Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9349-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9349-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate consequences of hydrogen emissions
Environmental Defense Fund, New York, NY, USA
Steven P. Hamburg
Environmental Defense Fund, New York, NY, USA
Related authors
No articles found.
Luis Guanter, Javier Roger, Jack Warren, Maryann Sargent, Zhan Zhang, Sébastien Roche, Christopher Chan Miller, Michael Steiner, Harvey Hadfield, Mark Omara, James P. Williams, Katlyn MacKay, Jonathan E. Franklin, Steven C. Wofsy, Steven P. Hamburg, and Ritesh Gautam
EGUsphere, https://doi.org/10.5194/egusphere-2025-4666, https://doi.org/10.5194/egusphere-2025-4666, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
MethaneSAT was a satellite mission which generated data on methane emissions. In this work, we evaluate the potential of MethaneSAT to detect and quantify methane plumes, and use the existing data archive to evaluate the methane super-emissions from the most important oil and gas basins in the world.
James P. Williams, Mark Omara, Anthony Himmelberger, Daniel Zavala-Araiza, Katlyn MacKay, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, Steven P. Hamburg, and Ritesh Gautam
Atmos. Chem. Phys., 25, 1513–1532, https://doi.org/10.5194/acp-25-1513-2025, https://doi.org/10.5194/acp-25-1513-2025, 2025
Short summary
Short summary
We utilize peer-reviewed facility-level oil and gas methane emission rate data gathered in prior work to estimate the relative contributions of methane sources emitting at different emission rates in the United States. We find that the majority of total methane emissions in the US oil and gas sector stem from a large number of small sources emitting in aggregate, corroborating findings from several other studies.
Mark Omara, Ritesh Gautam, Madeleine A. O'Brien, Anthony Himmelberger, Alex Franco, Kelsey Meisenhelder, Grace Hauser, David R. Lyon, Apisada Chulakadabba, Christopher Chan Miller, Jonathan Franklin, Steven C. Wofsy, and Steven P. Hamburg
Earth Syst. Sci. Data, 15, 3761–3790, https://doi.org/10.5194/essd-15-3761-2023, https://doi.org/10.5194/essd-15-3761-2023, 2023
Short summary
Short summary
We acquire, integrate, and analyze ~ 6 million geospatial oil and gas infrastructure data records based on information available in the public domain and develop an open-access global database including all the major oil and gas facility types that are important sources of methane emissions. This work helps fulfill a crucial geospatial data need, in support of the assessment, attribution, and mitigation of global oil and gas methane emissions at high resolution.
Lu Shen, Ritesh Gautam, Mark Omara, Daniel Zavala-Araiza, Joannes D. Maasakkers, Tia R. Scarpelli, Alba Lorente, David Lyon, Jianxiong Sheng, Daniel J. Varon, Hannah Nesser, Zhen Qu, Xiao Lu, Melissa P. Sulprizio, Steven P. Hamburg, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 11203–11215, https://doi.org/10.5194/acp-22-11203-2022, https://doi.org/10.5194/acp-22-11203-2022, 2022
Short summary
Short summary
We use 22 months of TROPOMI satellite observations to quantity methane emissions from the oil (O) and natural gas (G) sector in the US and Canada at the scale of both individual basins as well as country-wide aggregates. We find that O/G-related methane emissions are underestimated in these inventories by 80 % for the US and 40 % for Canada, and 70 % of the underestimate in the US is from five O/G basins, including Permian, Haynesville, Anadarko, Eagle Ford, and Barnett.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Cited articles
Allen, M. R., Fuglestvedt, J. S., Shine, K. P., Reisinger, A., Pierrehumbert,
R. T., and Forster, P. M.: New use of global warming potentials to compare
cumulative and short-lived climate pollutants, Nat. Clim. Change, 6,
773–776, https://doi.org/10.1038/nclimate2998, 2016.
Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., and
Hamburg, S. P.: Greater focus needed on methane leakage from natural gas
infrastructure, P. Natl. Acad. Sci. USA, 109, 6435–6440,
https://doi.org/10.1073/pnas.1202407109, 2012.
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z.
R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A.,
Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J.,
Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B.,
Sweeney, C., Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.:
Assessment of methane emissions from the U.S. oil and gas supply chain,
Science, 361, 186–188, https://doi.org/10.1126/science.aar7204, 2018.
Balcombe, P., Speirs, J., Brandon, N. P., and Hawkes, A. D.: Methane emissions:
choosing the right climate metric and time, Environ. Sci.-Proc.
Imp., 20, 1323, https://doi.org/10.1039/c8em00414e, 2018.
Bartlett, J. and Krupnick, A.: Decarbonized Hydrogen in the US Power and
Industrial Sectors: Identifying and Incentivizing Opportunities to Lower
Emissions, Resources for the Future, 2020.
Beswick, R. R., Oliveira, A. M., and Yan, Y.: Does the Green Hydrogen
Economy Have a Water Problem?, Am. Chem. S., 6, 3167–3169,
https://doi.org/10.1021/acsenergylett.1c01375, 2021.
BloombergNEF: Hydrogen Economy Outlook Key messages, Bloomberg Finance L. P., 14 pp., https://assets.bbhub.io/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf (last access: 26 April 2022) 2020a.
BloombergNEF: New Energy Outlook 2020 Executive Summary, Bloomberg Finance L. P., 30 pp., https://assets.bbhub.io/professional/sites/24/928908_NEO2020-Executive-Summary.pdf (last access: 26 April 2022), 2020b.
BloombergNEF: New Energy Outlook 2021 Executive Summary, Bloomberg Finance L. P., 16 pp., https://assets.bbhub.io/professional/sites/24/NEO-Executive-Summary-2021.pdf (last access: 26 April 2022), 2021.
Bond, S. W., Gül, T., Reimann, S., Buchmann, B., and Wokaun, A.:
Emissions of anthropogenic hydrogen to the atmosphere during the potential
transition to an increasingly H2-intensive economy, Int. J. Hydrogen,
Energ., 36, 1122–1135, https://doi.org/10.1016/j.ijhydene.2010.10.016,
2011.
Budsberg, E., Crawford, J., Gustafson, R., Bura, R., and Puettmann, M.:
Ethanologens vs. acetogens: Environmental impacts of two ethanol
fermentation pathways, Biomass Bioenerg., 83, 23–31,
https://doi.org/10.1016/j.biombioe.2015.08.019, 2015.
Cain, M., Lynch, J., Allen, M. R., Fuglestvedt, J. S., Frame, D. J., and Macey, A.
H.: Improved calculation of warming-equivalent emissions for short-lived
pollutants, NPJ Clim. Atmos. Sci., 2, 29, https://doi.org/10.1038/s41612-019-0086-4, 2019.
Camuzeaux, J. R., Alvarez, R. A., Brooks, S. A., Browne, J. B., and Sterner,
T.: Influence of methane emissions and vehicle efficiency on the climate
implications of heavy-duty natural gas trucks, Am. Chem. S., 49, 6402–6410,
https://doi.org/10.1021/acs.est.5b00412, 2015.
Cherubini, F. and Tanaka, K.: Amending the Inadequacy of a Single Indicator for Climate Impact Analyses, Environ. Sci. Technol., 50, 12530–12531, https://doi.org/10.1021/acs.est.6b05343, 2016.
Colella, W. G., Jacobson, M. Z., and Golden, D. M.: Switching to a U.S.
hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy
use, and greenhouse gases, J. Power Sources, 150, 150–181,
https://doi.org/10.1016/J.JPOWSOUR.2005.05.092, 2005.
Collins, W., Frame, D., Fuglesvedt, J. S., and Shine, K. P.: Stable climate
metrics for emissions of short and long-lived species – combining steps and
pulses, Environ. Res. Lett. 15, 024018,
https://doi.org/10.1088/1748-9326/ab6039, 2020.
Cooper, J., Dubey, L., Bakkaloglu, S., and Hawkes, A.: Hydrogen emissions from
the hydrogen value chain-emissions profile and impact to global warming,
Sci. Total Environ., 830, 15624, https://doi.org/10.1016/j.scitotenv.2022.154624,
2022.
Derwent, R. G.: Hydrogen for Heating: Atmospheric Impacts, Department for
Business, Energy & Industrial Strategy, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/760538/Hydrogen_atmospheric_impact_report.pdf (last access: 12 May 2012), 2018.
Derwent, R. G., Collins, W. J., Johnson, C. E., and Stevenson, D. S.:
Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and
their indirect greenhouse effects, Climatic Change, 49, 463–487,
https://doi.org/10.1023/A:1010648913655, 2001.
Derwent, R. G., Stevenson, D. S., Utembe, S. R., Jenkin, M. E., Khan, A. H.,
and Shallcross, D. E.: Global modelling studies of hydrogen and its
isotopomers using STOCHEM-CRI: Likely radiative forcing consequences of a
future hydrogen economy, Int. J. Hydrogen Energ., 45, 9211–9221,
https://doi.org/10.1016/j.ijhydene.2020.01.125, 2020.
Derwent, R., Simmonds, P., O'Doherty, S., Manning, A., Collins, W., and
Stevenson, D.: Global environmental impacts of the hydrogen economy, Int. J.
Nuclear Hydrogen Production and Application, 1, 57–67,
https://doi.org/10.1504/IJNHPA.2006.009869, 2006.
Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E.,
Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, O., Midgley,
P., and Wang, M.: Atmospheric Chemistry and Greenhouse Gases, in: Climate
Change 2001: The Scientific Basis, Contribution of Working Group I to the
Third Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der
Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 239–287, ISBN: 0521014956, 2001.
Energy Transitions Commission: Making the Hydrogen Economy Possible:
Accelerating Clean Hydrogen in an Electrified Economy,
https://www.energy-transitions.org/publications/making-clean-hydrogen-possible/ (last access: 18 May 2022),
2021.
Fesenfeld, L. P., Schmidt, T. S., and Schrode, A.: Climate policy for short- and
long-lived pollutants, Nat. Clim. Change, 8, 924–936,
https://doi.org/10.1038/s41558-018-0321-8, 2018.
Field, R. A. and Derwent, R. G.: Global warming consequences of replacing
natural gas with hydrogen in the domestic energy sectors of future
low-carbon economies in the United Kingdom and the United States of America,
Int. J. Hydrogen Energ., 46, 30190–30203,
https://doi.org/10.1016/j.ijhydene.2021.06.120, 2021.
Fischer, E. M., Sippel, S., and Knutti, R.: Increasing probability of
record-shattering climate extremes, Nat. Clim. Change, 11, 689–695,
https://doi.org/10.1038/s41558-021-01092-9, 2021.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M.,Wild, M., and Zhang, H.: The Earth's energy budget, climate feedbacks, and climate sensitivity, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirant, A., Connors, S. L., Pean, C., Berger, S., Caud, C., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, L. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., Cambridge University Press, 923–1054, https://www.ipcc.ch/report/ar6/wg1/ (last access: 11 July 2022), 2021.
Frazer-Nash Consultancy: Fugitive Hydrogen Emissions in a Future Hydrogen
Economy, Department for Business, Energy & Industrial Strategy,
https://www.gov.uk/government/publications/fugitive-hydrogen-emissions-in-a-future-hydrogen-economy (last access: 14 April 2022),
2022.
Howarth, A. and Jacobson, M. Z.: How green is blue hydrogen?, Energy Sci.
Eng., 9, 1676–1687, https://doi.org/10.1002/ese3.956, 2021.
Hydrogen Council: Hydrogen scaling up A sustainable pathway for the global energy transition, 78 pp., https://hydrogencouncil.com/en/study-hydrogen-scaling-up/ (last access: 7 April 2022), 2017.
Hydrogen Council: Hydrogen Insights Report 2021, A perspective on hydrogen investment, market development and cost competitiveness, 58 pp., https://hydrogencouncil.com/en/hydrogen-insights-2021/ (last access: 14 April 2022), 2021a.
Hydrogen Council: Hydrogen decarbonization pathways: A life-cycle assessmentfor Net-Zero: A critical cost-competitive energy vector, 55 pp., https://hydrogencouncil.com/en/hydrogen-for-net-zero/ (last access: 16 May 2022), 2021b.
International Energy Agency: The Future of Hydrogen Seizing today’s opportunities, 203 pp., https://www.iea.org/reports/the-future-of-hydrogen (last access: 14 April 2022), 2019.
International Energy Agency: Global Hydrogen Review 2021, 224 pp., https://www.iea.org/reports/global-hydrogen-review-2021 (last access: 14 April 2022), 2021.
International Energy Agency: Hydrogen, https://www.iea.org/fuels-and-technologies/hydrogen, last access: 17 May 2022.
International Renewable Energy Agency: Global Renewables Outlook: Energy transformation 2050, https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020 (last access: 16 May 2022), 2020.
International Renewable Energy Agency: Global Hydrogen Trade to Meet the 1.5 ∘C Climate Goal Part II Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II (last access: 13 May 2022), 2022.
Ivanovich, C. C., Ocko, I. B., Piris-Cabezas, P., and Petsonk, A.: Climate benefits of proposed carbon dioxide mitigation strategies for international shipping and aviation, Atmos. Chem. Phys., 19, 14949–14965, https://doi.org/10.5194/acp-19-14949-2019, 2019.
Jacobson, M. Z.: Effects of wind-powered hydrogen fuel cell vehicles on
stratospheric ozone and global climate, Geophys. Res. Lett., 35, L19803, https://doi.org/10.1029/2008GL035102, 2008.
Kobayashi, H., Naruo, Y., Maru, Y., Takesaki, Y., and Miyanabe, K.:
Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion, Int. J.
Hydrogen Energ., 43, 17928–17937,
https://doi.org/10.1016/J.IJHYDENE.2018.07.145, 2018.
Lewis, A. C.: Optimising air quality co-benefits in a hydrogen economy: a
case for hydrogen-specific standards for NOx emissions, Environ. Sci:
Atmos., 1, 201–207, https://doi.org/10.1039/d1ea00037c, 2021.
Lynch, J., Cain, M., Pierrehumbert, R., and Allen, M.: Demonstrating GWP*: a
means of reporting warming-equivalent emissions that captures the
contrasting impacts of short-and long-lived climate pollutants, Environ.
Res. Lett., 15, 044023, https://doi.org/10.1088/1748-9326/ab6d7e, 2020.
Mejia, A. H., Brouwer, J., and Mac Kinnon, M.: Hydrogen leaks at the same
rate as natural gas in typical low-pressure gas infrastructure, Int. J.
Hydrogen Energ., 45, 8810–8826,
https://doi.org/10.1016/j.ijhydene.2019.12.159, 2020.
Melaina, M. W., Antonia, O., and Penev, M.: Blending Hydrogen into Natural
Gas Pipeline Networks: A Review of Key Issues, PhD, National Renewable
Energy Laboratory, https://doi.org/10.2172/1068610, 2013.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing Supplementary Material, in: Climate Change 2013: The Physical Basis, Contribution of Working Group I of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, 8SM-1–8SM-44, https://doi.org/10.1017/CBO9781107415324.018, 2013.
Najjar, Y. S.: Hydrogen Leakage Sensing and Control: (Review), Biomed. J.
Sci. Tech. Res., 21, 16228–16240, https://doi.org/10.26717/bjstr.2019.21.003670, 2019.
Ocko, I. B. and Hamburg, S. P.: Climate Impacts of Hydropower: Enormous
Differences among Facilities and over Time, Environ. Sci. Technol., 53,
14070–14082, https://doi.org/10.1021/acs.est.9b05083, 2019.
Ocko, I. B., Hamburg, S. P., Jacob, D. J., Keith, D. W., Keohane, N. O.,
Oppenheimer, M., Roy-Mayhew, J. D., Schrag, D. P., and Pacala, S. W.: Unmask
temporal trade-offs in climate policy debates, Science, 356, 492–493, https://doi.org/10.1126/science.aaj2350, 2017.
Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M., Hristov, A. N., Pacala,
S. W., Mauzerall, D. L., Xu, Y., and Hamburg, S. P.: Acting rapidly to
deploy readily available methane mitigation measures by sector can
immediately slow global warming, Environ. Res. Lett., 16, 054042, https://doi.org/10.1088/1748-9326/abf9c8, 2021.
Paulot, F., Paynter, D., Naik, V., Malyshev, S., Menzel, R., and Horowitz,
L. W.: Global modeling of hydrogen using GFDL-AM4.1: Sensitivity of soil
removal and radiative forcing, Int. J. Hydrogen Energ., 46, 13446–13460,
https://doi.org/10.1016/j.ijhydene.2021.01.088, 2021.
Prather, M. J.: An Environmental Experiment with H2?, Science, 302, 581–582, https://doi.org/10.1126/science.1091060, 2003.
Rahn, T., Eiler, J. M., Boering, K. A., Wennberg, P. O., McCarthy, M. C.,
Tyler, S., Schauffler, S., Donnelly, S., and Atlas, E.: Extreme deuterium
enrichment in stratospheric hydrogen and the global atmospheric budget of
H2, Nature, 424, 915–918, https://doi.org/10.1038/nature01917, 2003.
Saadat, S. and Gersen, S.: Reclaiming Hydrogen for a Renewable Future, Earthjustice, 41 pp., https://earthjustice.org/features/green-hydrogen-renewable-zero-emission (last access: 11 July 2022), 2021.
Schultz, M. G., Diehl, T., Brasseur, G. P., and Zittel, W.: Air Pollution
and Climate-Forcing Impacts of a Global Hydrogen Economy, 302, 622–624,
https://doi.org/10.1126/science.1089527, 2003.
Secretary of State
for Business: Department for Business, Energy and Industrial Strategy, UK hydrogen strategy, United Kingdom, https://www.gov.uk/government/publications/uk-hydrogen-strategy (last access: 20 April 2022), 2021.
Severinsky, A. J. and Sessoms, A. L.: Methane versus Carbon Dioxide: Mitigation
Prospects, Int. J. Environ. Ecol. Eng., 15, 214–220,
https://publications.waset.org/vol/176, 2021.
Shen, L., Zavala-Araiza, D., Gautam, R., Omara, M., Scarpelli, T., Sheng,
J., Sulprizio, M. P., Zhuang, J., Zhang, Y., Qu, Z., Lu, X., Hamburg, S. P.,
and Jacob, D. J.: Unravelling a large methane emission discrepancy in Mexico
using satellite observations, Remote Sens. Enviornment, 260, 112461, https://doi.org/10.1016/j.rse.2021.112461, 2021.
Sherif, S. A., Zeytinoglu, N., and Veziroglug, T. N.: Liquid Hydrogen:
Potential, Problems, and a Proposed Research Program, Int. J. Hydrogen
Energy, 22, 683–688, 1997.
Shine, K. P., Berntsen, T. K., Fuglestvedt, J. S., Skeie, R. B., and Stuber,
N.: Comparing the Climate Effect of Emissions of Short-and Long0Lived
Climate Agents, Phil. Trans. R. Soc. A., 365, 1903–1914,
https://doi.org/10.1098/rsta.2007.2050, 2007.
Simoes, S. G., Catarino, J., Picado, A., Lopes, T. F., di Berardino, S.,
Amorim, F., Gírio, F., Rangel, C. M., and Ponce de Leão, T.: Water
availability and water usage solutions for electrolysis in hydrogen
production, J. Clean. Produc., 315, 128124, https://doi.org/10.1016/j.jclepro.2021.128124, 2021.
Swain, M. R. and Swain, M. N.: A comparison of H2, CH4 and C3H8 fuel leakage
in residential settings, Int. J. Hydrogen Energ., 17, 807–815,
https://doi.org/10.1016/0360-3199(92)90025-R, 1992.
Thibault, L., Gahlot, P. and Debarre, R.: Hydrogen applications and business
models, Kearney Energy Transition Institute,
https://www.energy-transition-institute.com/insights/hydrogen (last access: 14 April 2022), 2020.
Tromp, T. K., Shia, R.-L., Allen, M., Eiler, J. M., and Yung, Y. L.:
Potential Environmental Impact of a Hydrogen Economy on the Stratosphere,
Science, 300, 1740–1742, https://doi.org/10.1126/science.1085169, 2003.
Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., and
Luderer, G.: Potential and risks of hydrogen-based e-fuels in climate change
mitigation, Nat. Clim. Change, 11, 384–393, https://doi.org/10.1038/s41558-021-01032-7, 2021.
van Renssen, S.: The hydrogen solution?, Nat. Clim. Change, 10, 799–201, https://doi.org/10.1038/s41558-020-0891-0, 2020.
van Ruijven, B., Lamarque, J. F., van Vuuren, D. P., Kram, T., and Eerens,
H.: Emission scenarios for a global hydrogen economy and the consequences
for global air pollution, Glo. Env. Change, 21, 983–994,
https://doi.org/10.1016/j.gloenvcha.2011.03.013, 2011.
Vogel, B., Feck, T., and Groobß, J. U.: Impact of stratospheric water
vapor enhancements caused by CH4 and H2O increase on polar ozone loss, J.
Geophys. Res-Atmos., 116, D05301, https://doi.org/10.1029/2010JD014234, 2011.
Vogel, B., Feck, T., Grooß, J. U., and Riese, M.: Impact of a possible
future global hydrogen economy on Arctic stratospheric ozone loss, Energy
Environ. Sci., 5, 6445–6452, https://doi.org/10.1039/c2ee03181g, 2012.
Wang, D., Jia, W., Olsen, S. C., Wuebbles, D. J., Dubey, M. K., and Rockett, A. A.: Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 2: Stratospheric ozone, Atmos. Chem. Phys., 13, 6139–6150, https://doi.org/10.5194/acp-13-6139-2013, 2013.
Warwick, N., Bekki, S., Nisbet, E. G., and Pyle, J. A.: Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model, Geophys. Res. Letters, 31, L05107, https://doi.org/10.1029/2003gl019224, 2004.
Warwick, N., Griffiths, P., Keeble, J., Archibald, A., Pyle, J., and Shine, K.: Atmospheric implications of increased Hydrogen use, Department for Business, Energy and Industrial Strategy, 75 pp., https://www.gov.uk/government/publications/atmospheric-implications-of-increased-hydrogen-use (last access: 15 April 2022), 2022.
World Energy Council: Working Paper National Hydrogen Strategies, 20 pp., publications/entry/working-paper-hydrogen-on-the-horizon-national-hydrogen-strategies (last access: 25 January 2022), 2021.
Wuebbles, D. J., Dubey, M. K., Edmonds, J., Layzell, D., Olsen, S., Rahn,
T., Rocket, A., Wang, D., and Jia, W.: Evaluation of the Potential
Environmental Impacts from Large-Scale Use and Production of Hydrogen in
Energy and Transportation Applications, University of Illinois at
Urbana-Champaign, United States, https://doi.org/10.2172/1044180, 2010.
Xu, Y., Zaelke, D., Velders, G. J. M., and Ramanathan, V.: The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys., 13, 6083–6089, https://doi.org/10.5194/acp-13-6083-2013, 2013.
Yusaf, T., Laimon, M., Alrefae, W., Kadirgama, K., Dhahad, H., Ramasamy, D., Kamarulzaman, M. K., and Yousif, B.: Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach, Appl. Sci., 12, 781, https://doi.org/10.3390/app12020781, 2022.
Short summary
Hydrogen is considered a key strategy to decarbonize the global economy. However, hydrogen is also a short-lived indirect greenhouse gas that can easily leak into the atmosphere. Given that the climate impacts from hydrogen emissions are not well understood, especially in the near term, we assess impacts over all timescales for plausible emissions rates. We find that hydrogen leakage can cause more warming than widely perceived; thus, attention is needed to minimize emissions.
Hydrogen is considered a key strategy to decarbonize the global economy. However, hydrogen is...
Altmetrics
Final-revised paper
Preprint