Articles | Volume 23, issue 12
https://doi.org/10.5194/acp-23-7103-2023
https://doi.org/10.5194/acp-23-7103-2023
Research article
 | 
28 Jun 2023
Research article |  | 28 Jun 2023

Photoaging of phenolic secondary organic aerosol in the aqueous phase: evolution of chemical and optical properties and effects of oxidants

Wenqing Jiang, Christopher Niedek, Cort Anastasio, and Qi Zhang

Related authors

Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024,https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary
Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles
Lan Ma, Reed Worland, Wenqing Jiang, Christopher Niedek, Chrystal Guzman, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 23, 8805–8821, https://doi.org/10.5194/acp-23-8805-2023,https://doi.org/10.5194/acp-23-8805-2023, 2023
Short summary
Optical properties and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in northwest China
Jianjun Li, Qi Zhang, Gehui Wang, Jin Li, Can Wu, Lang Liu, Jiayuan Wang, Wenqing Jiang, Lijuan Li, Kin Fai Ho, and Junji Cao
Atmos. Chem. Phys., 20, 4889–4904, https://doi.org/10.5194/acp-20-4889-2020,https://doi.org/10.5194/acp-20-4889-2020, 2020
Short summary
Molecular characteristics and diurnal variations of organic aerosols at a rural site in the North China Plain with implications for the influence of regional biomass burning
Jianjun Li, Gehui Wang, Qi Zhang, Jin Li, Can Wu, Wenqing Jiang, Tong Zhu, and Limin Zeng
Atmos. Chem. Phys., 19, 10481–10496, https://doi.org/10.5194/acp-19-10481-2019,https://doi.org/10.5194/acp-19-10481-2019, 2019
Short summary
Photooxidants from brown carbon and other chromophores in illuminated particle extracts
Richie Kaur, Jacqueline R. Labins, Scarlett S. Helbock, Wenqing Jiang, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 19, 6579–6594, https://doi.org/10.5194/acp-19-6579-2019,https://doi.org/10.5194/acp-19-6579-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025,https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025,https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025,https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary
Enhanced sulfate formation in mixed biomass burning and sea-salt interactions mediated by photosensitization: effects of chloride, nitrogen-containing compounds, and atmospheric aging
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
Atmos. Chem. Phys., 25, 425–439, https://doi.org/10.5194/acp-25-425-2025,https://doi.org/10.5194/acp-25-425-2025, 2025
Short summary
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia
Si Zhang, Yining Gao, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 14177–14190, https://doi.org/10.5194/acp-24-14177-2024,https://doi.org/10.5194/acp-24-14177-2024, 2024
Short summary

Cited articles

Al-Nu'airat, J., Dlugogorski, B. Z., Gao, X., Zeinali, N., Skut, J., Westmoreland, P. R., Oluwoye, I., and Altarawneh, M.: Reaction of phenol with singlet oxygen, Phys. Chem. Chem. Phys., 21, 171–183, https://doi.org/10.1039/C8CP04852E, 2019. 
Anastasio, C. and McGregor, K. G.: Chemistry of fog waters in California's Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen, Atmos. Environ., 35, 1079–1089, https://doi.org/10.1016/S1352-2310(00)00281-8, 2001. 
Anastasio, C., Faust, B. C., and Rao, C. J.: Aromatic Carbonyl Compounds as Aqueous-Phase Photochemical Sources of Hydrogen Peroxide in Acidic Sulfate Aerosols, Fogs, and Clouds. 1. Non-Phenolic Methoxybenzaldehydes and Methoxyacetophenones with Reductants (Phenols), Environ. Sci. Technol., 31, 218–232, https://doi.org/10.1021/es960359g, 1997. 
Arciva, S., Niedek, C., Mavis, C., Yoon, M., Sanchez, M. E., Zhang, Q., and Anastasio, C.: Aqueous OH Oxidation of Highly Substituted Phenols as a Source of Secondary Organic Aerosol, Environ. Sci. Technol., 56, 9959–9967, https://doi.org/10.1021/acs.est.2c02225, 2022. 
Download
Short summary
We studied how aqueous-phase secondary organic aerosol (aqSOA) form and evolve from a phenolic carbonyl commonly present in biomass burning smoke. The composition and optical properties of the aqSOA are significantly affected by photochemical reactions and are dependent on the oxidants' concentration and identity in water. During photoaging, the aqSOA initially becomes darker, but prolonged aging leads to the formation of volatile products, resulting in significant mass loss and photobleaching.
Share
Altmetrics
Final-revised paper
Preprint