

Supplement of

Global warming will largely increase waste treatment CH_4 emissions in Chinese megacities: insight from the first city-scale CH_4 concentration observation network in Hangzhou, China

Cheng Hu et al.

Correspondence to: Bing Qi (bill_129@sina.com) and Rongguang Du (drg1998@163.com)

The copyright of individual parts of the supplement might differ from the article licence.

Section S1. Choice of CH₄ background based on monthly footprint

We carefully choose the CH₄ background for each month by identifying the main air flows based on monthly footprint (Figure S3). The final choice is displayed in Table S2. And we should note because the difference between YON and other four sites of TAP, RYO, WLG and UUM sites were larger as 100 ppb from May to August, which indicates there is large uncertainty when air flows come from directions of both YON site and other four sites. We found the footprint in July showed obvious air follows both from the South China Sea (YON site) and north east of observation site (RYO site), and to reduce the potential large uncertainty in CH₄ simulations, we used the averages of both sites as the background in July.

Section S2. Multiplicative scaling factor method

We also used the multiplicative scaling factor (hereafter MSF) method to constrain emissions by using observations at Linan site, which has been applied broadly to constrain greenhouse gas and other tracer gas emissions. The MSF SFs were derived by dividing the observed enhancement by the simulated enhancement (Sargent et al., 2018; He et al., 2020),

$$SF(CH_4) = \frac{CH_{4_obs} - CH_{4_bg} - \Delta CH_{4_wetland}}{\Delta CH_{4_anthro}}$$
(3)

where SF(CH₄) is the scaling factor for anthropogenic CH₄ emissions (excluding agricultural soil in this study), and CH_{4_obs}, CH_{4_bg}, Δ CH_{4_wetland} and Δ CH_{4_anthro} are the CH₄ concentration observations, background CH₄, simulated wetland CH₄ enhancement, and simulated anthropogenic CH₄ enhancement (excluding agricultural soil), respectively.

Figure S1. Population density for China in year of 2019, with the red line represents Heihe-Tengchong line, with 94% of national total population lived in the east of this line.

Figure S2. Waste treatment CH_4 emissions in EDGAR v6.0 inventory, units for emissions: kg m⁻² s⁻¹.

Figure S3. Monthly averaged footprint from December, 2020 to November, 2021, units for footprint: ppm m² s mol⁻¹.

Figure S4. Comparisons between hourly CH₄ concentration simulations and observations at three sites.

Figure S5. Comparisons between observed and simulated meteorological fields for air temperature at 2 m (T_{2m}), relative humidity (RH), downward solar radiation (S \downarrow), and wind speed (WS) at 10 m height.

Figure S6. Comparisons between Simulated and observed hourly PBLH in (a) December 2020, (b) May 2021, (c) July 2021, and (d) September 2021.

Figure S7. Daily variations of simulated CH₄ enhancements from different categories for Hangzhou

Figure S8. Comparisons of anthropogenic CH_4 emissions between *a priori* and *posteriori* results, PRO: fuel exploitation, RCO: energy for building, the rest anthropogenic emissions: excluding waste treatment, PRO, RCO and agricultural soil.

Figure S9. Daily CH₄ concentrations comparisons using both *a priori* and *posteriori* emissions.

Figure R10. Relationship between the monthly *posteriori* CH₄ emissions and temperature in case 1 and 3.

Figure S11. (a) Relationship between monthly averaged atmospheric pressure and normalized SFs, (b) relationship between monthly averaged atmospheric pressure and T_{2m} , and (c) relationship between monthly precipitation and T_{2m} .

Figure S12. Spatial distributions of air temperature trends in China for (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and (d) RCP8.5 scenarios. Note the red boundary is Zhejiang province, and the trends represents years from 2020 to 2100.

Sites	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
TAP												
YON								Y				
RYO		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
WLG												
UUM	Y	Y										

Table S1. The choice of CH₄ background based on simulated monthly footprint, 'Y' indicates concentration at this background site (or averages of both) will be used as CH4 background for this month.

		unu	simulations.				
Manth		Case 1		Case 3			
Month	Wetland	Waste	Others	Wetland	Waste	Others	
1	1.00	0.64	0.71	1.00	0.54	0.78	
2	1.00	0.44	0.82	1.00	0.33	0.93	
3	1.01	0.56	0.98	1.02	0.48	1.06	
4	1.12	0.73	1.13	1.13	0.70	1.16	
5	1.16	1.23	1.01	1.15	1.26	0.97	
6	1.08	0.98	1.18	1.08	0.98	1.18	
7	1.04	1.36	1.41	1.01	1.42	1.36	
8	1.02	0.95	0.99	1.03	0.94	1.00	
9	1.02	0.75	0.97	1.04	0.71	1.01	
10	1.08	0.68	1.02	1.08	0.65	1.05	
11	1.00	0.37	0.72	1.00	0.23	0.83	
12	1.00	0.59	0.66	1.00	0.42	0.74	

 Table S2. Posteriori Scaling factors by only using daytime (11:00-16:00, local time) observations and simulations.

Month	Case 1	Case 2	Case 3	Average(±STD)
1	0.59	0.64	0.72	0.65(±0.13)
2	0.40	0.49	0.54	0.48(±0.14)
3	0.79	0.87	0.83	0.83(±0.08)
4	0.93	0.91	0.88	0.91(±0.05)
5	1.25	1.21	1.17	1.21(±0.08)
6	1.19	1.21	1.15	1.18(±0.06)
7	1.78	1.66	1.60	1.68(±0.18)
8	1.25	1.25	1.21	1.24(±0.04)
9	1.43	1.38	1.33	1.38(±0.10)
10	1.21	1.15	1.12	1.16(±0.09)
11	0.55	0.60	0.67	0.61(±0.12)
12	0.63	0.62	0.77	0.67(±0.15)

Table S3. Normalized monthly CH₄ SFs based on annual averages for waste treatment, note we calculate the normalized monthly SFs by dividing monthly SFs by annual averages.