Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4501-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4501-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global warming will largely increase waste treatment CH4 emissions in Chinese megacities: insight from the first city-scale CH4 concentration observation network in Hangzhou, China
College of Biology and the Environment, Joint Center for Sustainable
Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,
China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science & Technology, Nanjing 210044, China
Junqing Zhang
College of Biology and the Environment, Joint Center for Sustainable
Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,
China
Hangzhou Meteorological Bureau, Hangzhou 310051, China
Zhejiang Lin'an Atmospheric Background National Observation and
Research Station, Hangzhou 311300, China
Rongguang Du
CORRESPONDING AUTHOR
Hangzhou Meteorological Bureau, Hangzhou 310051, China
Xiaofei Xu
Zhejiang Lin'an Atmospheric Background National Observation and
Research Station, Hangzhou 311300, China
Haoyu Xiong
Zhejiang Innovative Institute of Carbon Neutrality, Zhejiang University of Technology, Hangzhou 310014, China
Huili Liu
College of Biology and the Environment, Joint Center for Sustainable
Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,
China
Xinyue Ai
College of Biology and the Environment, Joint Center for Sustainable
Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,
China
Yiyi Peng
College of Biology and the Environment, Joint Center for Sustainable
Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,
China
Wei Xiao
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science & Technology, Nanjing 210044, China
Related authors
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021, https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary
Short summary
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River delta (YRD) ranks as one of the most densely populated regions in the world and is an anthropogenic CO2 hotspot. Besides anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and sources. Independent quantification of the fossil and cement CO2 emission and assessment of their impact on atmospheric δ13C-CO2 have potential to improve our understanding of urban CO2 cycling.
Xinyao Hu, Aoyuan Yu, Xiaojing Shen, Jiayuan Lu, Yangmei Zhang, Quan Liu, Lei Liu, Linlin Liang, Hongfei Tong, Qianli Ma, Shuxian Zhang, Bing Qi, Rongguang Du, Huizheng Che, Xiaoye Zhang, and Junying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3796, https://doi.org/10.5194/egusphere-2025-3796, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Simultaneous measurements of aerosol hygroscopicity and volatility were performed using Volatility-Hygroscopicity Tandem Differential Mobility Analyzer in Beijing. The results reveal that hygroscopicity and volatility of accumulated mode particles are significantly influenced by dust. The size dependences of hygroscopicity and volatility during dust period were different from that before dust period. During dust period, the particles at 300 nm were hydrophobic and less volatile.
Xiaojing Shen, Quan Liu, Junying Sun, Wanlin Kong, Qianli Ma, Bing Qi, Lujie Han, Yangmei Zhang, Linlin Liang, Lei Liu, Shuo Liu, Xinyao Hu, Jiayuan Lu, Aoyuan Yu, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 25, 5711–5725, https://doi.org/10.5194/acp-25-5711-2025, https://doi.org/10.5194/acp-25-5711-2025, 2025
Short summary
Short summary
In this work, an automatic switched inlet system was developed and employed to investigate the aerosols and cloud droplets at a mountain site with frequent cloud processes. It showed different characteristics of cloud residual and interstitial particles. Stronger particle hygroscopicity reduced liquid water content and smaller cloud droplet diameters. This investigation contributes to understanding aerosol–cloud interactions by assessing the impact of aerosol particles on cloud microphysics.
Quan Liu, Xiaojing Shen, Junying Sun, Yangmei Zhang, Bing Qi, Qianli Ma, Lujie Han, Honghui Xu, Xinyao Hu, Jiayuan Lu, Shuo Liu, Aoyuan Yu, Linlin Liang, Qian Gao, Hong Wang, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 25, 3253–3267, https://doi.org/10.5194/acp-25-3253-2025, https://doi.org/10.5194/acp-25-3253-2025, 2025
Short summary
Short summary
Through simultaneous measurements of aerosol particles and fog droplets, the evolution of droplets size distribution during the eight observed fog events was investigated. The results showed that the concentration and size distribution of pre-fog aerosol had significant impacts on fog microphysical characteristics. The extinction of fog interstitial particles played an important role in visibility degradation for light fogs, especially in polluted regions.
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021, https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary
Short summary
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River delta (YRD) ranks as one of the most densely populated regions in the world and is an anthropogenic CO2 hotspot. Besides anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and sources. Independent quantification of the fossil and cement CO2 emission and assessment of their impact on atmospheric δ13C-CO2 have potential to improve our understanding of urban CO2 cycling.
Cited articles
Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.: Modelling CO2 weather – why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019, 2019.
Bian, R., Zhang, T., Zhao, F., Chen, J., Liang, C., Li, W., Sun, Y., Chai, X., Fang, X., and Yuan, L.: Greenhouse gas emissions from waste
sectors in China during 2006–2019: Implications for carbon mitigation,
Proc. Saf. Environ., 161, 488–497, 2022.
Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017.
Börjesson, G. and Svensson, B. H.: Seasonal and Diurnal Methane Emissions From a
Landfill and Their Regulation By Methane Oxidation, Waste Manage. Res., 15, 33–54, https://doi.org/10.1177/0734242X9701500104, 1997.
Cai, B., Liu, J., Zeng, X., Cao, D., Liu, L., Zhou, Y., and Zhang, Z.: Estimation of
CH4 emission from landfill in China based on point emission sources, Adv.
Clim. Change Res., 5, 81–91, 2014.
Cai, B., Lou, Z., Wang, J., Geng, Y., Sarkis, J., Liu, J., and Gao, Q.: CH4
mitigation potentials from China landfills and related environmental
co-benefits, Sci. Adv., 4, eaar8400, https://doi.org/10.1126/sciadv.aar8400,
2018.
Chen, Z., Jacob, D. J., Nesser, H., Sulprizio, M. P., Lorente, A., Varon, D. J., Lu, X., Shen, L., Qu, Z., Penn, E., and Yu, X.: Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations, Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, 2022.
Crippa, M., Guizzardi, D., Solazzo, E., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Olivier, J. G. J., Grassi, G., Rossi, S., and Vignati, E.: GHG emissions of all world countries – 2021 Report [data set], EUR 30831 EN, Publications Office of the European Union, Luxembourg, JRC126363, ISBN 978-92-76-41547-3, https://doi.org/10.2760/173513, 2021.
De La Cruz, F. B. and Barlaz, M. A.: Estimation of waste
component-specific landfill decay rates using laboratory-scale decomposition
data, Environ. Sci. Technol., 44, 4722–4728, 2010.
Du, M., Peng, C., Wang, X., Chen, H., Wang, M., and Zhu, Q.: Quantification
of methane emissions from municipal solid waste landfills in China during
the past decade, Renew. Sust. Energ. Rev., 78, 272–279, 2017.
Du, M., Zhu, Q., Wang, X., Li, P., Yang, B., Chen, H., Wang, M., Zhou, X.,
and Peng, C.: Estimates and predictions of methane emissions from wastewater
in China from 2000 to 2020, Earths Future, 6, 252–263, 2018.
Fang, S., Du, R., Qi, B., Ma, Q., Zhang, G., Chen, B., and Li, J.: Variation of carbon dioxide mole fraction
at a typical urban area in the Yangtze River Delta, China. Atmos. Res., 265,
105884, https://doi.org/10.1016/j.atmosres.2021.105884, 2022.
Griffis, T. J., Chen, Z., Baker, J. M.,Wood, J. D., Millet, D. B., Lee,
X., Venterea, R., and Turner P.: Nitrous oxide emissions are enhanced in a warmer and wetter world,
P. Natl. Acad. Sci. USA, 114, 12081–12085,
https://doi.org/10.1073/pnas.1704552114, 2017.
He, J., Naik, V., Horowitz, L. W., Dlugokencky, E., and Thoning, K.: Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1, Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020, 2020.
Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, 2016.
Hopkins, F. M., Kort, E. A., Bush, S. E., Ehleringer, J. R., Lai, C.-T.,
Blake, D. R., and Randerson, J. T.: Spatial patterns and source attribution
of urban methane in the Los Angeles Basin, J. Geophys. Res.-Atmos., 121,
2490–2507, 2016.
Höglund-Isaksson, L.: Global anthropogenic methane emissions 2005–2030: technical mitigation potentials and costs, Atmos. Chem. Phys., 12, 9079–9096, https://doi.org/10.5194/acp-12-9079-2012, 2012.
Hu C., Griffis, T. J., Liu, S., Xiao, W., Hu, N., Huang, W., Yang, D., and Lee,
X.: Anthropogenic methane emission and
its partitioning for the Yangtze River Delta region of China, J. Geophys.
Res.-Biogeo., 124, 1148–1170, 2019.
Hu, C., Xu, J., Liu, C., Chen, Y., Yang, D., Huang, W., Deng, L., Liu, S., Griffis, T. J., and Lee, X.: Anthropogenic and natural controls on atmospheric δ13C-CO2 variations in the Yangtze River delta: insights from a carbon isotope modeling framework, Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021, 2021.
Hu, C., Griffis, T. J., Xia, L., Xiao, W., Liu, C., Xiao, Q., Huang, X.,
Yang, Y., Zhang, L., and Hou, B.: Anthropogenic CO2 emission reduction during
the COVID-19 pandemic in Nanchang City, China, Environ. Pollut., 309,
119767, https://doi.org/10.1016/j.envpol.2022.119767, 2022.
Huang, W. J., Griffis, T. J., Hu, C., Xiao, W., and Lee, X. H.: Seasonal
variations of CH4 emissions in the
Yangtze River Delta region of China are driven by agricultural activities,
Adv. Atmos. Sci., 38, 1537–1551,
https://doi.org/10.1007/s00376-021-0383-9, 2021.
Isaksen, I. S., Gauss, M., Myhre, G., Anthony, W., Katey, M., and Ruppel, C.: Strong
atmospheric chemistry feedback
to climate warming from Arctic methane emissions, Global Biogeochem. Cy., 25,
GB2002, https://doi.org/10.1029/2010GB003845, 2011.
Kumar, P., Broquet, G., Caldow, C., Laurent, O., Gichuki, S., Cropley, F., Yver-Kwok, C., Fontanier, B., Lauvaux, T., Ramonet, M., Shah, A., Berthe, G., Martin, F., Duclaux, O., Juery, C., Bouchet, C., Pitt, J., and Ciais, P.: Near-field atmospheric inversions
for the localization and quantification
Of controlled methane releases using stationary and mobile measurements, Q. J. Roy. Meteor. Soc., 148,
1886–1912, 2022.
Kissas, K., Ibrom, A., Kjeldsen, P., and Scheutz, C.: Methane emission dynamics from a
Danish landfill: The effect of changes
in barometric pressure, Waste. Manage., 138, 234–242, 2022.
Lian, J., Bréon, F.-M., Broquet, G., Lauvaux, T., Zheng, B., Ramonet, M., Xueref-Remy, I., Kotthaus, S., Haeffelin, M., and Ciais, P.: Sensitivity to the sources of uncertainties in the modeling of atmospheric CO2 concentration within and in the vicinity of Paris, Atmos. Chem. Phys., 21, 10707–10726, https://doi.org/10.5194/acp-21-10707-2021, 2021.
Lin, J. C.: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model [software and model code], J. Geophys. Res., 108, 4493, https://doi.org/10.1029/2002JD003161, 2003.
Lin, X., Zhang, W., Crippa, M., Peng, S., Han, P., Zeng, N., Yu, L., and Wang, G.: A comparative study of anthropogenic CH4 emissions over China based on the ensembles of bottom-up inventories, Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021, 2021.
Lopez-Coto, I., Ren, X., Salmon, O. E., Karion, A., Shepson, P. B.,
Dickerson, R. R., Stein, A., Prasad, K., and Whetstone, J. R.: Wintertime
CO2, CH4, and CO Emissions Estimation for the Washington, DC-Baltimore
Metropolitan Area Using an Inverse Modeling Technique, Environ. Sci. Technol., 54, 2606–2614, https://doi.org/10.1021/acs.est.9b06619,
2020.
Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P., Shen, L., Qu, Z., Scarpelli, T. R., Nesser, H., Yantosca, R. M., Sheng, J., Andrews, A., Parker, R. J., Boesch, H., Bloom, A. A., and Ma, S.: Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations, Atmos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, 2021.
Kaiho, K. and Koga, S.: Impacts of a massive release of methane and hydrogen
sulfide on oxygen and ozone during the late Permian mass extinction, Global Planet. Change, 107, 91–101,
https://doi.org/10.1016/j.gloplacha.2013.04.004, 2013.
Maasakkers, J. D., Varon, D. J., Elfarsdóttir, A., McKeever, J., Jervis,
D., Mahapatra, G., Pandey, S., Lorente, A., Borsdorff, T., Foorthuis, L. R.,
Schuit, B. J., Tol, P., van Kempen, T. A., van Hees, R., and Aben, I.: Using
satellites to uncover large methane emissions from landfills, Sci. Adv., 8,
eabn9683, https://doi.org/10.1126/sciadv.abn9683, 2022.
Masuda, S., Sano, I., Hojo, T., Li, Y., and Nishimura, O.: The comparison of
greenhouse gas emissions in sewage treatment plants with different treatment
processes, Chemosphere, 193, 581–590, 2018.
Miles, N. L., Richardson, S. J., Lauvaux, T., Davis, K. J., Balashov, N. V.,
Deng, A., Turnbull, J. C., Sweeney, C., Gurney, K. R., Patarasuk, R.,
Razlivanov, I., Cambaliza, M. O. L., and Shepson, P. B.: Quantification of
urban atmospheric boundary layer greenhouse gas dry mole fraction
enhancements in the dormant season: Results from the Indianapolis Flux
Experiment (INFLUX), Elem. Sci. Anth., 5, 27, https://doi.org/10.1525/elementa.127, 2017.
Miller, S. M., Matross, D. M., Andrews, A. E., Millet, D. B., Longo, M., Gottlieb, E. W., Hirsch, A. I., Gerbig, C., Lin, J. C., Daube, B. C., Hudman, R. C., Dias, P. L. S., Chow, V. Y., and Wofsy, S. C.: Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data, Atmos. Chem. Phys., 8, 7673–7696, https://doi.org/10.5194/acp-8-7673-2008, 2008.
Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler,
L. M. P., and Schwietzke, S.: China's coal mine methane regulations have not
curbed growing emissions, Nat. Commun., 10, 303–308,
https://doi.org/10.1038/s41467-018-07891-7, 2019.
Mønster, J., Kjeldsen, P., and Scheutz, C.: Methodologies for
measuring fugitive methane emissions from landfills – a review, Waste
Manage., 87, 835–859, https://doi.org/10.1016/j.wasman.2018.12.047, 2019.
National Bureau of Statistics of China (NBSC): China Statistical Yearbook
(China Statistics Press, 2015), 2015 (in Chinese).
Pak, N. M., Heerah, S., Zhang, J., Chan, E., Worthy, D., Vogel, F., and Wunch, D.: The Facility Level and Area Methane
Emissions inventory for the Greater Toronto Area (FLAME-GTA)[J], Atmos.
Environ., 252, 118319, https://doi.org/10.1016/j.atmosenv.2021.118319, 2021.
Peng, S., Piao, S., Bousquet, P., Ciais, P., Li, B., Lin, X., Tao, S., Wang, Z., Zhang, Y., and Zhou, F.: Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010, Atmos. Chem. Phys., 16, 14545–14562, https://doi.org/10.5194/acp-16-14545-2016, 2016.
Sargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K.,
Mckain, K., Sweeney, C., Hegarty, J., Hardiman, B., Steven, C., and Wofsy, S. C.: Anthropogenic and biogenic CO2 fluxes
in the Boston urban region, P. Natl. Acad. Sci. USA, 115, 7491–7496, https://doi.org/10.1073/pnas.1803715115, 2018.
Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., Dewar, D., Huang, L., Inaba, A., Kansal, A., Lwasa, S., McMahon, J. E.,
Müller, D. B., Murakami, J., Nagendra, H., and Ramaswami, A.: Human Settlements, Infrastructure and Spatial Planning,
in: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K.,
Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and
Minx, J. C., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415416.018, 2014.
Solazzo, E., Crippa, M., Guizzardi, D., Muntean, M., Choulga, M., and Janssens-Maenhout, G.: Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases, Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021, 2021.
Spokas, K., Bogner, J., and Corcoran, M.: Modeling landfill CH4 emissions: CALMIM
international fieldvalidation, using CALMIM to simulate management
strategies, current and futureclimate scenarios, Elem. Sci. Anth., 9, 00050, https://doi.org/10.1525/elementa.2020.00050, 2021.
Tolaymat, T., Green, R. B., Hater, G. R., Barlaz, M. A., Black, P., Bronson, D.,
and Powell, J.: Evaluation of landfill gas decay constant for municipal
solid waste landfills operated as bioreactors, J. Air Waste Manage. Assoc.,
60, 91–97, 2010.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide
at Mauna Loa observatory 2. Analysis of the NOAA/GMCC data, 1974–1985, J.
Geophys. Res.-Atmos., 94,
8549–8565, https://doi.org/10.1029/JD094iD06p08549, 1989.
Tian, J., Gong, Y., Li, Y., Chen, X., Zhang, L., and Sun, Y.: Can
policy implementation increase public waste sorting behavior?, The comparison
between regions with and without waste sorting policy implementation in
China, J. Clean. Prod., 636, 132401, https://doi.org/10.1016/j.jclepro.2022.132401, 2022.
United States Environmental Protection Agency (USEPA): Global Mitigation of
Non-CO2 Greenhouse Gases 2010-2030 (United States Environmental Protection
Agency Office of Atmospheric Programs (6207J), EPA-430-R-13-011, 2013);
http://www.epa.gov/sites/production/files/2016-07/documents/mac_report_2014-exec_summ.compressed.pdf (last access: 19 July 2021), 2013.
Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty estimates, Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, 2017.
Wang, X., Nagpure, A. S., DeCarolis, J. F., and Barlaz, M. A.: Characterization of
uncertainty in estimation of methane collection from select U.S. landfills,
Environ. Sci. Technol. 49, 1545–1551, 2015.
Wang, Y., Wang, X., Wang, K., Chevallier, F., Zhu, D., Lian, J., He, Y., Tian, H., Li, J., Zhu, J., Jeong, S., and Canadell, J.: The size of the land carbon sink in
China, Nature, 7–9, https://doi.org/10.1038/s41586-021-04255-y, 2022.
Williams, J. P., Ars, S., Vogel, F., Regehr, A., and Kang, M.:
Differentiating and Mitigating Methane Emissions from Fugitive Leaks from
Natural Gas Distribution, Historic Landfills, and Manholes in Montréal,
Canada, Environ. Sci. Technol., 56, 16686–16694,
https://doi.org/10.1021/acs.est.2c06254, 2022.
Yadav, V., Duren, R., Mueller, K., Verhulst, K. R., Nehrkorn, T., and Kim,
J.: Spatio-temporally resolved methane fluxes fromthe Los Angeles megacity
J. Geophys. Res.-Atmos. 124, 5131–5148, 2019.
Zhao, X., Jin, X., Guo, W., Zhang, C., Shan, Y., Du, M., Tillotson, M.,
Yang, H., Liao, X., and Li, Y.: China's urban methane emissions from
municipal wastewater treatment plant, Earths Future, 7, 480–490, 2019.
Zhao, Z., Bian, R., Zhao, F., and Chai, X.: Implications of municipal solid
waste disposal methods in China on greenhouse gas emissions, Renew. Sust.
Energ. Rev., 39, e13372, https://doi.org/10.1002/ep.13372, 2019.
Zhang, B. and Chen, G.: China's CH4 and CO2 emissions: Bottomup estimation
and comparative analysis, Ecol. Indic., 47, 112–122,
https://doi.org/10.1016/j.ecolind.2014.01.022, 2014.
Zhang, K., Lee, X., Schultz, N. M., Huang, Q., Liu, Z., Chu, H., Zhao, L.,
and He, C.: A global dataset on subgrid land surface climate (2015–2100)
from the Community Earth System Model, Geosci. Data J., 1–12,
https://doi.org/10.1002/gdj3.153, 2022.
Zhang, Y., Fang, S., Chen, J., Lin, Y., Chen, Y., Liang, R., Jiang, K., Parker, R.,
Boesch, H., Steinbacher, M., Sheng, J., and Lu, X.: Shaojie Song, Shushi Peng:
Observed Changes in China's Methane Emissions Linked to Policy Drivers,
P. Natl. Acad. Sci. USA, 119, e2202742119, 2022.
Zhejiang Provincial Bureau of Statistics: Survey Office of the National
Bureau of Statistics in Zhejiang, Zhejiang Statistical Yearbook 2018–2019
(China Statistics Press, Beijing, China, 2019), https://doi.org/10.1073/pnas.2202742119, 2019.
Short summary
We build the first city-scale tower-based atmospheric CH4 concentration observation network in China. The a priori total annual anthropogenic CH4 emissions and emissions from waste treatment were overestimated by 36.0 % and 47.1 %, respectively, in Hangzhou. Global warming will largely enhance the CH4 emission factor of waste treatment, which will increase by 17.6 %, 9.6 %, 5.6 % and 4.0 % for Representative Concentration Pathway (RCP) 8.5, RCP6.0, RCP4.5 and RCP2.6, respectively, by 2100.
We build the first city-scale tower-based atmospheric CH4 concentration observation network in...
Altmetrics
Final-revised paper
Preprint