the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model
Xuemei Wang
Hamish Gordon
Daniel P. Grosvenor
Meinrat O. Andreae
Related authors
Whether increased aerosol increases or decreases liquid cloud mass has been a longstanding question. Observed correlations suggest that aerosols thin liquid cloud, but we are able to show that observations were consistent with an increase in liquid cloud in response to aerosols by leveraging a model where causality could be traced.
hiddensource of inter-model variability and may be leading to bias in some climate model results.
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
Related subject area
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Cited articles
closed loopfor aerosol formation, transport and growth.