Cleveland, W. S.: Robust locally weighted regression and smoothing
scatterplots, J. Am. Stat. Assoc., 74, 829–836,
https://doi.org/10.2307/2286407, 1979.
Coldewey-Egbers, M., Loyola, D. G., Lerot, C., and Van Roozendael, M.: Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record, Atmos. Chem. Phys., 22, 6861–6878, https://doi.org/10.5194/acp-22-6861-2022, 2022.
Delage, O., Portafaix, T., Bencherif, H., Bourdier, A., and Lagracie, E.: Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science, Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022, 2022.
Dietmüller, S., Garny, H., Eichinger, R., and Ball, W. T.: Analysis of recent lower-stratospheric ozone trends in chemistry climate models, Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, 2021.
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClO
x/NO
x interaction, Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985.
Friedman, J. H.: A variable span smoother. Laboratory for Computational
Statistics, Department of Statistics, Stanford University: Technical Report,
SLAC-PUB-3477, https://doi.org/10.2172/1447470, 1984.
Frith, S. M., Kramarova, N. A., Stolarski, R. S., McPeters, R.D., Bhartia,
P. K., and Labow, G. J.: Recent changes in total column ozone based on the
SBUV Version 8.6 Merged Ozone Data Set, J. Geophys. Res.-Atmos., 119,
9735–9751, https://doi.org/10.1002/2014JD021889, 2014.
Harris, N. R. P., Kyrö, E., Staehelin, J., Brunner, D., Andersen, S.-B., Godin-Beekmann, S., Dhomse, S., Hadjinicolaou, P., Hansen, G., Isaksen, I., Jrrar, A., Karpetchko, A., Kivi, R., Knudsen, B., Krizan, P., Lastovicka, J., Maeder, J., Orsolini, Y., Pyle, J. A., Rex, M., Vanicek, K., Weber, M., Wohltmann, I., Zanis, P., and Zerefos, C.: Ozone trends at northern mid- and high latitudes – a European perspective, Ann. Geophys., 26, 1207–1220, https://doi.org/10.5194/angeo-26-1207-2008, 2008.
Hudson, R. D., Andrade, M. F., Follette, M. B., and Frolov, A. D.: The total ozone field separated into meteorological regimes – Part II: Northern Hemisphere mid-latitude total ozone trends, Atmos. Chem. Phys., 6, 5183–5191, https://doi.org/10.5194/acp-6-5183-2006, 2006.
Komhyr, W. D.: Dobson spectrophotometer systematic total ozone measurement
error, Geophys. Res. Lett., 7, 161–163,
https://doi.org/10.1029/GL007i002p00161, 1980.
Krzyścin, J. W. and Rajewska-Więch, B.: Specific variability of total
ozone over Central Europe during spring and summer in the period 1979–2014,
Int. J. Clim., 36, 3539–3549, https://doi.org/10.1002/joc.4574, 2016.
Krzyścin, J. W., Rajewska-Więch, B., and Pawlak, I.: Long-Term Ozone
Changes Over the Northern Hemisphere Mid-Latitudes for the 1979–2012
Period, Atmos. Ocean, 53, 153–160,
https://doi.org/10.1080/07055900.2014.990869, 2015.
Laine, M., Latva-Pukkila, N., and Kyrölä, E.: Analysing time-varying trends in stratospheric ozone time series using the state space approach, Atmos. Chem. Phys., 14, 9707–9725, https://doi.org/10.5194/acp-14-9707-2014, 2014.
Laube, J. C., Engel, A., Bönisch, H., Möbius, T., Sturges, W. T., Braß, M., and Röckmann, T.: Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere, Atmos. Chem. Phys., 10, 1093–1103, https://doi.org/10.5194/acp-10-1093-2010, 2010.
Mäder, J. A., Staehelin, J., Brunner, D., Stahel, W. A., Wohltmann, I.,
and Peter, T.: Statistical modeling of total ozone: Selection of appropriate
explanatory variables, J. Geophys. Res., 112, D11108,
https://doi.org/10.1029/2006JD007694, 2007.
Maillard Barras, E., Haefele, A., Stübi, R., Jouberton, A., Schill, H., Petropavlovskikh, I., Miyagawa, K., Stanek, M., and Froidevaux, L.: Dynamical linear modeling estimates of long-term ozone trends from homogenized Dobson Umkehr profiles at Arosa/Davos, Switzerland, Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, 2022.
Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., and Schauffler, S.
M.: When will the Antarctic ozone hole recover?, Geophys. Res. Lett., 33,
L12814, https://doi.org/10.1029/2005GL025232, 2006.
Reinsel, G. C., Miller, A. J., Weatherhead, E. C., Flynn, L. E., Nagatani,
R. M., Tiao, G. C., and Wuebbles, D. J.: Trend analysis of total ozone data
for turnaround and dynamical contributions, J. Geophys. Res., 110, D16306,
https://doi.org/10.1029/2004JD004662, 2005.
Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: Stratospheric
aerosol optical depths, 1850–1990, J. Geophys. Res., 98, 22987–22994,
https://doi.org/10.1029/93JD02553, 1993.
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J.: On the
depletion of Antarctic ozone, Nature, 321, 755–758,
https://doi.org/10.1038/321755a0, 1986.
Szela̧g, M. E., Sofieva, V. F., Degenstein, D., Roth, C., Davis, S., and Froidevaux, L.: Seasonal stratospheric ozone trends over 2000–2018 derived from several merged data sets, Atmos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-20-7035-2020, 2020.
Thompson, A. M., Stauffer, R. M., Wargan, K., Witte, J. C., Kollonige, D.
E., and Ziemke, J. R.: Regional and seasonal trends in tropical ozone from
SHADOZ profiles: Reference for models and satellite products, J. Geophys.
Res.-Atmos., 126, e2021JD034691, https://doi.org/10.1029/2021JD034691, 2021.
van der A, R. J., Allaart, M. A. F., and Eskes, H. J.: Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012, Atmos. Meas. Tech., 8, 3021–3035, https://doi.org/10.5194/amt-8-3021-2015, 2015.
Velders, G. J. M. and Daniel, J. S.: Uncertainty analysis of projections of ozone-depleting substances: mixing ratios, EESC, ODPs, and GWPs, Atmos. Chem. Phys., 14, 2757–2776, https://doi.org/10.5194/acp-14-2757-2014, 2014.
Wald, A. and Wolfowitz, J.: On a test whether two samples are from the same
population, Ann. Math. Stat., 11, 147–162,
https://doi.org/10.1214/aoms/1177731909, 1940.
Wargan, K., Labow, G. J., Frith, S. M., Pawson, S., Livesey, N. J., and
Partyka, G. S.: Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis.,
J. Climate, 30, 2961–2988, https://doi.org/10.1175/JCLI-D-16-0699.1, 2017.
Weber, M., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Wild, J. D., Burrows, J. P., Long, C. S., and Loyola, D.: Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery, Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, 2018.
Weber, M., Arosio, C., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Wild, J. D., Tourpali, K., Burrows, J. P., and Loyola, D.: Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets, Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022, 2022.
WMO: Scientific Assessment of Ozone Depletion: 1998, Global Ozone
Research and Monitoring Project – Rep. No. 44, World Meteorological
Organization, Geneva, Switzerland, 496 pp., 1999.
WMO: Executive Summary. Scientific Assessment of Ozone Depletion: 2022, GAW Report No. 278, World Meteorological Organization, Geneva,
Switzerland, 56 pp., 2022.