., Martin, R., Leaitch, W., Burkart, J., Chang, R., Collins, D., Hayes, P., Hodshire, A., Huang, L., Kodros, J., Moravek, A., Mungall, E.,
Murphy, J., Sharma, S., Tremblay, S., Wentworth, G., Willis, M., Abbate, J.,
and Pierce, J.: Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian
Arctic Archipelago, Atmos. Chem. Phys., 19, 2787–2812,
https://doi.org/10.5194/acp-19-2787-2019, 2019.
Crounse, J. D., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., and Wennberg, P. O.: Autoxidation of Organic Compounds in the Atmosphere, J. Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207, 2013.
Cunliffe, M., Engel, A., Frka, S., Gašparović, B., Guitart, C., Murrell, J. C., Salter, M., Stolle, C., Upstill-Goddard, R., and Wurl, O.:
Sea surface microlayers: A unified physicochemical and biological
perspective of the air–ocean interface, Prog. Oceanogr., 109, 104–116,
https://doi.org/10.1016/j.pocean.2012.08.004, 2013.
Dankwerts, P. V.: Gas-Liquid Reactions, McGraw-Hill, ISBN 978-0070152878, 1970.
Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., Moretti, F., Tagliavini, E., and Facchini, M.: Source attribution of water-soluble organic aerosol by
nuclear magnetic resonance spectroscopy, Environ. Sci. Technol., 41, 2479–2484, https://doi.org/10.1021/es061711l, 2007.
de la Puente, M., David, R., Gomez, A., and Laage, D.: Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air-Water Interfaces Depend on Depth and on Interface Specific Area, J. Am. Chem. Soc., 144, 10524–10529,
https://doi.org/10.1021/jacs.2c03099, 2022.
Dentener, F. J. and Crutzen, P. J.: Reaction of N2O5 on tropospheric aerosols – Impact on the global distributions of NOx, O3, and OH, J. Geophys. Res.-Atmos., 98, 7149–7163, https://doi.org/10.1029/92jd02979, 1993.
DeRieux, W.-S., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K.,
Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary organic material using molecular
composition, Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, 2018.
Destaillats, H., Singer, B. C., Lee, S. K., and Gundel, L. A.: Effect of
ozone on nicotine desorption from model surfaces: Evidence for heterogeneous
chemistry, Environ. Sci. Technol., 40, 1799–1805, https://doi.org/10.1021/es050914r, 2006.
DeVault, M. and Ziemann, P.: Gas- and Particle-Phase Products and Their
Mechanisms of Formation from the Reaction of Delta-3-Carene with NO3
Radicals, J. Phys. Chem. A, 125, 10207–10222, https://doi.org/10.1021/acs.jpca.1c07763, 2021.
Ditto, J., Machesky, J., and Gentner, D.: Analysis of reduced and oxidized
nitrogen-containing organic compounds at a coastal site in summer and winter, Atmos. Chem. Phys., 22, 3045–3065, https://doi.org/10.5194/acp-22-3045-2022, 2022.
Domine, F. and Shepson, P. B.: Air-snow interactions and atmospheric chemistry, Science, 297, 1506–1510, 2002.
Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A
two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303–3318,
https://doi.org/10.5194/acp-11-3303-2011, 2011.
Donaldson, D. and George, C.: Sea-Surface Chemistry and Its Impact on the
Marine Boundary Layer, Environ. Sci. Technol., 46, 10385–10389,
https://doi.org/10.1021/es301651m, 2012.
Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Dal Maso, M., Berndt, T., Petaja, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476–480, https://doi.org/10.1038/nature13032, 2014.
Erickson, R., Yates, L., Clark, R., and McEwen, D.: Reaction of sulfur dioxde with ozone in water and its possible atmospheric significance, Atmos. Environ., 11, 813–817, https://doi.org/10.1016/0004-6981(77)90043-9, 1977.
Fahy, W., Maters, E., Miranda, R., Adams, M., Jahn, L., Sullivan, R., and
Murray, B.: Volcanic ash ice nucleation activity is variably reduced by aging in water and sulfuric acid: the effects of leaching, dissolution, and precipitation, Environ. Sci.-Atmos., 2, 85–99, https://doi.org/10.1039/d1ea00071c, 2022.
Fang, T., Huang, Y., Wei, J., Mena, J., Lakey, P., Kleinman, M., Digman, M.,
and Shiraiwa, M.: Superoxide Release by Macrophages through NADPH Oxidase
Activation Dominating Chemistry by Isoprene Secondary Organic Aerosols and
Quinones to Cause Oxidative Damage on Membranes, Environ. Sci. Technol., 56, 17029–17038,
https://doi.org/10.1021/acs.est.2c03987, 2022.
Fang, Y., Lakey, P. S. J., Riahi, S., McDonald, A. T., Shrestha, M., Tobias,
D. J., Shiraiwa, M., and Grassian, V. H.: A molecular picture of surface
interactions of organic compounds on prevalent indoor surfaces: limonene adsorption on SiO2, Chem. Sci., 10, 2906–2914, https://doi.org/10.1039/c8sc05560b, 2019.
Faust, B. and Zepp, R.: Photochemistry of aqueous iron(III) polycarboxylate
complexes – roles in the chemistry of atmospheric and surface waters,
Environ. Sci. Technol., 27, 2517–2522, https://doi.org/10.1021/es00048a032, 1993.
Finlayson-Pitts, B., Wingen, L., Sumner, A., Syomin, D., and Ramazan, K.:
The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism, Phys. Chem. Chem. Phys., 5,
223–242, https://doi.org/10.1039/b208564j, 2003.
Finlayson-Pitts, B., Anderson, A., Lakey, P., Wang, W., Ezell, M., Wang, X.,
Wingen, L., Perraud, V., and Shiraiwa, M.: Oxidation of solid thin films of
neonicotinoid pesticides by gas phase hydroxyl radicals, Environ. Sci.-Atmos., 3, 124–142, https://doi.org/10.1039/d2ea00134a, 2023.
Finlayson-Pitts, B. J.: The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr, Chem. Rev., 103,
4801–4822, 2003.
Fleming, L. T., Lin, P., Roberts, J. M., Selimovic, V., Yokelson, R., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning
organic aerosol, Atmos. Chem. Phys., 20, 1105–1129,
https://doi.org/10.5194/acp-20-1105-2020, 2020.
Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L.,
Anderson, B., Diskin, G., Perring, A. E., Schwarz, J. P., Campuzano-Jost, P., Day, D. A., Palm, B. B., Jimenez, J. L., Nenes, A., and Weber, R. J.: Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42,
4623–4630, https://doi.org/10.1002/2015gl063897, 2015.
Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J.,
Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J., Granier, C., Neftel,
A., Isaksen, I., Laj, P., Maione, M., Monks, P., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T., Ro-Poulsen, H., Cellier, P., Cape, J., Horvath, L., Loreto, F., Niinemets, U., Palmer, P., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M., Vesala, T., Skiba, U., Brueggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J.: Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43, 5193–5267, https://doi.org/10.1016/j.atmosenv.2009.07.068, 2009.
Franze, T., Weller, M., Niessner, R., and Poschl, U.: Protein nitration by
polluted air, Environ. Sci. Technol., 39, 1673–1678, https://doi.org/10.1021/es0488737, 2005.
Galib, M. and Limmer, D.: Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes, Science, 371, 921–924,
https://doi.org/10.1126/science.abd7716, 2021.
Garcia, S., Pandit, S., Navea, J., and Grassian, V.: Nitrous Acid (HONO)
Formation from the Irradiation of Aqueous Nitrate Solutions in the Presence
of Marine Chromophoric Dissolved Organic Matter: Comparison to Other Organic
Photosensitizers, ACS Earth Space Chem., 5, 3056–3064, https://doi.org/10.1021/acsearthspacechem.1c00292, 2021.
Garland, J., Elzerman, A., and Penkett, S.: The mechanism for dry deposition
of ozoen to seawater surfaces, J. Geophys. Res.-Oceans, 85, 7488–7492,
https://doi.org/10.1029/JC085iC12p07488, 1980.
GBD 2019 Risk Factors Collaborators: Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019, Lancet, 396, 1223–1249, https://doi.org/10.1016/S0140-6736(20)30752-2, 2020.
George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., and Ammann, M.:
Photoenhanced uptake of gaseous NO2 on solid-organic compounds: a
photochemical source of HONO?, Faraday Discuss., 130, 195–210,
https://doi.org/10.1039/b417888m, 2005.
George, C., Ammann, M., D'Anna, B., Donaldson, D. J., and Nizkorodov, S. A.:
Heterogeneous Photochemistry in the Atmosphere, Chem. Rev., 115, 4218–4258,
https://doi.org/10.1021/cr500648z, 2015.
George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of atmospheric
aerosol particles by gas-phase radicals, Nat. Chem., 2, 713–722,
https://doi.org/10.1038/nchem.806, 2010.
George, I. J., Vlasenko, A., Slowik, J. G., Broekhuizen, K., and Abbatt, J. P. D.: Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size
change, Atmos. Chem. Phys., 7, 4187–4201, https://doi.org/10.5194/acp-7-4187-2007, 2007.
George, I. J., Slowik, J., and Abbatt, J. P. D.: Chemical aging of ambient
organic aerosol from heterogeneous reaction with hydroxyl radicals, Geophys.
Res. Lett., 35, L13811, https://doi.org/10.1029/2008GL033884, 2008.
Gerber, R., Varner, M., Hammerich, A., Riikonen, S., Murdachaew, G., Shemesh, D., and Finlayson-Pitts, B.: Computational Studies of Atmospherically-Relevant Chemical Reactions in Water Clusters and on Liquid
Water and Ice Surfaces, Acc. Chem. Res., 48, 399–406, https://doi.org/10.1021/ar500431g, 2015.
Girardet, C. and Toubin, C.: Molecular atmospheric pollutant adsorption on
ice: a theoretical survey, Surf. Sci. Rep., 44, 163–238, 2001.
Gomez Alvarez, E., Amedro, D., Afif, C., Gligorovski, S., Schoemaecker, C.,
Fittschen, C., Doussin, J.-F., and Wortham, H.: Unexpectedly high indoor
hydroxyl radical concentrations associated with nitrous acid, P. Natl. Acad. Sci. USA, 110, 13294–13299, https://doi.org/10.1073/pnas.1308310110, 2013.
Gopalakrishnan, S., Jungwirth, P., Tobias, D., and Allen, H.: Air-liquid
interfaces of aqueous solutions containing ammonium and sulfate: Spectroscopic and molecular dynamics studies, J. Phys. Chem. B, 109,
8861–8872, https://doi.org/10.1021/jp0500236, 2005.
Gute, E. and Abbatt, J. P. D.: Oxidative Processing Lowers the Ice Nucleation Activity of Birch and Alder Pollen, Geophys. Res. Lett., 45, 1647–1653, https://doi.org/10.1002/2017GL076357, 2018.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hanisch, F. and Crowley, J.: The heterogeneous reactivity of gaseous nitric
acid on authentic mineral dust samples, and on individual mineral and clay
mineral components, Phys. Chem. Chem. Phys., 3, 2474–2482, https://doi.org/10.1039/b101700o, 2001.
Hanson, D. R. and Ravishankara, A. R.: Investigation of the reactive and
nonreactive processes involving ClONO2 and HCl on water and nitric acid
doped ice, J. Phys. Chem., 96, 2682–2691, https://doi.org/10.1021/j100185a052, 1992.
Hanson, D. R., Ravishankara, A. R., and Solomon, S.: Heterogeneous reactions
in sulfuric acid aerosols – A framework for model calculations, J. Geophys.
Res.-Atmos., 99, 3615–3629, https://doi.org/10.1029/93jd02932, 1994.
Hems, R. F., Schnitzler, E. G., Liu-Kang, C., Cappa, C. D., and Abbatt, J. P. D.: Aging of Atmospheric Brown Carbon Aerosol, ACS Earth Space Chem., 5, 722–748, 2021.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich,
M., and Otto, T.: Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chem. Rev., 115, 4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hoffmann, M. and Edwards, J.: Kinetics of oxidation of sulfite by hydrogen
peroxide in acidic solution, J. Phys. Chem., 79, 2096–2098,
https://doi.org/10.1021/j100587a005, 1975.
Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., and
Campbell, B.: Evidence of NOx production within or upon ice particles in the Greenland snowpack, Geophys. Res. Lett., 26, 695–698,
https://doi.org/10.1029/1999gl900077, 1999.
Hopfner, M., Ungermann, J., Borrmann, S., Wagner, R., Spang, R., Riese, M.,
Stiller, G., Appel, O., Batenburg, A., Bucci, S., Cairo, F., Dragoneas, A.,
Friedl-Vallon, F., Hunig, A., Johansson, S., Krasauskas, L., Legras, B.,
Leisner, T., Mahnke, C., Mohler, O., Molleker, S., Muller, R., Neubert, T.,
Orphal, J., Preusse, P., Rex, M., Saathoff, H., Stroh, F., Weigel, R., and
Wohltmann, I.: Ammonium nitrate particles formed in upper troposphere from
ground ammonia sources during Asian monsoons, Nat. Geosci., 12, 608–613,
https://doi.org/10.1038/s41561-019-0385-8, 2019.
Huynh, E., Olinger, A., Woolley, D., Kohli, R., Choczynski, J., Davies, J.,
Lin, K., Marr, L., and Davis, R.: Evidence for a semisolid phase state of
aerosols and droplets relevant to the airborne and surface survival of
pathogens, P. Natl. Acad. Sci. USA, 119, e2109750119, https://doi.org/10.1073/pnas.2109750119, 2022.
Ivatt, P., Evans, M., and Lewis, A.: Suppression of surface ozone by an
aerosol-inhibited photochemical ozone regime, Nat. Geosci., 15, 536–540,
https://doi.org/10.1038/s41561-022-00972-9, 2022.
Jacob, D.: Chemistry of OH in Remove Clouds and Its Role in the Production of Formic-Acid Peroxymonosulfate, J. Geophys. Res.-Atmos., 9807–9826, 1986.
Jacob, D.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ.,
34, 2131–2159, https://doi.org/10.1016/S1352-2310(99)00462-8, 2000.
Jacob, D. J. and Hoffmann, M. R.: A dynamic model for the production of
H+, NO , and SO in urban fog, J. Geophys. Res.-Oceans, 88, 6611–6621, https://doi.org/10.1029/JC088iC11p06611, 1983.
Jang, M. S., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous
atmospheric aerosol production by acid-catalyzed particle-phase reactions,
Science, 298, 814–817, https://doi.org/10.1126/science.1075798, 2002.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Jorga, S., Florou, K., Kaltsonoudis, C., Kodros, J., Vasilakopoulou, C., Cirtog, M., Fouqueau, A., Picquet-Varrault, B., Nenes, A., and Pandis, S.:
Nighttime chemistry of biomass burning emissions in urban areas: A dual mobile chamber study, Atmos. Chem. Phys., 21, 15337–15349, https://doi.org/10.5194/acp-21-15337-2021, 2021.
Junge, C.: Recent investigations in air chemistry, Tellus, 8, 127–139, 1956.
Kadowaki, S.: Size distribution of atmospheric total aerosols, sulfate,
ammonium and nitrate in Nagoya area, Atmos. Environ., 10, 39–43,
https://doi.org/10.1016/0004-6981(76)90257-2, 1976.
Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A.
S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and
Baltensperger, U.: Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659–1662,
https://doi.org/10.1126/science.1092185, 2004.
Kanji, Z., Ladino, L., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D., and
Kramer, M.: Overview of Ice Nucleating Particles, in: Ice Formation and
Evolution in Clouds and Precipitation: Measurement adn modeling challenges,
vol. 58, edited by: Baumgardner, D., McFarquhar, G., and Heymsfield, A.,
American Meteorological Society, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Karimova, N., Chen, J., Gord, J., Staudt, S., Bertram, T., Nathanson, G.,
and Gerber, R.: SN2 Reactions of N2O5 with Ions in Water: Microscopic Mechanisms, Intermediates, and Products, J. Phys. Chem. A, 124, 711–720, https://doi.org/10.1021/acs.jpca.9b09095, 2020.
Kavassalis, S. and Murphy, J.: Understanding ozone-meteorology correlations:
A role for dry deposition, Geophys. Res. Lett., 44, 2922–2931,
https://doi.org/10.1002/2016GL071791, 2017.
Kilchhofer, K., Mahrt, F., and Kanji, Z.: The Role of Cloud Processing for
the Ice Nucleating Ability of Organic Aerosol and Coal Fly Ash Particles, J.
Geophys. Res.-Atmos., 126, e2020JD033338, https://doi.org/10.1029/2020JD033338, 2021.
Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J., Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. T., Hanson, D.
R., Kulmala, M., McFiggans, G., Poschl, U., Riipinen, I., Rossi, M. J.,
Rudich, Y., Wagner, P. E., Winkler, P. M., Worsnop, D. R., and O'Dowd, C. D.: An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds, Atmos. Chem. Phys., 10, 10561–10605,
https://doi.org/10.5194/acp-10-10561-2010, 2010.
Koop, T., Bookhold, J., Shiraiwa, M., and Poschl, U.: Glass transition and
phase state of organic compounds: dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/c1cp22617g, 2011.
Krechmer, J., Groessl, M., Zhang, X., Junninen, H., Massoli, P., Lambe, A.,
Kimmel, J., Cubison, M., Graf, S., Lin, Y., Budisulistiorini, S., Zhang, H.,
Surratt, J., Knochenmuss, R., Jayne, J., Worsnop, D., Jimenez, J., and Canagaratna, M.: Ion mobility spectrometry-mass spectrometry (IMS-MS) for
on- and offline analysis of atmospheric gas and aerosol species, Atmos. Meas. Tech., 9, 3245–3262, https://doi.org/10.5194/amt-9-3245-2016, 2016.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624, 2008.
Kroll, J. H., Smith, J. D., Che, D. L., Kessler, S. H., Worsnop, D. R., and
Wilson, K. R.: Measurement of fragmentation and functionalization pathways
in the heterogeneous oxidation of oxidized organic aerosol, Phys. Chem. Chem. Phys., 11, 8005–8014, https://doi.org/10.1039/b905289e, 2009.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3, 133–139, https://doi.org/10.1038/nchem.948, 2011.
Kulmala, M., Petaja, T., Ehn, M., Thornton, J., Sipila, M., Worsnop, D., and
Kerminen, V.: Chemistry of Atmospheric Nucleation: On the Recent Advances on
Precursor Characterization and Atmospheric Cluster Composition in Connection
with Atmospheric New Particle Formation, Annu. Rev. Phys. Chem., 65, 21–37,
https://doi.org/10.1146/annurev-physchem-040412-110014, 2014.
Kumar, A., Marcolli, C., and Peter, T.: Ice nucleation activity of silicates
and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates, Atmos. Chem. Phys., 19, 6059–6084,
https://doi.org/10.5194/acp-19-6059-2019, 2019.
Kwamena, N., Thornton, J., and Abbatt, J.: Kinetics of surface-bound benzo[a]pyrene and ozone on solid organic and salt aerosols, J. Phys. Chem. A, 108, 11626–11634, https://doi.org/10.1021/jp046161x, 2004.
Landrigan, P., Fuller, R., Acosta, N., Adeyi, O., Arnold, R., Basu, N., Balde, A., Bertollini, R., Bose-O'Reilly, S., Boufford, J., Breysse, P.,
Chiles, T., Mahidol, C., Coll-Seck, A., Cropper, M., Fobil, J., Fuster, V.,
Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick,
A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K., McTeer, M., Murray,
C., Ndahimananjara, J., Perera, F., Potocnik, J., Preker, A., Ramesh, J.,
Rockstrom, J., Salinas, C., Samson, L., Sandilya, K., Sly, P., Smith, K.,
Steiner, A., Stewart, R., Suk, W., van Schayck, O., Yadama, G., Yumkella,
K., and Zhong, M.: The Lancet Commission on pollution and health, Lancet, 391, 462–512, https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Laskin, J., Laskin, A., and Nizkorodov, S. A.: New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous
processes, Int. Rev. Phys. Chem., 32, 128–170, https://doi.org/10.1080/0144235x.2012.752904, 2013.
Lee, R. and Patterson, R.: Size determination of atmospheric phosphate, nitrate, chloride and ammonium particulate in several urban areas, Atmos.
Environ., 3, 249–261, 1969.
Lelieveld, J. and Crutzen, P.: The Role of Clouds in Tropospheric Photochemistry, J. Atmos. Chem., 12, 229–267, https://doi.org/10.1007/BF00048075, 1991.
Leu, M. T.: Heterogeneous reactions of N2O5 with H2O and HCl on ice surfaces – Implications for Antarctic ozone depletion, Geophys. Res. Lett., 15, 851–854, https://doi.org/10.1029/GL015i008p00851, 1988.
Li, C., He, Q., Fang, Z., Brown, S. S., Laskin, A., Cohen, S. R., and Rudich, Y.: Laboratory Insights into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown Carbon Aerosols, Environ. Sci. Technol., 54, 11827–11837, https://doi.org/10.1021/acs.est.0c04310, 2020.
Li, J., Zhang, Y., Cao, F., Zhang, W., Fan, M., Lee, X., and Michalski, G.:
Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal Ion-Catalyzed SO2 Oxidation in Haze Episodes, Environ. Sci. Technol., 54, 2626–2634, https://doi.org/10.1021/acs.est.9b07150, 2020.
Li, K., Jacob, D., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K., Zhang,
Q., and Zhai, S.: A two-pollutant strategy for improving ozone and particulate air quality in China, Nat. Geosci., 12, 906–911,
https://doi.org/10.1038/s41561-019-0464-x, 2019.
Li, L., Arnot, J., and Wania, F.: How are Humans Exposed to Organic Chemicals Released to Indoor Air?, Environ. Sci. Technol., 53, 11276–11284,
https://doi.org/10.1021/acs.est.9b02036, 2019.
Li, M., Bao, F., Zhang, Y., Sheng, H., Chen, C., and Zhao, J.: Photochemical
Aging of Soot in the Aqueous Phase: Release of Dissolved Black Carbon and
the Formation of 1O2, Environ. Sci. Technol., 53, 12311–12319,
https://doi.org/10.1021/acs.est.9b02773, 2019.
Lignell, H., Hinks, M. L., and Nizkorodov, S. A.: Exploring matrix effects
on photochemistry of organic aerosols, P. Natl. Acad. Sci. USA, 111, 13780–13785, https://doi.org/10.1073/pnas.1322106111, 2014.
Lin, K., Schulte, C., and Marr, L.: Survival of MS2 and Φ 6 viruses in
droplets as a function of relative humidity, pH, and salt, protein, and
surfactant concentrations, PLOS ONE, 15, e0243505, https://doi.org/10.1371/journal.pone.0243505, 2020.
Liu, Q., Li, L., Zhang, X., Saini, A., Li, W., Hung, H., Hao, C., Li, K., Lee, P., Wentzell, J., Huo, C., Li, S., Harner, T., and Liggio, J.: Uncovering global-scale risks from commercial chemicals in air, Nature, 600,
456–459, https://doi.org/10.1038/s41586-021-04134-6, 2021.
Liu, T. and Abbatt, J. P. D.: Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the interface of deliquesced aerosol particles, Nat. Chem., 13, 1173–1177, 2021.
Liu, T., Clegg, S., and Abbatt, J.: Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles, P. Natl. Acad. Sci. USA, 117, 1354–1359, https://doi.org/10.1073/pnas.1916401117, 2020.
Liu, T., Chan, A. W. H., and Abbatt, J. P. D.: Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments, Environ. Sci. Technol., 55, 4227–4242, 2021b.
Maher, B., Ahmed, I., Karloukovski, V., MacLaren, D., Foulds, P., Allsop, D., Mann, D., Torres-Jardon, R., and Calderon-Garciduenas, L.: Magnetite pollution nanoparticles in the human brain, P. Natl. Acad. Sci. USA, 113, 10797–10801, https://doi.org/10.1073/pnas.1605941113, 2016.
Martens, C., Wesolowski, J., Harriss, R., and Kaifer, R.: Chlorine loss from
Puerto Rican and San Francisco Pay Area Marine Aerosols, J. Geophys. Res., 78, 8778–8792, https://doi.org/10.1029/JC078i036p08778, 1973.
Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res.-Atmos., 108, 4097, https://doi.org/10.1029/2002jd002622, 2003.
Maters, E., Cimarelli, C., Casas, A., Dingwell, D., and Murray, B.: Volcanic
ash ice-nucleating activity can be enhanced or depressed by ash-gas interaction in the eruption plume, Earth Planet. Sc. Lett., 551,
116587, https://doi.org/10.1016/j.epsl.2020.116587, 2020.
Mattila, J., Lakey, P., Shiraiwa, M., Wang, C., Abbatt, J., Arata, C., Goldstein, A., Ampollini, L., Katz, E., DeCarlo, P., Zhou, S., Kahan, T.,
Cardoso-Saldana, F., Hildebrandt Ruiz, L., Abeleira, A., Boedicker, E., Vance, M., and Farmer, D.: Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning,
Environ. Sci. Technol., 54, 1730–1739, https://doi.org/10.1021/acs.est.9b05767, 2020.
McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and
Chemical Processing of Organic Aerosols, Environ. Sci. Technol., 49, 1237–1244, https://doi.org/10.1021/es5043707, 2015.
McNeill, V. F., Grannas, A. M., Abbatt, J. P. D., Ammann, M., Ariya, P.,
Bartels-Rausch, T., Domine, F., Donaldson, D. J., Guzman, M. I., Heger, D.,
Kahan, T. F., Klán, P., Masclin, S., Toubin, C., and Voisin, D.: Organics in environmental ices: sources, chemistry, and impacts, Atmos. Chem. Phys., 12, 9653–9678, https://doi.org/10.5194/acp-12-9653-2012, 2012.
Miller, M.: Oxidative stress and the cardiovascular effects of air pollution, Free Radic. Biol. Med., 151, 69–87, https://doi.org/10.1016/j.freeradbiomed.2020.01.004, 2020.
Miyake, Y. and Tsunogai, S.: Evaporation of iodine from ocean, J. Geophys.
Res., 68, 3989–3993, https://doi.org/10.1029/JZ068i013p03989, 1963.
Mmereki, B. T. and Donaldson, D. J.: Direct observation of the kinetics of
an atmospherically important reaction at the air-aqueous interface, J. Phys.
Chem. A, 107, 11038–11042, https://doi.org/10.1021/jp036119m, 2003.
Moise, T. and Rudich, Y.: Reactive uptake of ozone by proxies for organic
aerosols: Surface versus bulk processes, J. Geophys. Res.-Atmos., 105,
14667–14676, https://doi.org/10.1029/2000jd900071, 2000.
Moise, T., Flores, J., and Rudich, Y.: Optical Properties of Secondary Organic Aerosols and Their Changes by Chemical Processes, Chem. Rev., 115,
4400–4439, https://doi.org/10.1021/cr5005259, 2015.
Molina, M., Tso, T., Molina, L., and Fang, F.: Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride and ice – release of active
chlorine, Science, 238, 1253–1257, https://doi.org/10.1126/science.238.4831.1253, 1987.
Molina, M. J., Ivanov, A. V., Trakhtenberg, S., and Molina, L. T.: Atmospheric evolution of organic aerosol, Geophys. Res. Lett., 31, L22104,
https://doi.org/10.1029/2004GL020910, 2004.
Monge, M. E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldson, D. J., and George, C.: Light changes the atmospheric reactivity of soot, P. Natl. Acad. Sci. USA, 107, 6605–6609, https://doi.org/10.1073/pnas.0908341107, 2010.
Morrison, G.: Interfacial chemistry in indoor environments, Environ. Sci.
Technol., 42, 3494–3499, 2008.
Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G.: Mass Accommodation for HO2 Radicals on Aqueous Particles, J. Geophys. Res.-Atmos., 92, 4163–4170, 1987.
Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A., Su, H., Lammel, G.,
Poschl, U., and Cheng, Y.: Temperature effect on phase state and reactivity
controls atmospheric multiphase chemistry and transport of PAHs, Sci. Adv.,
4, eaap731, https://doi.org/10.1126/sciadv.aap7314, 2018.
Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Lee, A. K. Y., Thomas,
J. L., Blais, M., Gosselin, M., Miller, L. A., Papakyriakou, T., Willis, M.
D., and Liggio, J.: Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer, P. Natl. Acad. Sci. USA, 114, 6203, https://doi.org/10.1073/pnas.1620571114, 2017.
Murphy, D. and Ravishankara, A.: Temperature averages and rates of stratospheric reactions, Geophys. Res. Lett., 21, 2471–2474,
https://doi.org/10.1029/94GL02287, 1994.
Murphy, D., Cziczo, D., Froyd, K., Hudson, P., Matthew, B., Middlebrook, A.,
Peltier, R., Sullivan, A., Thomson, D., and Weber, R.: Single-particle mass
spectrometry of tropospheric aerosol particles, J. Geophys. Res.-Atmos., 111, D23S32, https://doi.org/10.1029/2006JD007340, 2006.
Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling,
W., and Cox, C.: Translocation of inhaled ultrafine particles to the brain,
Inhal. Toxicol., 16, 437–445, https://doi.org/10.1080/08958370490439597, 2004.
Oswin, H., Haddrell, A., Otero-Fernandez, M., Mann, J., Cogan, T., Hilditch,
T., Tian, J., Hardy, D., Hill, D., Finn, A., Davidson, A., and Reid, J.: The
dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment,
P. Natl. Acad. Sci. USA, 119, e2200109119, https://doi.org/10.1073/pnas.2200109119, 2022.
Pankow, J. F.: An Absorption Model of the Gas/Aerosol Partitioning Involved
in the Formation of Secondary Organic Aerosol, Atmos. Environ., 28, 189–193, 1994.
Papazian, S., D'Agostino, L., Sadiktsis, I., Froment, J., Bonnefille, B.,
Sdougkou, K., Xie, H., Athanassiadis, I., Budhavant, K., Dasari, S., Andersson, A., Gustafsson, O., and Martin, J.: Nontarget mass spectrometry
and in silico molecular characterization of air pollution from the Indian
subcontinent, Commun. Earth Environ., 3, 35, https://doi.org/10.1038/s43247-022-00365-1, 2022.
Penkett, S., Jones, B., Brice, K., and Eggleton, A.: Importance of atmospheric ozone and hydrogen peroxide in oxidizing sulfur dioxide in cloud
and rainwater, Atmos. Environ., 13, 123–137, https://doi.org/10.1016/0004-6981(79)90251-8, 1979.
Phillips, G., Thieser, J., Tang, M., Sobanski, N., Schuster, G., Fachinger,
J., Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J.: Estimating N2O5 uptake coefficients using ambient measurements of NO3, N2O5, ClNO2 and particle-phase nitrate, Atmos. Chem. Phys., 16, 13231–13249, https://doi.org/10.5194/acp-16-13231-2016, 2016.
Pitts, J., Van Cauwenbergh, K., Grosjean, D., SCHMID, J., Fitz, D., Belser,
W., Knudson, G., and Hynds, P.: Atmospheric reactions fo polycyclic aromatic
hydrocarbons – Facile formation of mutagenic nitro-derivatives, Science, 202, 515–519, https://doi.org/10.1126/science.705341, 1978.
Pitts, J., Lokensgard, D., Ripley, P., Van Cauwenberghe, K., Van Vaeck, L.,
Shaffer, S., Thill, A., and Belser, W.: Atmospheric epoxidation of
benzo[a]pyrene by ozone – Formation of the metabolite benzo[a]pyrene-4,5-oxide, Science, 210, 1347–1349, https://doi.org/10.1126/science.210.4476.1347, 1980.
Pope, C. A., Ezzati, M., and Dockery, D. W.: Fine-Particulate Air Pollution
and Life Expectancy in the United States, N. Engl. J. Med., 360, 376–386,
2009.
Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the Atmosphere-Biosphere Interface Influencing Climate and Public Health in the Anthropocene, Chem. Rev., 115, 4440–4475, https://doi.org/10.1021/cr500487s, 2015.
Pöschl, U., Letzel, T., Schauer, C., and Niessner, R.: Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with
benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications, J. Phys. Chem. A, 105, 4029–4041, 2001.
Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 1: General equations, parameters, and terminology, Atmos. Chem. Phys., 7, 5989–6023, https://doi.org/10.5194/acp-7-5989-2007, 2007.
Prather, K., Bertram, T., Grassian, V., Deane, G., Stokes, M., DeMott, P.,
Aluwihare, L., Palenik, B., Azam, F., Seinfeld, J., Moffet, R., Molina, M.,
Cappa, C., Geiger, F., Roberts, G., Russell, L., Ault, A., Baltrusaitis, J.,
Collins, D., Corrigan, C., Cuadra-Rodriguez, L., Ebben, C., Forestieri, S.,
Guasco, T., Hersey, S., Kim, M., Lambert, W., Modini, R., Mui, W., Pedler,
B., Ruppel, M., Ryder, O., Schoepp, N., Sullivan, R., and Zhao, D.: Bringing
the ocean into the laboratory to probe the chemical complexity of sea spray
aerosol, P. Natl. Acad. Sci. USA, 110, 7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013.
Prather, K. A., Hatch, C. D., and Grassian, V. H.: Analysis of Atmospheric
Aerosols, Annu. Rev. Anal. Chem., 1, 485–514,
https://doi.org/10.1146/annurev.anchem.1.031207.113030, 2008.
Pye, H., Ward-Caviness, C., Murphy, B., Appel, K., and Seltzer, K.: Secondary organic aerosol association with cardiorespiratory disease mortality in the United States, Nat. Commun., 12, 7215, https://doi.org/10.1038/s41467-021-27484-1, 2021.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Ravishankara, A. R.: Heterogeneous and multiphase chemistry in the troposphere, Science, 276, 1058–1065, https://doi.org/10.1126/science.276.5315.1058, 1997.
Reeser, D. I., George, C., and Donaldson, D. J.: Photooxidation of Halides
by Chlorophyll at the Air-Salt Water Interface, J. Phys. Chem. A, 113,
8591–8595, https://doi.org/10.1021/jp903657j, 2009.
Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M.,
Murray, B. J., Shilling, J. E., Martin, S. T., and Bertram, A. K.: Viscosity
of α-pinene secondary organic material and implications for particle
growth and reactivity, P. Natl. Acad. Sci. USA, 110, 8014–8019,
https://doi.org/10.1073/pnas.1219548110, 2013.
Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N., Boyer, H., Narayan, S.,
Yee, L., Green, H., Cui, T., Zhang, Z., Baumann, K., Fort, M., Edgerton, E.,
Budisulistiorini, S., Rose, C., Ribeiro, I., Oliveira, R., dos Santos, E.,
Machado, C., Szopa, S., Zhao, Y., Alves, E., de Sa, S., Hu, W., Knipping, E., Shaw, S., Duvoisin, S., de Souza, R., Palm, B., Jimenez, J., Glasius, M., Goldstein, A., Pye, H., Gold, A., Turpin, B., Vizuete, W., Martin, S., Thornton, J., Dutcher, C., Ault, A., and Surratt, J.: Increasing Isoprene
Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion
of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol
Physicochemical Properties, Environ. Sci. Technol., 53, 8682–8694,
https://doi.org/10.1021/acs.est.9b01019, 2019.
Rossignol, S., Tinel, L., Bianco, A., Passananti, M., Brigante, M., Donaldson, D. J., and George, C.: Atmospheric photochemistry at a fatty
acid–coated air-water interface, Science, 353, 699–702,
https://doi.org/10.1126/science.aaf3617, 2016.
Rudich, Y.: Laboratory perspectives on the chemical transformations of
organic matter in atmospheric particles, Chem. Rev., 103, 5097–5124,
https://doi.org/10.1021/cr020508f, 2003.
Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of Organic Aerosol:
Bridging the Gap Between Laboratory and Field Studies, Annu. Rev. Phys. Chem., 58, 321–352, https://doi.org/10.1146/annurev.physchem.58.032806.104432, 2007.
Russell, L.: Aerosol organic-mass-to-organic-carbon ratio measurements,
Environ. Sci. Technol., 37, 2982–2987, https://doi.org/10.1021/es026123w, 2003.
Schneider, S. R., Collins, D. B., Lim, C. Y., Zhu, L., and Abbatt, J. P. D.:
Formation of Secondary Organic Aerosol from the Heterogeneous Oxidation by
Ozone of a Phytoplankton Culture, ACS Earth Space Chem., 3, 2298–2306,
https://doi.org/10.1021/acsearthspacechem.9b00201, 2019.
Schnitzler, E., Gerrebos, N., Carter, T., Huang, Y., Healdc, C., Bertram,
A., and Abbatt, J.: Rate of atmospheric brown carbon whitening governed by
environmental conditions, P. Natl. Acad. Sci. USA, 119, e2205610119, https://doi.org/10.1073/pnas.2205610119, 2022.
Schroeder, W. H. and Urone, P.: Isolation and identification of nitrosium
hydrogen sulfate as a photochemical reaction product in air containing
sulfur dioxide and nitrogen dioxide, Environ. Sci. Technol., 12, 545–550,
https://doi.org/10.1021/es60141a016, 1978.
Segal-Rosenheimer, M. and Dubowski, Y.: Heterogeneous ozonolysis of cypermethrin using real-time monitoring FTIR techniques, J. Phys. Chem. C,
111, 11682–11691, 2007.
Shiraiwa, M., Ammann, M., Koop, T., and Poeschl, U.: Gas-uptake and chemical
aging of semisolid organic aerosol particles, P. Nat. Acad. Sci. USA, 108, 11003–11008, 2011.
Shiraiwa, M., Selzle, K., Yang, H., Sosedova, Y., Ammann, M., and Poschl, U.: Multiphase Chemical Kinetics of the Nitration of Aerosolized Protein by Ozone and Nitrogen Dioxide, Environ. Sci. Technol., 46, 6672–6680,
https://doi.org/10.1021/es300871b, 2012.
Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C., Fushimi, A., Enami, S., Arangio, A., Frohlich-Nowoisky, J., Fujitani, Y., Furuyama, A.,
Lakey, P., Lelieveld, J., Lucas, K., Morino, Y., Poschl, U., Takaharna, S.,
Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol Health
Effects from Molecular to Global Scales, Environ. Sci. Technol., 51, 13545–13567, https://doi.org/10.1021/acs.est.7b04417, 2017a.
Shiraiwa, M., Li, Y., Tsimpidi, A., Karydis, V., Berkemeier, T., Pandis, S.,
Lelieveld, J., Koop, T., and Poschl, U.: Global distribution of particle
phase state in atmospheric secondary organic aerosols, Nat. Commun., 8,
15002, https://doi.org/10.1038/ncomms15002, 2017b.
Shiraiwa, M., Carslaw, N., Tobias, D. J., Waring, M. S., Rim, D., Morrison,
G., Lakey, P. S. J., Kruza, M., von Domaros, M., Cummings, B. E., and Won, Y.: Modelling consortium for chemistry of indoor environments (MOCCIE):
integrating chemical processes from molecular to room scales, Environ. Sci.
Process. Imp., 21, 1240–1254, https://doi.org/10.1039/C9EM00123A, 2019.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R., Corley, R., Thrall, B.,
Rasch, P., Fast, J., Simonich, S., Shen, H., and Tao, S.: Global long-range
transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol, P. Natl. Acad. Sci. USA, 114, 1246–1251, https://doi.org/10.1073/pnas.1618475114, 2017a.
Shrivastava, M., Cappa, C., Fan, J., Goldstein, A., Guenther, A., Jimenez,
J., Kuang, C., Laskin, A., Martin, S., Ng, N., Petaja, T., Pierce, J., Rasch, P., Roldin, P., Seinfeld, J., Shilling, J., Smith, J., Thornton, J., Volkamer, R., Wang, J., Worsnop, D., Zaveri, R., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic aerosol: Implications for global climate forcing, Rev. Geophys., 55, 509–559, https://doi.org/10.1002/2016RG000540, 2017b.
Sihvonen, S., Schill, G., Lyktey, N., Veghte, D., Tolbert, M., and Freedman,
M.: Chemical and Physical Transformations of Aluminosilicate Clay Minerals
Due to Acid Treatment and Consequences for Heterogeneous Ice Nucleation, J.
Phys. Chem. A, 118, 8787–8796, https://doi.org/10.1021/jp504846g, 2014.
Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and von Glasow, R.: Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts, Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015.
Sobyra, T., Pliszka, H., Bertram, T., and Nathanson, G.: Production of Br2 from N2O5 and Bromide in Salty and Surfactant-Coated Water Microjets, J. Phys. Chem. A, 123, 8942–8953, https://doi.org/10.1021/acs.jpca.9b04225, 2019.
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275–316, 1999.
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J.: On the depletion of Antarctic ozone, Nature, 321, 755–758, https://doi.org/10.1038/321755a0, 1986.
Solomon, S., Dube, K., Stone, K., Yu, P., Kinnison, D., Toon, O., Strahan, S., Rosenlof, K., Portmann, R., Davis, S., Randel, W., Bernath, P., Boone, C., Bardeen, C., Bourassa, A., Zawada, D., and Degenstein, D.: On the
stratospheric chemistry of midlatitude wildfire smoke, P. Natl. Acad. Sci. USA, 119, e2117325119, https://doi.org/10.1073/pnas.2117325119, 2022.
Song, S., Gao, M., Xu, W., Sun, Y., Worsnop, D., Jayne, J., Zhang, Y., Zhu,
L., Li, M., Zhou, Z., Cheng, C., Lv, Y., Wang, Y., Peng, W., Xu, X., Lin,
N., Wang, Y., Wang, S., Munger, J., Jacob, D., and McElroy, M.: Possible
heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China
winter haze, Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, 2019.
Strahan, S., Smale, D., Solomon, S., Taha, G., Damon, M., Steenrod, S.,
Jones, N., Liley, B., Querel, R., and Robinson, J.: Unexpected Repartitioning of Stratospheric Inorganic Chlorine After the 2020 Australian Wildfires, Geophys. Res. Lett., 49, e2022GL098290, https://doi.org/10.1029/2022GL098290, 2022.
Sullivan, R., Minambres, L., DeMott, P., Prenni, A., Carrico, C., Levin, E.,
and Kreidenweis, S.: Chemical processing does not always impair heterogeneous ice nucleation of mineral dust particles, Geophys. Res. Lett., 37, L24805, https://doi.org/10.1029/2010GL045540, 2010a.
Sullivan, R., Petters, M., DeMott, P., Kreidenweis, S., Wex, H., Niedermeier, D., Hartmann, S., Clauss, T., Stratmann, F., Reitz, P., Schneider, J., and Sierau, B.: Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation, Atmos. Chem. Phys., 10, 11471–11487, https://doi.org/10.5194/acp-10-11471-2010, 2010b.
Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L.,
Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., Claeys, M.,
Flagan, R. C., and Seinfeld, J. H.: Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene, J. Phys. Chem. A, 110, 9665–9690, https://doi.org/10.1021/jp061734m, 2006.
Svehla, G.: Nomenclature of kinetic methods of analysis, Pure Appl. Chem., 65, 2291–2298, https://doi.org/10.1351/pac199365102291, 1993.
Tabazadeh, A. and Turco, R.: A model for heterogeneous chemical processes on
the surfaces of ice and nitric aid trihydrate particles, J. Geophys. Res.-Atmos., 98, 12727–12740, https://doi.org/10.1029/93JD00947, 1993.
Tham, Y., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A., Zhang, Y., and Wang, T.: Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in polluted northern China: roles of aerosol water content and chemical composition, Atmos. Chem. Phys., 18, 13155–13171, https://doi.org/10.5194/acp-18-13155-2018, 2018.
Thompson, C.: The NASA Atmospheric Tomography (ATom) Mission: Imaging the
Chemistry of the Global Atmosphere, B. Am. Meteorol. Soc., 761–790,
https://doi.org/10.1175/BAMS-D-20-0315.1, 2022.
Tilgner, A., Brauer, P., Wolke, R., and Herrmann, H.: Modelling multiphase
chemistry in deliquescent aerosols and clouds using CAPRAM3.0i, J. Atmos.
Chem., 70, 221–256, https://doi.org/10.1007/s10874-013-9267-4, 2013.
Tilgner, A., Schaefer, T., Alexander, B., Barth, M., Collett, J., Fahey, K.,
Nenes, A., Pye, H., Herrmann, H., and McNeill, V.: Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds, Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, 2021.
Tobias, D., Stern, A., Baer, M., Levin, Y., and Mundy, C.: Simulation and
Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces,
Annu. Rev. Phys. Chem., 64, 339–359, https://doi.org/10.1146/annurev-physchem-040412-110049, 2013.
Tobias, H. and Ziemann, P.: Thermal desorption mass spectrometric analysis
of organic aerosol formed from reactions of 1-tetradecene and O3 in the
presence of alcohols and carboxylic acids, Environ. Sci. Technol., 34,
2105–2115, https://doi.org/10.1021/es9907156, 2000.
Tolbert, M. A., Rossi, M. J., and Golden, D. M.: Antarctic ozone depletion
chemistry – Reactions of N2O5 with H2O and HCl on ice surfaces, Science, 240, 1018–1021, https://doi.org/10.1126/science.240.4855.1018, 1988.
Tritscher, I., Pitts, M., Poole, L., Alexander, S., Cairo, F., Chipperfield,
M., Grooss, J., Hopfner, M., Lambert, A., Luo, B., Molleker, S., Orr, A.,
Salawitch, R., Snels, M., Spang, R., Woiwode, W., and Peter, T.: Polar
Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone
Depletion, Rev. Geophys., 59, e2020RG000702, https://doi.org/10.1029/2020RG000702, 2021.
Trostl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U.,
Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K.,
Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer, A. K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S.,
Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A.,
Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim,
J., Krapf, M., Kurten, A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot,
S., Mohler, O., Nieminen, T., Onnela, A., Petaja, T., Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipilaa, M., Smith, J. N., Steiner, G., Tome, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P. L., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the atmosphere, Nature, 533, 527–530, https://doi.org/10.1038/nature18271, 2016.
Tseng, C. and Li, C.: Inactivation of surface viruses by gaseous Ozone, J.
Environ. Health, 70, 56–62, 2008.
Tuite, K., Thomas, J., Veres, P., Roberts, J., Stevens, P., Griffith, S.,
Dusanter, S., Flynn, J., Ahmed, S., Emmons, L., Kim, S., Washenfelder, R.,
Young, C., Tsai, C., Pikelnaya, O., and Stutz, J.: Quantifying Nitrous Acid
Formation Mechanisms Using Measured Vertical Profiles During the CalNex 2010
Campaign and 1D Column Modeling, J. Geophys. Res.-Atmos., 126,
e2021JD034689, https://doi.org/10.1029/2021JD034689, 2021.
Usher, C. R., Michel, A. E., and Grassian, V. H.: Reactions on mineral dust,
Chem. Rev., 103, 4883–4939, https://doi.org/10.1021/cr020657y, 2003.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P.,
Leskinen, J., Makela, J. M., Holopainen, J. K., Poschl, U., Kulmala, M.,
Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Wang, G., Zhang, R., Gomez, M., Yang, L., Zamora, M., Hu, M., Lin, Y., Peng,
J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y.,
Ji, Y., Zhang, F., Rosenfeld, D., Liss, P., Duce, R., Kolb, C., and Molina,
M.: Persistent sulfate formation from London Fog to Chinese haze, P. Natl. Acad. Sci. USA, 113, 13630–13635, https://doi.org/10.1073/pnas.1616540113, 2016.
Wang, L. and Clary, D.: Time-dependent wave-packet studies on the sticking
of HCl to an ice surface, J. Chem. Phys., 104, 5663–5673,
https://doi.org/10.1063/1.471772, 1996.
Wang, S., Zhou, S., Tao, Y., Tsui, W. G., Ye, J., Yu, J. Z., Murphy, J. G.,
McNeill, V. F., Abbatt, J. P. D., and Chan, A. W. H.: Organic Peroxides and
Sulfur Dioxide in Aerosol: Source of Particulate Sulfate, Environ. Sci. Technol., 53, 10695–10704, https://doi.org/10.1021/acs.est.9b02591, 2019.
Weller, C., Horn, S., and Herrmann, H.: Effects of Fe(III)-concentration,
speciation, excitation-wavelength and light intensity on the quantum yield
of iron(III)-oxalato complex photolysis, J. Photochem. Photobiol.-Chem.,
255, 41–49, https://doi.org/10.1016/j.jphotochem.2013.01.014, 2013.
Weschler, C.: Ozone in indoor environments: Concentration and chemistry,
Indoor Air, 10, 269–288, https://doi.org/10.1034/j.1600-0668.2000.010004269.x, 2000.
Wingen, L. and Finlayson-Pitts, B.: Probing surfaces of atmospherically
relevant organic particles by easy ambient sonic-spray ionization mass
spectrometry (EASI-MS), Chem. Sci., 10, 884–897, https://doi.org/10.1039/c8sc03851a, 2019.
Wisthaler, A. and Weschler, C. J.: Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air, P. Natl. Acad. Sci. USA, 107, 6568–6575, https://doi.org/10.1073/pnas.0904498106, 2009.
Wolff, E., Jones, A., Martin, T., and Grenfell, T.: Modelling photochemical
NOx production and nitrate loss in the upper snowpack of Antarctica, Geophys. Res. Lett., 29, 944, https://doi.org/10.1029/2002GL015823, 2002.
Wong, J. P. S., Carslaw, N., Zhao, R., Zhou, S., and Abbatt, J. P. D.:
Observations and impacts of bleach washing on indoor chlorine chemistry,
Indoor Air, 27, 1082–1090, https://doi.org/10.1111/ina.12402, 2017.
Woo, J. and McNeill, V.: simpleGAMMA v1.0 – a reduced model of secondary
organic aerosol formation in the aqueous aerosol phase (aaSOA), Geosci. Model
Dev., 8, 1821–1829, https://doi.org/10.5194/gmd-8-1821-2015, 2015.
Workman, E. J. and Reynolds, S. E.: Electrical Phenomena Occurring during the Freezing of Dilute Aqueous Solutions and Their Possible Relationship to
Thundrstorm Electricity, Phys. Rev., 78, 254–259, 1950.
Worsnop, D. R., Morris, J. W., Shi, Q., Davidovits, P., and Kolb, C. E.: A
chemical kinetic model for reactive transformations of aerosol particles,
Geophys. Res. Lett., 29, 1996, https://doi.org/10.1029/2002gl015542, 2002.
Xiao, M., Hoyle, C. R., Dada, L., Stolzenburg, D., Kürten, A., Wang, M., Lamkaddam, H., Garmash, O., Mentler, B., Molteni, U., Baccarini, A., Simon, M., He, X.-C., Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Bauer, P. S., Beck, L., Bell, D., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A., Duplissy, J., Finkenzeller, H., Gordon, H., Hofbauer, V., Kim, C., Koenig, T. K., Lampilahti, J., Lee, C. P., Li, Z., Mai, H., Makhmutov, V., Manninen, H. E., Marten, R., Mathot, S., Mauldin, R. L., Nie, W., Onnela, A., Partoll, E., Petäjä, T., Pfeifer, J., Pospisilova, V., Quéléver, L. L. J., Rissanen, M., Schobesberger, S., Schuchmann, S., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A., Vazquez-Pufleau, M., Wagner, A. C., Wagner, R., Wang, Y., Weitz, L., Wimmer, D., Wu, Y., Yan, C., Ye, P., Ye, Q., Zha, Q., Zhou, X., Amorim, A., Carslaw, K., Curtius, J., Hansel, A., Volkamer, R., Winkler, P. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Kirkby, J., Donahue, N. M., Baltensperger, U., El Haddad, I., and Dommen, J.: The driving factors of new particle formation and growth in the polluted boundary layer, Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, 2021.
Yang, J., Li, L., Wang, S., Li, H., Francisco, J., Zeng, X., and Gao, Y.:
Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol
Haze: Gaseous NO2 with Aqueous HSO /SO , J. Am. Chem. Soc., 141, 19312–19320, https://doi.org/10.1021/jacs.9b08503, 2019.
Yeh, K., Ditto, J., and Abbatt, J.: Ozonolysis Lifetime of Tetrahydrocannabinol in Thirdhand Cannabis Smoke, Environ. Sci. Technol. Lett., 9, 599–603, https://doi.org/10.1021/acs.estlett.2c00311, 2022.
Young, C. J., Zhou, S., Siegel, J. A., and Kahan, T. F.: Illuminating the
dark side of indoor oxidants, Environ. Sci Process. Imp., 21, 1229–1239,
https://doi.org/10.1039/C9EM00111E, 2019.
Yun, J., Kumar, A., Removski, N., Shchukarev, A., Link, N., Boily, J., and
Bertram, A.: Effects of Inorganic Acids and Organic Solutes on the Ice
Nucleating Ability and Surface Properties of Potassium-Rich Feldspar, ACS
Earth Space Chem., 5, 1212–1222, https://doi.org/10.1021/acsearthspacechem.1c00034, 2021.
Zannoni, N., Lakey, P., Won, Y., Shiraiwa, M., Rim, D., Weschler, C., Wang,
N., Ernle, L., Li, M., Beko, G., Wargocki, P., and Williams, J.: The human
oxidation field, Science, 377, 1071–1076, https://doi.org/10.1126/science.abn0340, 2022.
Zaveri, R., Barnard, J., Easter, R., Riemer, N., and West, M.: Particle-resolved simulation of aerosol size, composition, mixing state, and
the associated optical and cloud condensation nuclei activation properties
in an evolving urban plume, J. Geophys. Res.-Atmos., 115,
D17210, https://doi.org/10.1029/2009JD013616, 2010.
Zelenyuk, A. and Imre, D.: Single particle laser ablation time-of-flight
mass spectrometer: An introduction to SPLAT, Aerosol Sci. Tech., 39, 554–568, https://doi.org/10.1080/027868291009242, 2005.
Zepp, R. G., Hoigne, J., and Bader, H.: Nitrate-induced photooxidation of
trace organic chemicals in water, Environ. Sci. Technol., 21, 443–450,
https://doi.org/10.1021/es00159a004, 1987.
Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X.,
Zhang, S., Xing, J., Sun, Y., Ji, D., Chan, C., Gao, J., and McElroy, M.:
Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate
Formation for Winter Haze in China, Environ. Sci. Technol. Lett., 7,
632–638, https://doi.org/10.1021/acs.estlett.0c00368, 2020.
Zhou, J., Sato, K., Bai, Y., Fukusaki, Y., Kousa, Y., Ramasamy, S., Takami,
A., Yoshino, A., Nakayama, T., Sadanaga, Y., Nakashima, Y., Li, J., Murano,
K., Kohno, N., Sakamoto, Y., and Kajii, Y.: Kinetics and impacting factors
of HO2 uptake onto submicron atmospheric aerosols during the 2019 Air
QUAlity Study (AQUAS) in Yokohama, Japan, Atmos. Chem. Phys., 21,
12243–12260, https://doi.org/10.5194/acp-21-12243-2021, 2021.
Zhou, S., Lee, A. K. Y., McWhinney, R. D., and Abbatt, J. P. D.: Burial
Effects of Organic Coatings on the Heterogeneous Reactivity of
Particle-Borne Benzo[a]pyrene (BaP) toward Ozone, J. Phys. Chem. A, 116,
7050–7056, https://doi.org/10.1021/jp3030705, 2012.
Zhou, S., Yeung, L. W. Y., Forbes, M. W., Mabury, S., and Abbatt, J. P. D.:
Epoxide formation from heterogeneous oxidation of benzo[a]pyrene with
gas-phase ozone and indoor air, Environ. Sci. Process. Imp., 19, 1292–1299, https://doi.org/10.1039/C7EM00181A, 2017.
Zhou, S., Hwang, B. C. H., Lakey, P. S. J., Zuend, A., Abbatt, J. P. D., and
Shiraiwa, M.: Multiphase reactivity of polycyclic aromatic hydrocarbons is
driven by phase separation and diffusion limitations, P. Natl. Acad. Sci. USA, 116, 11658–11663, https://doi.org/10.1073/pnas.1902517116, 2019.
Zhou, S. M., Shiraiwa, M., McWhinney, R. D., Poschl, U., and Abbatt, J. P.
D.: Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol, Faraday Discuss., 165, 391–406,
https://doi.org/10.1039/c3fd00030c, 2013.
Zhou, Z., Zhou, S., and Abbatt, J. P. D.: Kinetics and Condensed-Phase Products in Multiphase Ozonolysis of an Unsaturated Triglyceride, Environ.
Sci. Technol., 53, 12467–12475, https://doi.org/10.1021/acs.est.9b04460, 2019.
Zhou, Z., Lakey, P., von Domaros, M., Wise, N., Tobias, D., Shiraiwa, M.,
and Abbatt, J.: Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling, Environ.
Sci. Technol., 56, 7716–7728, https://doi.org/10.1021/acs.est.2c01163, 2022.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605,
https://doi.org/10.1039/c2cs35122f, 2012.
Executive editor
The role of chemical reactions within the atmospheric multiphase system, i.e. aerosol particles and cloud droplets surrounded by a gas phase, has been recognized for several decades to affect the atmospheric composition.
In this article, significant advancements in measurement techniques during the past 20 years are briefly described that led to the identification of thousands of organic compounds and molecular-scale processes within the atmospheric multiphase system. Similarly, the complexity of multiphase chemistry models has been increasing to include in detail the underlying chemical processes and phase transfers between gas, aqueous, and organic phases.
The authors propose how complementary techniques, such as machine learning and molecular dynamics, can be used to constrain the resulting model complexity. They also identify chemical parameters to be further constrained in lab and field studies. Overall, the article highlights the need and future directions of increasingly interdisciplinary efforts to characterize the atmospheric multiphase chemistry system and its impacts on climate-chemistry interactions, atmospheric oxidation capacity and human health.
The role of chemical reactions within the atmospheric multiphase system, i.e. aerosol particles...
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas...
Special issue
Altmetrics
Final-revised paper
Preprint