Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-9099-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9099-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of surface ammonia concentrations and emissions in China from the polar-orbiting Infrared Atmospheric Sounding Interferometer and the FY-4A Geostationary Interferometric Infrared Sounder
Pu Liu
College of Earth and Environmental Sciences, Lanzhou University,
Lanzhou 730000, China
Jia Ding
College of Earth and Environmental Sciences, Lanzhou University,
Lanzhou 730000, China
Lei Liu
CORRESPONDING AUTHOR
College of Earth and Environmental Sciences, Lanzhou University,
Lanzhou 730000, China
College of Resources and Environmental Sciences, Center for
Resources, Environment and Food Security, Key Laboratory of Plant-Soil
Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
Xuejun Liu
College of Resources and Environmental Sciences, Center for
Resources, Environment and Food Security, Key Laboratory of Plant-Soil
Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
Related authors
No articles found.
Biao Luo, Lei Liu, David H. Y. Yung, Tiangang Yuan, Jingwei Zhang, Leo T. H. Ng, and Amos P. K. Tai
Atmos. Chem. Phys., 25, 10089–10108, https://doi.org/10.5194/acp-25-10089-2025, https://doi.org/10.5194/acp-25-10089-2025, 2025
Short summary
Short summary
Through a combination of emission models and air quality models, this study aims to address the pressing issue of poor nitrogen management while promoting sustainable food systems and public health in China. We discovered that improving nitrogen management of crops and livestock can substantially reduce air pollutant emissions, particularly in the North China Plain. Our findings further provide the benefits of such interventions for PM2.5 reductions, offering valuable insights for policymakers.
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023, https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Cited articles
Cai, X., Bao, Y., Petropoulos, G. P., Lu, F., Lu, Q., Zhu, L., and Wu, Y.:
Temperature and humidity profile retrieval from FY4-GIIRS hyperspectral data
using artificial neural networks, Remote Sens., 12, 1872,
https://doi.org/10.3390/rs12111872, 2020.
Clarisse, L.: Atmospheric Ammonia (NH3) total columns from the FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.5051433, 2021.
Clarisse, L., Van Damme, M., Hurtmans, D., Franco, B., Clerbaux, C., and
Coheur, P. F.: The diel cycle of NH3 observed from the FY-4A
Geostationary Interferometric Infrared Sounder (GIIRS), Geophys. Res. Lett.,
48, e2021GL093010, https://doi.org/10.1029/2021GL093010, 2021.
Clarisse, L., Van Damme, M., and Coheur, P.-F.: Near-real time daily IASI/Metop-A ULB-LATMOS ammonia (NH3) L2 product (total column), AERIS data infrastructure [data set], https://iasi.aeris-data.fr/nh3_iasi_a_data, last access: 5 February 2022.
Cooper, M., Martin, R. V., Padmanabhan, A., and Henze, D. K.: Comparing mass
balance and adjoint methods for inverse modeling of nitrogen dioxide columns
for global nitrogen oxide emissions, J. Geophys. Res.-Atmos., 122,
4718–4734, https://doi.org/10.1002/2016JD025985, 2017.
Dammers, E., Shephard, M. W., Palm, M., Cady-Pereira, K., Capps, S., Lutsch, E., Strong, K., Hannigan, J. W., Ortega, I., Toon, G. C., Stremme, W., Grutter, M., Jones, N., Smale, D., Siemons, J., Hrpcek, K., Tremblay, D., Schaap, M., Notholt, J., and Erisman, J. W.: Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR, Atmos. Meas. Tech., 10, 2645–2667, https://doi.org/10.5194/amt-10-2645-2017, 2017.
Dammers, E., McLinden, C. A., Griffin, D., Shephard, M. W., Van Der Graaf, S., Lutsch, E., Schaap, M., Gainairu-Matz, Y., Fioletov, V., Van Damme, M., Whitburn, S., Clarisse, L., Cady-Pereira, K., Clerbaux, C., Coheur, P. F., and Erisman, J. W.: NH3 emissions from large point sources derived from CrIS and IASI satellite observations, Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019, 2019.
Ding, Y. H., Ren, G. Y., Zhao, Z. C., Xu, Y., Luo, Y., Li, Q. P., and Zhang,
J.: Detection, causes and projection of climate change over China: An
overview of recent progress, Adv. Atmos. Sci., 24, 954–971,
https://doi.org/10.1007/s00376-007-0954-4, 2007.
Dong, W., Xing, J., and Wang, S.: Temporal and spatial distribution of
anthropogenic ammonia emissions in China: 1994–2006, Huanjing Kexue, 31,
1457–1463, 2010.
Eastham, S. D., Weisenstein, D. K., and Barrett, S. R.: Development and
evaluation of the unified tropospheric–stratospheric chemistry extension
(UCX) for the global chemistry-transport model GEOS-Chem, Atmos. Environ.,
89, 52–63, https://doi.org/10.1016/j.atmosenv.2014.02.001, 2014.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network, Atmos. Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S.,
Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P.,
Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D.,
Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first
century, Philos. T. R. Soc. B, 368, 20130164,
https://doi.org/10.1098/rstb.2013.0164, 2013.
Fu, H., Luo, Z., and Hu, S.: A temporal-spatial analysis and future trends
of ammonia emissions in China, Sci. Total Environ., 731, 138897,
https://doi.org/10.1016/j.scitotenv.2020.138897, 2020.
Geddes, J. A. and Martin, R. V.: Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns, Atmos. Chem. Phys., 17, 10071–10091, https://doi.org/10.5194/acp-17-10071-2017, 2017.
Gilliland, A. B., Dennis, R. L., Roselle, S. J., and Pierce, T. E.: Seasonal
NH3 emission estimates for the eastern United States based on ammonium
wet concentrations and an inverse modeling method, J. Geophys. Res.-Atmos.,
108, 4477, https://doi.org/10.1029/2002jd003063, 2003.
Guo, X., Wang, R., Pan, D., Zondlo, M. A., Clarisse, L., Van Damme, M.,
Whitburn, S., Coheur, P. F., Clerbaux, C., Franco, B., Golston, L. M.,
Wendt, L., Sun, K., Tao, L., Miller, D., Mikoviny, T., Müller, M.,
Wisthaler, A., Tevlin, A. G., Murphy, J. G., Nowak, J. B., Roscioli, J. R.,
Volkamer, R., Kille, N., Neuman, J. A., Eilerman, S. J., Crawford, J. H.,
Yacovitch, T. I., Barrick, J. D., and Scarino, A. J.: Validation of IASI
satellite ammonia observations at the pixel scale using in situ vertical
profiles, J. Geophys. Res.-Atmos., 126, e2020JD033475,
https://doi.org/10.1029/2020jd033475, 2021.
He, Y., Pan, Y., Zhang, G., Ji, D., Tian, S., Xu, X., Zhang, R., and Wang,
Y.: Tracking ammonia morning peak, sources and transport with 1 Hz
measurements at a rural site in North China Plain, Atmos. Environ., 235,
117630, https://doi.org/10.1016/j.atmosenv.2020.117630, 2020.
Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and
Zhang, H.: A high-resolution ammonia emission inventory in China, Global
Biogeochem. Cy., 26, GB1030, https://doi.org/10.1029/2011gb004161, 2012.
Jacob, D. J.: Introduction to atmospheric chemistry, Princeton University Press, https://doi.org/10.1515/9781400841547, 1999.
Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, 2016.
Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., Wu, L., Wu, Q., He,
Y., Tian, S., Xie, Y., Liu, Z., Sui, W., Han, L., and Carmichael, G.:
Improved inversion of monthly ammonia emissions in China based on the
Chinese ammonia monitoring network and ensemble Kalman filter, Environ. Sci.
Technol., 53, 12529–12538, https://doi.org/10.1021/acs.est.9b02701, 2019.
Kuang, Y., Xu, W., Lin, W., Meng, Z., Zhao, H., Ren, S., Zhang, G., Liang,
L., and Xu, X.: Explosive morning growth phenomena of NH3 on the North
China Plain: Causes and potential impacts on aerosol formation, Environ.
Pollut., 257, 113621, https://doi.org/10.1016/j.envpol.2019.113621, 2020.
Kutzner, R. D., Cuesta, J., Chelin, P., Petit, J.-E., Ray, M., Landsheere, X., Tournadre, B., Dupont, J.-C., Rosso, A., Hase, F., Orphal, J., and Beekmann, M.: Diurnal evolution of total column and surface atmospheric ammonia in the megacity of Paris, France, during an intense springtime pollution episode, Atmos. Chem. Phys., 21, 12091–12111, https://doi.org/10.5194/acp-21-12091-2021, 2021.
Lachatre, M., Fortems-Cheiney, A., Foret, G., Siour, G., Dufour, G., Clarisse, L., Clerbaux, C., Coheur, P.-F., Van Damme, M., and Beekmann, M.: The unintended consequence of SO2 and NO2 regulations over China: increase of ammonia levels and impact on PM2.5 concentrations, Atmos. Chem. Phys., 19, 6701–6716, https://doi.org/10.5194/acp-19-6701-2019, 2019.
Lamsal, L., Martin, R., Padmanabhan, A., Van Donkelaar, A., Zhang, Q.,
Sioris, C., Chance, K., Kurosu, T., and Newchurch, M.: Application of
satellite observations for timely updates to global anthropogenic NOx
emission inventories, Geophys. Res. Lett., 38, L05810,
https://doi.org/10.1029/2010GL046476, 2011.
Liu, L., Zhang, X., Wong, A. Y. H., Xu, W., Liu, X., Li, Y., Mi, H., Lu, X., Zhao, L., Wang, Z., Wu, X., and Wei, J.: Estimating global surface ammonia concentrations inferred from satellite retrievals, Atmos. Chem. Phys., 19, 12051–12066, https://doi.org/10.5194/acp-19-12051-2019, 2019.
Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., Zhao, Y., He, W., Wang,
S., Zhang, X., Liu, X., and Vitousek, P.: Exploring global changes in
agricultural ammonia emissions and their contribution to nitrogen deposition
since 1980, P. Natl. Acad. Sci. USA, 119, e2121998119,
https://doi.org/10.1073/pnas.2121998119, 2022.
Ma, S.: High-resolution assessment of ammonia emissions in China:
Inventories, driving forces and mitigation, Atmos. Environ., 229, 117458,
https://doi.org/10.1016/j.atmosenv.2020.117458, 2020.
Marais, E. A., Pandey, A. K., Van Damme, M., Clarisse, L., Coheur, P. F.,
Shephard, M. W., Cady-Pereira, K. E., Misselbrook, T., Zhu, L., Luo, G., and
Yu, F.: UK Ammonia Emissions Estimated With Satellite Observations and
GEOS-Chem, J. Geophys. Res.-Atmos., 126, e2021JD035237,
https://doi.org/10.1029/2021JD035237, 2021.
Paerl, H. W., Gardner, W. S., McCarthy, M. J., Peierls, B. L., and Wilhelm,
S. W.: Algal blooms: noteworthy nitrogen, Science, 346, 175–175,
https://doi.org/10.1126/science.346.6206.175-a, 2014.
Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou,
Y., Song, Y., Zhang, Q., and Wang, Y.: Identifying ammonia hotspots in China using a
national observation network, Environ. Sci. Technol., 52, 3926–3934,
https://doi.org/10.1021/acs.est.7b05235, 2018.
Pandolfi, M., Amato, F., Reche, C., Alastuey, A., Otjes, R. P., Blom, M. J., and Querol, X.: Summer ammonia measurements in a densely populated Mediterranean city, Atmos. Chem. Phys., 12, 7557–7575, https://doi.org/10.5194/acp-12-7557-2012, 2012.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze,
D. K.: Ammonia emissions in the United States, European Union, and China
derived by high-resolution inversion of ammonium wet deposition data:
Interpretation with a new agricultural emissions inventory
(MASAGE_NH3), J. Geophys. Res.-Atmos., 119, 4343–4364,
https://doi.org/10.1002/2013jd021130, 2014.
Peng, S., Huang, J., Zhong, X., Yang, J., Wang, G., Zou, Y., Zhang, F., Zhu,
Q., Buresh, R., and Witt, C.: Challenge and opportunity in improving
fertilizer-nitrogen use efficiency of irrigated rice in China, Agr. Sci.
China, 1, 776–785, 2002.
Pinder, R. W., Walker, J. T., Bash, J. O., Cady-Pereira, K. E., Henze, D.
K., Luo, M. Z., Osterman, G. B., and Shephard, M. W.: Quantifying spatial
and seasonal variability in atmospheric ammonia with in situ and space-based
observations, Geophys. Res. Lett., 38, L04802,
https://doi.org/10.1029/2010gl046146, 2011.
Shephard, M. W. and Cady-Pereira, K. E.: Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia, Atmos. Meas. Tech., 8, 1323–1336, https://doi.org/10.5194/amt-8-1323-2015, 2015.
Someya, Y., Imasu, R., Shiomi, K., and Saitoh, N.: Atmospheric ammonia retrieval from the TANSO-FTS/GOSAT thermal infrared sounder, Atmos. Meas. Tech., 13, 309–321, https://doi.org/10.5194/amt-13-309-2020, 2020.
Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., and Coheur, P. F.: Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905–2922, https://doi.org/10.5194/acp-14-2905-2014, 2014.
Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., and Coheur, P.-F.: Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets, Atmos. Meas. Tech., 10, 4905–4914, https://doi.org/10.5194/amt-10-4905-2017, 2017.
Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D.,
Clerbaux, C., and Coheur, P. F.: Industrial and agricultural ammonia point
sources exposed, Nature, 564, 99–103,
https://doi.org/10.1038/s41586-018-0747-1, 2018.
Wang, S., Nan, J., Shi, C., Fu, Q., Gao, S., Wang, D., Cui, H., Saiz-Lopez,
A., and Zhou, B.: Atmospheric ammonia and its impacts on regional air
quality over the megacity of Shanghai, China, Sci. Rep.-UK, 5, 1–13,
https://doi.org/10.1038/srep15842, 2015.
Wang, Z., Zhang, X., Liu, L., Cheng, M., and Xu, J.: Spatial and seasonal
patterns of atmospheric nitrogen deposition in North China, Atmospheric and
Oceanic Science Letters, 13, 188–194,
https://doi.org/10.1080/16742834.2019.1701385, 2020.
Warner, J. X., Wei, Z., Strow, L. L., Dickerson, R. R., and Nowak, J. B.: The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record, Atmos. Chem. Phys., 16, 5467–5479, https://doi.org/10.5194/acp-16-5467-2016, 2016.
Werner, M., Kryza, M., Geels, C., Ellermann, T., and Skjøth, C. A.:
Ammonia concentrations over Europe – application of the WRF-Chem model
supported with dynamic emission, Pol. J. Environ. Stud., 26, 1323–1341,
https://doi.org/10.15244/pjoes/67340, 2017.
Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 41, 52–63,
https://doi.org/10.1016/j.atmosenv.2007.10.058, 2007.
Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C.,
Hadji-Lazaro, J., Hurtmans, D., Zondlo, M. A., Clerbaux, C., and Coheur, P.
F.: A flexible and robust neural network IASI-NH3 retrieval algorithm,
J. Geophys. Res.-Atmos., 121, 6581–6599,
https://doi.org/10.1002/2016JD024828, 2016.
Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H., Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lu, S. H., Liang, T., Tong, Y. A., Liu, P., Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., Shi, X. K., Du, E. Z., Dore, A. J., Tang, S., Collett Jr., J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S., and Liu, X. J.: Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China, Atmos. Chem. Phys., 15, 12345–12360, https://doi.org/10.5194/acp-15-12345-2015, 2015.
Zhang, L., Chen, Y., Zhao, Y., Henze, D. K., Zhu, L., Song, Y., Paulot, F., Liu, X., Pan, Y., Lin, Y., and Huang, B.: Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339–355, https://doi.org/10.5194/acp-18-339-2018, 2018.
Zhang, Q., Yu, Y., Zhang, W., Luo, T., and Wang, X.: Cloud detection from
FY-4A's geostationary interferometric infrared sounder using machine
learning approaches, Remote Sens., 11, 3035,
https://doi.org/10.3390/rs11243035, 2019.
Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., Van Damme, M.,
Clarisse, L., Whitburn, S., Coheur, P.-F. O., and Gu, B.: Ammonia emissions
may be substantially underestimated in China, Environ. Sci. Technol., 51,
12089–12096, https://doi.org/10.1021/acs.est.7b02171, 2017.
Zhang, X. M., Ren, C. C., Gu, B. J., and Chen, D. L.: Uncertainty of
nitrogen budget in China, Environ. Pollut., 286, 117216,
https://doi.org/10.1016/j.envpol.2021.117216, 2021.
Zhang, Y., Liu, X., Zhang, F., Ju, X., Zou, G., and Hu, K.: Spatial and
temporal variation of atmospheric nitrogen deposition in the North China
Plain, Acta Ecologica Sinica, 26, 1633–1638,
https://doi.org/10.1016/S1872-2032(06)60026-7, 2006.
Zhou, F., Ciais, P., Hayashi, K., Galloway, J., Kim, D.-G., Yang, C., Li,
S., Liu, B., Shang, Z., and Gao, S.: Re-estimating NH3 emissions from
Chinese cropland by a new nonlinear model, Environ. Sci. Technol., 50,
564–572, https://doi.org/10.1021/acs.est.5b03156, 2016.
Short summary
Ammonia (NH3) is the important alkaline gas and the key component of fine particulate matter. We used satellite-based observations to analyze the changes in hourly NH3 concentrations and estimated surface NH3 concentrations and NH3 emissions in China. This study shows enormous potential for using satellite data to estimate surface NH3 concentrations and NH3 emissions and provides an important reference for understanding NH3 variation in China.
Ammonia (NH3) is the important alkaline gas and the key component of fine particulate matter. We...
Altmetrics
Final-revised paper
Preprint