Articles | Volume 23, issue 5
https://doi.org/10.5194/acp-23-3119-2023
https://doi.org/10.5194/acp-23-3119-2023
Research article
 | 
09 Mar 2023
Research article |  | 09 Mar 2023

Indicators of the ozone recovery for selected sites in the Northern Hemisphere mid-latitudes derived from various total column ozone datasets (1980–2020)

Janusz Krzyścin

Related authors

Total column ozone measurements by the Dobson spectrophotometer at Belsk (Poland) for the period 1963–2019: homogenization and adjustment to the Brewer spectrophotometer
Janusz W. Krzyścin, Bonawentura Rajewska-Więch, and Janusz Jarosławski
Earth Syst. Sci. Data, 13, 4425–4436, https://doi.org/10.5194/essd-13-4425-2021,https://doi.org/10.5194/essd-13-4425-2021, 2021
Short summary
Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995)
Janusz W. Krzyścin and Piotr S. Sobolewski
Atmos. Chem. Phys., 18, 1–11, https://doi.org/10.5194/acp-18-1-2018,https://doi.org/10.5194/acp-18-1-2018, 2018
Short summary
Effects of urban agglomeration on surface-UV doses: a comparison of Brewer measurements in Warsaw and Belsk, Poland, for the period 2013–2015
Agnieszka E. Czerwińska, Janusz W. Krzyścin, Janusz Jarosławski, and Michał Posyniak
Atmos. Chem. Phys., 16, 13641–13651, https://doi.org/10.5194/acp-16-13641-2016,https://doi.org/10.5194/acp-16-13641-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022,https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Atmospheric impacts of chlorinated very short-lived substances over the recent past – Part 1: Stratospheric chlorine budget and the role of transport
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676, https://doi.org/10.5194/acp-22-10657-2022,https://doi.org/10.5194/acp-22-10657-2022, 2022
Short summary
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022,https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149, https://doi.org/10.5194/acp-22-8137-2022,https://doi.org/10.5194/acp-22-8137-2022, 2022
Short summary
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone
Daniel J. Ruiz and Michael J. Prather
Atmos. Chem. Phys., 22, 2079–2093, https://doi.org/10.5194/acp-22-2079-2022,https://doi.org/10.5194/acp-22-2079-2022, 2022
Short summary

Cited articles

Arosio, C., Rozanov, A., Malinina, E., Weber, M., and Burrows, J. P.: Merging of ozone profiles from SCIAMACHY, OMPS and SAGE II observations to study stratospheric ozone changes, Atmos. Meas. Tech., 12, 2423–2444, https://doi.org/10.5194/amt-12-2423-2019, 2019. 
Bozhkova, V., Liudchik, A., and Umreiko, S.: Long-term trends of total ozone content over mid-latitudes of the Northern Hemisphere, Int. J. Remote Sens., 40, 5216–5229, https://doi.org/10.1080/01431161.2019.1579384, 2019. 
Chubachi, S.: Preliminary results of ozone observations at Syowa Station from February 1982 to January 1983, in: Proc. Sixth Symposium on Polar Meteorology and Glaciology, edited by: Kusunoki, K., Vol. 34 of Mem. National Institute of Polar Research Special Issue, 13–19, 1984. 
Download
Short summary
We propose indices to obtain the current stage of total column ozone (TCO3) recovery attributed to ozone-depleting substance (ODS) changes in the stratosphere. The indices are calculated using TCO3 values in key years of the ODS changes. The ozone recovery stage is derived for 16 sites in the NH mid-latitudes using results from ground and satellite measurements and reanalysis data. In Europe, there is a slow TCO3 recovery. A continuous TCO3 decline has been occurring in some sites since 1980.
Altmetrics
Final-revised paper
Preprint